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A Overview

We have proposed a novel inverse rendering framework based on the unified
voxelization of scene representation. In this appendix, we present more results
of our method. We describe the implementation details of the multi-resolution
version of our UniVoxel in Sec. B and show additional ablation studies in Sec. C.
Then we present the quantitative and qualitative results of the Shiny Blender
dataset [4] in Sec. D. Furthermore, we show additional results on the MII [7]
synthetic dataset and the NeRD [2] real-wold dataset in Sec. E and Sec. F,
respectively. Finally, we discuss the limitation of our method in Sec. G.

B Implementation Details

For the multi-resolution hash encoding version of our UniVoxel, we employ a
similar training paradigm used in our dense voxel grid version. During the first
stage, we only optimize the radiance field to accelerate training while using the
same resolution setting as the second stage. The total resolution levels of multi-
resolution hash grid are set to L = 16. The coarsest resolution is 32 and the
finest resolution is 2048. The channel of each learnable feature is set to 2 and
the hash table size of each resolution level is set to 219. The tiny MLP network
for SDF decoding comprises 1 hidden layer with 64 channels, and the tiny MLP
networks for other scene properties comprise 2 hidden layers with 64 channels.
The number of Spherical Gaussian lobes is k = 16. The weights of the losses are
tuned to be λpbr = 10.0, λrad = 10.0, λn = 0.01, λκ = 0.1, λζ = 0.01, λsg = 0.1
and λwhite = 0.01. We employ additional eikonal loss to regularize SDF value
and the weight is tuned to be 0.01. We use the AdamW optimizer with learning
rate 0.01, weight decay 0.01, and a batch size of 8192 rays to optimize the scene
representation for 10k iterations in both the two stages.
* Equal contribution.
† Corresponding author.
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Fig. 1: Visualization of the reconstructed albedo maps by different illumination models.
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Fig. 2: Visualization of the albedo maps reconstructed by our method with/without
the regularization for Spherical Gaussians.

Table 1: Ray batch size and the required GPU memory for training each method on
the MII synthetic dataset.

Method Batch Size GPU Memory

TensoIR [3] 4096 ≈12GB
MII [7] 1024 ≈14GB
UniVoxel(Hash) 8192 ≈16GB
UniVoxel 8192 ≈19GB

C Additional Ablation Studies

C.1 Comparison of Different Illumination Models

We show the qualitative results of different illumination models in Fig. 1. Using
the environment map to model illumination leads to poor albedo maps due to
the computational challenges involved in computing light visibility and indirect
lighting, making optimization difficult. When employing MLP to predict incident
radiance directly, as done by NeILF [6], the lighting tends to be baked into the
albedo map without constraints for the illumination. Modeling incident lights
using Spherical Harmonics (SH) fails to recover high-frequency illumination,
causing color deviations in certain regions of the albedo. The visualization aligns
with the quantitative results presented in Tab. 2 of the main paper.
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Fig. 3: Comparison of the albedo maps with different SG smoothness loss weight.

C.2 Effectiveness of the Regularization for Spherical Gaussians

We compare the reconstructed albedo optimized with and without the regular-
ization for Spherical Gaussians in Fig. 2. Without Lsg, the illumination tends
to be baked into the predicted albedo, resulting in poor texture recovery of
the pillow, which demonstrates the effectiveness of our proposed regularization
in alleviating the material-lighting ambiguity. The visualization aligns with the
quantitative results presented in Tab. 3 of the main paper.

C.3 Effect of the SG Smoothness

We compare the estimated albedo maps with different SG smoothness loss weight
λsg of Eq. 16 on StateOfLiberaty scene from the NeRD dataset in Fig. 3. It can
be observed that using a larger λsg will result in shadows appearing on the
albedo maps. Due to the more complex lighting conditions in outdoor scenes, it
is advisable to reduce the constraints on illumination to eliminate these shading
components.

C.4 Visualization for Incident Lights

We show the incident light maps in Fig. 4. Our illumination model is able to
represent the effect of direct lighting, occlusions and indirect lighting simultane-
ously. As shown in the air balloons scene of Fig. 4, point x1 locates at the top
of the balloons, therefore receiving predominantly ambient lights as its incident
lights. On the other hand, point x2 is located at the saddle point of the balloons,
where the surrounding surfaces exhibit low roughness. Consequently, a portion
of the incident lights in its incident light map is composed of red light reflected
from the neighboring surfaces. In contrast, The environment maps learned by
TensoIR [3] only model direct lighting, thus lack the capability to capture such
spatially-varying indirect lighting.
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Fig. 4: Visualization of the incident light maps reconstructed by our method. Note
that our incident light field is designed for modeling both direct lighting and indirect
lighting, while the environment map learned by TensoIR is only designed for modeling
direct lighting.

C.5 Comparison of GPU Memory

We present the ray batch size and required GPU memory of each method for
training on the MII synthetic dataset in Tab. 1. It can be seen that our method
does not significantly exceed the GPU memory of other methods, thanks to our
efficient implementation. The GPU memory can be further optimized by the
multi-resolution hash encoding version of our UniVoxel.



