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Abstract. Existing imaging systems support wide-gamut images like
ProPhoto RGB, but most images are typically encoded in a narrower
gamut space (e.g., sRGB). To this end, these images can be enhanced
by learning to recover the original color values beyond the sRGB gamut,
or out-of-gamut values. Current methods incorporate the metadata from
the target wide-gamut images to expand the gamut, while preventing
distortion of in-gamut values. However, this metadata is hard to obtain
in real-world scenarios. In this paper, we propose a novel method that
requires no metadata. We formulate gamut expansion as a “root-finding"
problem and learn an equilibrium transformation via a neural network.
Specifically, our method defines a dynamic system that keeps in-gamut
values stable to prevent color distortion and updates out-of-gamut val-
ues recurrently. Therefore, we employ an implicit recurrent mechanism
to iteratively extract features, which can effectively mitigate the van-
ishing gradient problem, and reduce the GPU memory consumption to
O(1) complexity during training. Experiments demonstrate the effective-
ness and efficiency of our model, in terms of gamut expansion and color
restoration, outperforming state-of-the-art models by 0.40dB, in terms
of PSNR, with a size of 40K parameters only. The codes are available at:
https://github.com/junxiao01/LETNet.

Keywords: Computational photography · Color enhancement · Equi-
librium model

1 Introduction

Modern imaging systems, such as digital single-reflex (DSLR) and smartphone
cameras, can support the ProPhoto RGB (ProRGB) color space [21], which has
a wide color gamut and can display up to 90% of visible colors. However, in
practice, most images are encoded in the standard RGB (sRGB) color space [38]
via a clipping and projection process. Compared with ProRGB space, sRGB
space covers a narrow color gamut with 30% visible colors. To improve the visual
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Fig. 1: Illustration of color transformation from the ProRGB space to the sRGB space,
including the out-of-gamut mask and the error maps. (a) The ground-truth patches,
and the patches generated by (b) Restormer [48], (c) SwinIR [27], and (d) Ours.

quality, one could apply inverse restoration to recover the colors missing from
the sRGB space, which is typically an ill-posed problem.

As depicted in Fig. 1, when an image is initially encoded in a wide-gamut
space such as ProRGB, converting it to sRGB involves clipping and projecting
those color values that fall outside the target-gamut space. Gamut expansion as
an inverse process, aims to restore the out-of-gamut color values, but this process
is ill-posed due to the non-invertibility. Furthermore, conventional deep image
restoration models do not work well when they are applied to gamut expansion.
Specifically, they will unavoidably introduce additional errors within the gamut
space, shown in Figs. 1(b) and 1(c). Besides, from a practical perspective, gamut
expansion algorithms are typically integrated into resource-constrained devices
such as smartphones and personal laptops, whereas advanced restoration models
are built with complex network structures with limited practical applications.
To this end, lightweight and effective methods are broadly considered. Through
leveraging the external information such as out-of-gamut masks [24] or metadata
extracted from target images [23, 25], previous gamut-expansion methods can
effectively learn the inverse function for color enhancement.

In this paper, we follow this line of research to develop effective gamut-
expansion models without using external information, which is often infea-
sible in practice. Concretely, we consider gamut expansion as a “root-finding"
problem, where the missing color values are the solutions to implicit equations.
To solve this problem, we propose a novel method that defines a dynamic sys-
tem to learn an equilibrium transformation through a lightweight input-injection
network that adopts shallow and simple network structures. Such a system main-
tains stable in-gamut pixel values to avoid distortion, and it recurrently updates
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out-of-gamut pixel values for restoration. However, shallow network structures
typically struggle to extract discriminative features for restoration and enhance-
ment. To address this issue, we further employ an Implicit Recurrent Mecha-
nism (IRM) to decouple the forward and backward propagations. In the forward
pass, IRM leverages an off-the-shelf optimization solver to perform iterative fea-
ture extraction, ultimately leading to a fixed point in the latent space. This
mechanism boosts the ability of our model in feature representation, as the
fixed-point features are equivalent to features extracted from infinite recurrent
layers. In the backpropagation phase, IRM relies on the fixed-point features,
without requiring storage of any intermediate results throughout the iteration
process. As a result, our model can avoid the vanishing gradient problem and
maintain constant GPU consumption during training. Coupled with the pro-
posed lightweight input-injection network, our proposed model is well-suited for
resource-constrained devices.

The main contributions of this paper are as follows:

1. We formulate gamut expansion as a “root-finding" problem and propose a
novel method that adopts a lightweight input-injection network to learn an
equilibrium transformation to solve the problem, without using any external
information.

2. We exploit an implicit recurrent mechanism to decouple forward and back-
ward propagations in training. This mechanism effectively enhances the ca-
pability of our model in feature representation, while reducing GPU memory
consumption to O(1) complexity, which is friendly to resource-constrained
devices.

3. Experiments show that our model can effectively restore corrupted out-of-
gamut values, while suppressing distortion of in-gamut values for gamut ex-
pansion and color restoration, significantly outperforming state-of-the-art
methods by 0.40dB, with 40K model parameters only.

2 Related Works

2.1 Color Space Conversion

Gamut reduction solely degrades out-of-gamut color values, because the gamut
of different color spaces is not consistent. To address this issue, the methods
in [49, 50] use the local features extracted from the images to fit the target
gamut space. GamutNet [24] incorporates the out-of-gamut masks into a “U-
shaped" network to generate the target images from the given sRGB images in
an end-to-end manner. Inspired by the method in [31], Le et al . [23] proposed
a method to estimate the color inverse function by leveraging the metadata.
Furthermore, a lightweight MLP model was used to learn the inverse function,
specifically optimized for testing samples [25]. The metadata used consists of
partial testing pixel values extracted from the target wide-gamut images and
their narrow-gamut counterparts. However, such metadata is usually unavailable
in real-world scenarios, where only sRGB images are accessible. In this paper,
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we focus on gamut expansion and color restoration in this common situation and
propose a lightweight and effective method to address this issue.

2.2 Implicit Deep Learning

Recently, many research works [2, 3, 7, 9, 13, 14, 18, 26, 36, 44] focus on implicit
learning methods that, unlike conventional deep models, do not rely on explicit
computational graphs or sequentially stacking neural layers. Instead, these im-
plicit networks aim to model a dynamic system, where the solutions of these
implicit networks correspond to the solutions of the defined dynamic systems.
Neural ODE [9, 12, 29, 32, 46] is a classic work that models infinitesimal steps
of a residual block. The Deep Equilibrium (DEQ) network [2, 26, 44] is another
type of implicit learning that directly solves a “root-finding" problem and finds
the fixed-point representation of a shallow network. Recent studies demonstrate
that DEQ-based models can achieve impressive results in generative model-
ing [6, 22, 35], landmark detection [30], language processing [4], etc. However,
to the best of our knowledge, these implicit models have not been applied to
gamut expansion and color restoration. In this paper, we consider gamut expan-
sion as a “root-finding" problem and propose a method to learn the equilibrium
transformation based on implicit learning techniques to address this problem.

3 Methodology

3.1 Problem Formulation

When converting a ProRGB image IPP to its sRGB counterpart Is, a nonlin-
ear imaging process is applied, i.e., Is = fe(clip(M · IPP)), where M and fe(·)
represent the color mapping matrix and the gamma-encoding function [38], re-
spectively. If the color value cPP in the ProRGB image exceeds the range of the
sRGB gamut space, it will be clipped and projected onto the boundary of the
target color space, generating a color value cs in the sRGB space. Notably, this
process will only result in the loss of information from the out-of-gamut values,
but it does not affect the in-gamut values, i.e., cPP = c′s = M−1fd(cs), where
fd(·) is the decoding function and M−1 is the inverse color mapping function.

To perfectly reconstruct the corresponding ProRGB image from a sRGB
version, the inverse function should primarily focus on restoring the out-of-gamut
values while keeping the in-gamut values unchanged, as follows:

ĉPP = g(c′s) =

{
f(c′s), c′s ∈ Cout,

c′s, c′s ∈ Cin,
, (1)

where ĉPP is the estimated color value, f(·) represents the restoration function,
and Cin and Cout denote the sets of in-gamut and out-of-gamut values, respec-
tively. Previous studies learned the inverse mapping function g(·) from the input
color values c′s through neural networks [24,25] or the optimization methods [23]
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from the input color values c′s. These methods leverage the external information
about the target images, which aids in identifying out-of-gamut and in-gamut
values, thereby simplifying the problem. Unlike these methods, in this paper,
we propose a novel method to directly learn the inverse function in this paper,
without requiring external information.

We consider the output ĉPP to be a latent variable, denoted as z and define
the inverse mapping function g(·) as a joint function of the input x and the
latent variable z, as follows:

g(x, z)− z = 0. (2)

Here, we convert gamut expansion into a “root-finding" problem, using color
values in the ProRGB space, denoted as z∗, serving as the solutions for this
problem. In this formulation, the inverse function g(·) is an implicit function
that defines a dynamic system. Typically, this problem has a fixed-point solu-
tion, and the inverse function g(·) is often referred to as equilibrium transforma-
tion. In other words, the solution z∗ remains stable when we further apply the
equilibrium transformation, which is a desirable property for gamut expansion.
The in-gamut values are the solution of this problem at the initial stage and will
remain stable during further equilibrium transformation, i.e., z∗ = g(x, z∗). In
contrast, the out-of-gamut values are iteratively updated and gradually approach
the solution by solving this problem, i.e., z(k+1) = g(x, z(k)) → z∗, for k → ∞.
The remaining key issue is how to learn this equilibrium transformation.

3.2 Equilibrium Transformation Learning

In this paper, we propose an effective method to learn equilibrium transfor-
mation via a shallow input-injection network, which is well-suited for resource-
constrained devices. The overall pipeline of our proposed method is depicted in
Fig. 2. Firstly, our method projects the input sRGB image into the latent space,
leading to an initial point for the problem. Then, the equilibrium learning mod-
ule takes this as input and computes the fixed-point solution in the latent space
with an implicit recurrent mechanism, which employs an off-the-shelf optimiza-
tion solver to model an “infinite" number of recurrent layers. Finally, our method
transfers the fixed-point features back to the spatial domain for reconstruction.

Initialization. Given an input sRGB image Is, we first apply two convolu-
tional layers to project it into latent space and form shallow features, denoted as
x. Previous studies [11,37,39,47] have shown that integrating positional informa-
tion into the model can improve reconstruction performance. In our method, we
extract positional information from the input image to form the coordinate map,
denoted as p. Then, we compute the Fourier representation of the coordinate
map, i.e., T (p) = [cos(p), sin(p)], and utilize a convolutional layer to generate
the initial latent feature z(0). The features x and z(0) jointly form the initial
input of the equilibrium learning module.

Equilibrium Learning Module. Given the initial input of x and z(0), the
equilibrium learning module iteratively calculates the latent features, as follows:
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Fig. 2: Left: Illustration of the overall pipeline of our proposed method for learning
equilibrium transformation for gamut expansion and color restoration. Right: Illus-
tration of the structure of the equilibrium learning module, which is modeled by an
input-injection neural network with the implicit recurrent mechanism.

z(k+1) = hθ(tanh(z(k) + x)) + x︸ ︷︷ ︸
F=g(x,z(k))

, (3)

for k = 0, · · · ,K, where K is the number of iterations. Typically, z(k+1) will
converge to the fixed-point solution z∗, when K is sufficiently large. In our
method, we propose a shallow input-injection network to model the equilibrium
transformation, denoted as F , thereby avoiding the increase in computational
complexity. The overall structure of the input-injection network is illustrated
on the right of Fig. 2. In this network structure, we first inject the input in-
formation x extracted from the input images into the latent features z(k), and
then apply two convolutional layers, denoted by hθ with parameters θ, using
the Tanh activation for feature extraction. Then, we apply the channel atten-
tion mechanism [20] to the output and use residual connections to generate the
updated feature z(k+1). To perform iterative computation, recurrent structures
are commonly utilized in conventional deep learning models. However, previous
studies [19,33] have shown that recurrent networks often suffer from the vanish-
ing gradient problem, which may lead to unstable training and cannot guarantee
to produce fixed-point features. In addition, an L-layer recurrent network used to
store intermediate results in the recurrent process for backpropagation requires
O(L) computational complexity, i.e., the training cost is significantly increased.

To address these issues, we utilize the implicit recurrent mechanism [2,28] for
feature extraction. Unlike recurrent networks, the implicit recurrent mechanism
adopts an off-the-shelf optimization solver (e.g., quasi-Newton methods [1,8])) to
iteratively extract features, ultimately leading to a fixed point. This mechanism
is equivalent to modeling an infinite number of recurrent layers, so it effectively
enhances the capability of our lightweight and shallow model utilized in feature
representation and contributes to performance improvement. In implementation,
we adopt the Anderson iterative method [1] to iteratively updates the latent
features z(k) based on the previous mk results, computed as follows:
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Algorithm 1 Anderson Iteration Procedure

Input: initial point z(0), and fixed-point function F(·)
Parameters: Max storage size m, and the parameter β

1: while k <= K do
2: Set mk = min(m, k).
3: Compute weights αk

i for the past mk steps.
4: Update the latent features z(k+1) via Eq. (4).
5: k ← k + 1.
6: end while

z(k+1) = β

mk∑
i=0

αk
i F(zk−mk+i) + (1− β)

mk∑
i=0

αk
i z

(k−mi+i), (4)

where αk
i is the weight for the i-th previous step at the k-th iteration, and these

weights αk are determined by minimizing ∥Gkαk∥2 subject to
∑mk

i=1 α
k
i = 1,

where matrix Gk contains the past residuals. Further details can be found in [40].
The fixed-point function F(·) is the input-injection network in our method, and
β is a hyper-parameter. The iterative process is illustrated in Algorithm 1

After obtaining the fixed-point features, we apply a convolutional layer to
transfer them to the spatial domain, and then use a global connection to fuse
the output and the input sRGB image to generate the ProRGB image ÎPP.

3.3 Model Training: IRM

Our method adopts an off-the-shelf optimization solver in the input-injection
network, so we cannot directly backpropagate gradient information through the
optimization solver to update model parameters. As a result, the forward and
backward propagation are decoupled in our method. To train the model and
update the parameters, we rely on the implicit function theorem [2,22,28].

Theorem 1. (Implicit Function Theorem (IFT)). Assume that the loss
function is L and the network is parameterized by θ. Given a fixed-point repre-
sentation z∗ and an input representation x, the gradient of the implicit recurrent
mechanism (IRM) in the backward pass is computed as follows:

∂L
∂θ

=
∂L
∂z∗

(
I − JF(z∗)

)−1 ∂F(z∗,x)

∂θ
, (5)

where JF(z∗) =
∂F
∂z∗ is the Jacobian matrix computed at the fixed point z∗.

The proof of Theorem 1 can be found in [2]. Notably, this theorem allows us to
directly differentiate at the fixed-point features z∗ and achieve backpropagation,
without the need of storing the trajectory (i.e., the intermediate results) in the
forward pass. Therefore, our model is free from the vanishing gradient problem
and takes only O(1) memory complexity for backpropagation. Compared with
recurrent networks, this significantly reduces memory requirements.
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Nevertheless, we still need to iteratively solve for fixed-point representations
in the latent space. In each iteration, we have to compute the inverse of the
Jacobian matrix J = (I−JF(z∗))

−1, which requires O(N3) computational com-
plexity. When dealing with high-dimensional signals (e.g., images), the cost of
computing this inversion will become intractable. To address this issue, many ef-
forts have been made to approximating the inverse-Jacobian matrix J by solving
a linear system: J T = J T ∂F(z∗)

∂z∗ + ∂L
∂z∗ , where T denotes the transpose operator.

However, this method still needs an off-the-shelf optimization solver to itera-
tively obtain the solution. Instead, we approximate J with its Neumann series
expansion [17], to obtain the gradients as follows:

∂L
∂θ

≈ lim
N→∞

∂L
∂z∗

N∑
n=0

(JF(z∗))
n ∂F(z∗, x̂)

∂θ
. (6)

Let G =
∑N

n=0(JF(z∗))
n, which is an approximation of the inverse Jacobian ma-

trix J . Specifically, we set G = I, the identity matrix, to simplify backward prop-
agation of the proposed model into a single-step computation ∂L

∂θ ≈ ∂L
∂z∗

∂F(z∗,x̂)
∂θ ,

which is Jacobian-free. This means that our method uses the inexact gradients
to update the parameters, without requiring the computation of the inverse Ja-
cobian matrix. This can significantly reduce training time. The capability of
using inexact gradients is a direct and unique consequence of the fixed-point
formulation, with the assumption of a certain level of stability of the underlying
dynamics system [5,15–17].

4 Experiments and Analysis

4.1 Experiment Settings

Dataset Information. In our experiments, we adopt a public dataset [25],
which is specifically designed for gamut expansion, denoted as the GE dataset.
This dataset provides 2,000 samples for training and 200 samples for testing.
Each sample contains a wide-gamut image encoded in the ProPhoto RGB space
and its corresponding version in the sRGB space. The test samples have different
percentages of out-of-gamut colors, and the sRGB images of each test sample
have at least one million pixels of out-of-gamut color values. The resolution of
the provided samples ranges from 2000× 3000 to 4000× 6000.

Training Details. To train the model, we randomly crop local image patches
of size 128×128 at each training iteration. The batch size is set to 64. We adopt
the Adam optimizer with β1 = 0.9 and β2 = 0.99 to update model parameters,
and the total number of epochs is set to 200. In the training procedure, the cosine
annealing strategy is utilized to adaptively decay the learning rate. As our model
utilizes an off-the-shelf optimization solver, we set the number of iterations to 50
to obtain the fixed-point features. ℓ2 loss is used as the loss function to measure
the reconstruction error. We use the Pytorch [34] framework and an NVIDIA
3090 GPU to implement our model, which takes approximately two days to
complete the training process.



LET for Gamut Expansion and Color Restoration 9

Evaluation Metrics. To compare the performance of different methods,
we evaluate the reconstruction and perceptual quality of the generated images.
Specifically, we measure the reconstruction qualities using peak-signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM), which have been
widely used in numerous low-level vision tasks [10,41–43,45,51,53]. To evaluate
the perceptual quality of the generated images, we utilize the LPIPS score [52].
In addition, we additionally measure model complexity, in terms of the number
of model parameters, the GPU memory consumption, and the running time.
When the resolution of the test samples is larger than 2000×3000 and the GPU
memory is limited, the test sample is cropped into local image patches of the
size 1024× 1024, resulting in a total of 3079 image patches for evaluation.

4.2 Experiments on the GE Dataset

In this experiment, we compare our proposed method with the naive inver-
sion (NI) method, improved-sampled (I-Sampled) method [23], GamutMLP [25],
Restormer [48], SwinIR [27], and GamutNet [24]. The NI method directly maps
the input sRGB images back to the ProRGB space without utilizing any ad-
ditional restoration methods. This method serves as the baseline model in our
experiment. The I-Sampled method and GamutMLP are image-specific methods,
which optimize each test sample using metadata. GamutNet is a specialized net-
work for gamut expansion that utilizes an out-of-gamut mask to avoid introduc-
ing artifacts into in-gamut values. Restormer and SwinIR are two state-of-the-art
image restoration methods, which have demonstrated remarkable performance
in several low-level vision tasks. For a fair comparison, we use the source codes
of GamutNet, Restormer, and SwinIR and retrain them on the GE dataset, fol-
lowing their default settings. For the I-Sampled method and GamutMLP, we
directly employ their public models for evaluation.

We evaluate the performance (i.e., PSNR, SSIM, and LPIPS scores) of the
different methods on both the entire image (All) and the out-of-gamut areas
(Out-of-gamut). Table 1 tabulates the performance of the methods on the GE
dataset, including the number of their model parameters. When compared to
those image-specific methods, such as GamutMLP, our model archives superior
performance on both entire images and out-of-gamut values, in terms of PSNR,
without relying on metadata. The distinct advantage of our method is well suit-
able for real-world scenarios, where only sRGB images are available.

Compared with general restoration methods, our model significantly outper-
forms them. Specifically, our model surpasses the second-best model, i.e., SwinIR
by 0.48dB and 0.33dB on entire images and out-of-gamut values, respectively.
Notably, our model consists of only 0.04M parameters, indicating much lower
model complexity. This makes it suitable for resource-constrained devices. Fur-
thermore, in Fig. 3, we show the generated images, the error maps, and the color
distribution in the gamut spaces of the different methods. Analysis of the er-
ror maps shows that GamutMLP produces promising results for out-of-gamut
values. However, it introduces substantial errors for in-gamut values, resulting
in a distorted color distribution in the gamut space. In comparison, our model
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Table 1: Illustration of the average PSNR, SSIM, and LPIPS scores of different models
on the GE dataset [25], and the number of their model parameters. ✓and %indicate
whether using metadata. ‘S’ denotes the image-specific methods. ‘G’ denotes the gen-
eral methods. “-” denotes the “not available". The best results are highlighted in red.
The second-best results are highlighted in blue.

Methods Meta
Data # Params

All Out-Of-Gamut

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NI % - 46.61 0.9838 0.0042 47.10 0.9838 0.0027

‘S’
I-Sampled [23] ✓ - 49.78 0.9841 0.0034 48.96 0.9878 0.0022

GamutMLP [25] ✓ 4.96K 52.54 0.9958 0.0018 52.19 0.9963 0.0011

‘G’

Restormer [48] % 26.13M 52.23 0.9932 0.0023 51.51 0.9937 0.0014

SwinIR [27] % 3.13M 52.30 0.9930 0.0023 51.90 0.9934 0.0014

GamutNet [24] ✓ 4.37M 52.67 0.9929 0.0028 51.71 0.9933 0.0018

Ours % 0.04M 52.78 0.9931 0.0025 52.23 0.9934 0.0016

Fig. 3: Illustration of the ground-truth images, error maps, and color gamuts generated
by different methods.

achieves the smallest reconstruction errors, and its color distribution is close to
that of the target image. All these results show the effectiveness and efficiency
of our model in gamut expansion and color restoration, particularly in situations
where only sRGB images are available and the devices are resource-constrained.

4.3 Experiments on Out-of-gamut Regions

In real-world situations, sRGB images contain varying percentages of pixels with
out-of-gamut values. In this experiment, we delve deeper into evaluating the
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performance of our model across images with different percentages of out-of-
gamut pixels. To facilitate this analysis, we categorize the testing samples into
four groups: A : 0 ≤ δOG < 25, B : 25 ≤ δOG < 50, C : 50 ≤ δOG < 75, and
D : 75 ≤ δOG ≤ 100, where δOG represents the percentage of pixels with out-of-
gamut values in an image. We evaluate the performance of different models on
these four groups, and the average PSNR and SSIM scores of the out-of-gamut
regions are tabulated in Table 2.

As observed, our model significantly outperforms the compared models by a
substantial margin for groups A, B, and D. Particularly for groups A and D,
our model surpasses the second-best method by 0.32dB and 0.36dB, respectively.
In group C, the performances achieved by our method and SwinIR are slightly
different. These results show the superior capability of the proposed model in
handling sRGB images with varying percentages of out-of-gamut areas.

Table 2: Illustration of the PSNR and SSIM of different methods on images with
different ratios of out-of-gamut values. The testing samples are divided into four groups.
The term "Average" refers to performance in the full range (0 ≤ δOG ≤ 100). The best
results are highlighted in bold.

Methods
Restormer [48] SwinIR [27] GamutNet [24] Ours

PSNR↑/ SSIM↑ PSNR↑/ SSIM↑ PSNR↑/ SSIM↑ PSNR↑/ SSIM↑

A : 0 ≤ δOG < 25 52.09/0.9976 52.51/0.9976 44.71/0.9912 52.83/0.9978

B : 25 ≤ δOG < 50 51.06/0.9934 51.55/0.9935 44.35/0.9858 51.68/0.9936

C : 50 ≤ δOG < 75 50.35/0.9862 50.42/0.9858 43.73/0.9745 50.41/0.9840

D : 75 ≤ δOG ≤ 100 51.68/0.9777 52.06/0.9755 44.27/0.9617 52.42/0.9774

Average 51.51/0.9937 51.90/0.9934 51.71/0.9933 52.23/0.9934

4.4 Ablation Studies

Experiments on Implicit Recurrent Mechanism. To facilitate the learning
of equilibrium transformation, we adopt a shallow input-injection network, based
on the implicit recurrent mechanism. To evaluate its effectiveness in feature rep-
resentation and GPU memory reduction, we compare our proposed model with
other models using two different settings: a plain model, denoted as Plain, which
does not adopt the recurrent structure, and the model that employs the tradi-
tional recurrent structure, denoted as Recurrent. To ensure a fair comparison,
we maintain consistent configurations for these models, and set the number of
iterations or the number of recurrent layers to 50.

The average PSNR, the utilized GPU memory in training, and the runtime
in testing are illustrated in Fig. 4. These results show that our model, incor-
porating the implicit recurrent mechanism (IRM), significantly improves the
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Table 3: The utilized GPU memory of different methods in the inference process.
(Note: the input size is 1024× 1024 implemented on a single NVIDIA V100 GPU.)

Methods GamutNet Restormer SwinIR IRM

Memory 2.1G 27.8G 26.2G 2.6G

performance by 2.52dB, with only a slight increase in runtime and GPU mem-
ory consumption. The increased runtime is an acceptable trade-off brought by
the iterative optimization solver. In comparison to the model using traditional
recurrent structures, our model surpasses it by a large margin while requiring
much less GPU memory consumption. Furthermore, Table 3 presents the GPU
memory utilization of GamutNet, Restormer, SwinIR, and IRM for a compre-
hensive comparison. Compared to Restormer and SwinIR, our model exhibits a
superior advantage, in terms of GPU memory sizes, during inference.

Fig. 4: Performance comparison of the plain model (Plain), the recurrent model (Re-
current), and the implicit recurrent model (IRM), in terms of PSNR (dB), running
time in testing, and GPU memory in training. Note that the input size is 1024× 1024
and the implementation device is a single NVIDIA 3090 GPU.

Experiments on Forward Pass. We also investigate how the number of
iterations for the off-the-shelf optimization solver impacts the reconstruction
performance across entire images, out-of-gamut areas, and in-gamut areas. To
achieve this, we evaluate our model on a test sample, while varying the number
of iterations for the optimization solver. The performance metrics, in terms of
PSRN and root-mean-square error (RMSE), measured at different numbers of
iterations are depicted in Fig. 5. We also visualize the reconstruction error maps
generated when the iterations K = 10, 15, 20, 30, 40, and 50, as shown in Fig. 6.

From these results, we observe that the performance on in-gamut values sig-
nificantly improves and then gradually converges to a stable state, resulting in
better performance compared to entire images and out-of-gamut areas. Similarly,
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the RMSE of in-gamut areas experiences rapid reduction, ultimately achieving a
lower reconstruction error. These results demonstrate that the equilibrium trans-
formation learned by our method effectively stabilizes the in-gamut values, pre-
venting distortion, while iteratively updating and converging the out-of-gamut
values to fixed-point solutions.

Fig. 5: PSNR (Left) and RMSE (Right) of different areas at various iterations.

Experiments on Input-injection Network. Our proposed method learns
the equilibrium transformation through a shallow and lightweight network. We
explore how network structures affect the performance of our method. Specifi-
cally, we evaluate models with different activation functions (e.g., Sin [37] and
ReLU) and models without input injection (w/o input) or without utilizing the
channel attention mechanism (w/o CA). The average PSNR, SSIM, and LPIPS
scores, for models with the various settings are tabulated in Table 4.

We observe that the network structures and activation functions employed
in our method have a significant impact on the overall performance. Notably,
if a model does not initially inject the input into the latent features, there is a
nearly 1.00dB PSNR drop. Similarly, when the model uses the ReLU function,
the performance is seriously degraded. In this paper, we use a shallow structure
to prevent an increase in computational complexity, resulting in a lightweight
model. The exploration of other effective network structures that utilize the
implicit recurrent mechanism is left for future research.

5 Conclusion

In this paper, we focus on expanding a narrow gamut space (e.g., sRGB) to a
wider gamut space (e.g., ProPhoto RGB) and recovering color values that exceed
the range of the narrow gamut space, when only sRGB images are available. To
address this issue, we consider gamut expansion as a “root-finding" problem and
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Fig. 6: The error maps generated when K = 10, 15, 20, 30, 40, and 50.

Table 4: The average PSNR, SSIM, and LPIPS of the models with different settings
on the out-of-gamut values. ‘Act’ denotes the activation function. The best results are
highlighted in bold.

Settings PSNR↑ SSIM↑ LPIPS↓

‘Act’

Tanh 52.23 0.9934 0.0016

ReLU 50.76 0.9911 0.0020

Sin 52.12 0.9934 0.0016

w/o Input 51.27 0.9915 0.0018

w/o CA 51.68 0.9921 0.0017

Input + CA 52.23 0.9934 0.0016

propose a novel method to solve it. Specifically, our method learns the equilib-
rium transformation through a shallow and lightweight network. This defines a
dynamic system in the latent space, and the equilibrium transformation learned
can help stabilize the in-gamut values to prevent distortion, while recurrently up-
dating out-of-gamut values. We further employ the implicit recurrent mechanism
to iteratively extract features, resulting in fixed-point features for reconstruction.
This mechanism effectively enhances the feature representation capability of our
model and reduces GPU memory consumption to O(1) complexity. Experiments
show the effectiveness and efficiency of our model in gamut expansion and color
restoration. Our model significantly outperforms state-of-the-art methods, while
using much less model complexity, i.e., 40K model parameters.
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