UniVoxel 5

Table 2: Quantitative evaluation on the Shiny Blender dataset. We report the per-
scene mean angular error (MAE◦) of the normal vectors as well as the mean MAE◦

over scenes.

MAE◦ ↓ teapot toaster car ball coffee helmet mean

Mip-NeRF [1] 66.470 42.787 40.954 104.765 29.427 77.904 60.38
Ref-NeRF [4] 9.234 42.870 14.927 1.548 12.240 29.484 18.38
Voxurf [5] 8.197 23.568 17.436 30.395 8.195 20.868 18.110
TensoIR [3] 8.709 60.968 35.483 100.679 15.728 76.915 49.747

Univoxel 6.855 11.515 8.987 1.635 23.654 3.108 9.292
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GT Image GT Normal TensoIR Voxurf Ours (Envmap) Ours (SH) Ours (SG) Ours (NeILF)

35.483 17.436 11.197 9.219 9.053 8.987

17.436 20.868 8.406 3.103 3.059 3.108

Fig. 5: Qualitative comparison of normal maps on 2 scenes from the Shiny Blender
dataset. We report the average MAE◦ below each image.

D Results on the Shiny Blender Dataset

We conducted experiments on the challenging Shiny Blender dataset [4]. As
shown in Tab. 2, our UniVoxel achieves better geometric quality compared to
other methods. In Fig. 5, we visualize the normal maps produced by different
methods, and it can be observed that our UniVoxel recovers geometry in the
specular regions more accurately than TensoIR and Voxurf. Additionally, we
present the recovered geometry, materials and illumination in Fig. 6. It can be
seen that TensoIR fails to reconstruct materials in the specular regions and
bakes the lighting into the albedo maps, whereas our method predicts realistic
materials.

E Additional Results on the MII Synthetic Dataset

From Fig. 7 to Fig. 10, we present complete qualitative results on 4 scenes from
the MII synthetic dataset: air balloons, chair, hotdog and jugs. Compared to
baseline methods, our UniVoxel demonstrates superior reconstruction quality in
high-frequency details, which is consistent with the quantitative results presented
in Tab. 1 of the main paper.
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Fig. 6: Qualitative comparison of geometry, materials and illumination on 2 scenes
from the Shiny Blender dataset. For our method, we generate the incident light maps
at the location of the red points in the roughness maps.

F Additional Results on the NeRD Real-World Dataset

From Fig. 11 to Fig. 13, we show complete qualitative results on the 3 scenes
from the NeRD real-word dataset: StatueOfLiberty, Gnome and MotherChild.
Although there is no ground truth for reference, we can observe that all baseline
methods exhibit poor reconstruction quality in these scenes. The main reason
is that the environment maps cannot model the complex lighting conditions in
the real world. In contrast, our UniVoxel is able to handle various illumination
effects, enabling the recovery of geometry and material with relatively superior
quality, and the generation of more photo-realistic relighting images.

G Limitation

It is still challenging for our UniVoxel to fully decouple lighting from materials,
which is also a crucial crux for other inverse rendering methods. For instance,
the shadows on the albedo map of the air balloons in Fig. 7 cannot be com-
pletely eliminated by our method. This issue could be potentially alleviated by
introducing prior knowledge about materials, which we will investigate in future
work.
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Fig. 7: Qualitative comparison on air balloons from the MII synthetic dataset.
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Fig. 8: Qualitative comparison on chair from the MII synthetic dataset.
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Fig. 9: Qualitative comparison on hotdog from the MII synthetic dataset.
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Fig. 10: Qualitative comparison on jugs from the MII synthetic dataset.
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Fig. 11: Qualitative comparison on Gnome from the NeRD dataset.
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Fig. 12: Qualitative comparisons on StateOfLiberaty from the NeRD dataset.
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Fig. 13: Qualitative comparisons on MotherChild from the NeRD dataset.



14 S. Wu et al.

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: ICCV (2021)

2. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: Nerd: Neural
reflectance decomposition from image collections. In: ICCV (2021)

3. Jin, H., Liu, I., Xu, P., Zhang, X., Han, S., Bi, S., Zhou, X., Xu, Z., Su, H.: Tensoir:
Tensorial inverse rendering. arXiv preprint arXiv:2304.12461 (2023)

4. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan,
P.P.: Ref-nerf: Structured view-dependent appearance for neural radiance fields.
In: CVPR (2022)

5. Wu, T., Wang, J., Pan, X., Xu, X., Theobalt, C., Liu, Z., Lin, D.: Voxurf:
Voxel-based efficient and accurate neural surface reconstruction. arXiv preprint
arXiv:2208.12697 (2022)

6. Yao, Y., Zhang, J., Liu, J., Qu, Y., Fang, T., McKinnon, D., Tsin, Y., Quan, L.:
Neilf: Neural incident light field for physically-based material estimation. In: ECCV
(2022)

7. Zhang, Y., Sun, J., He, X., Fu, H., Jia, R., Zhou, X.: Modeling indirect illumination
for inverse rendering. In: CVPR (2022)


	Appendix of UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation

