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Abstract. The goal of source-free domain adaptation (SFDA) is re-
training a model fit on data from a source domain (e.g . drawings) to
classify data from a target domain (e.g . photos) employing only the
target samples. In addition to the domain shift, in a realistic scenario,
the number of samples per class on source and target would also differ
(i.e. class distribution shift, or CDS). Dealing label-less with CDS via
target data only is challenging, and thus previous methods assume no
class imbalance in the source data. We study the SFDA pipeline and,
for the first time, propose a SFDA method that can deal with class
imbalance in both source and target data. While pseudolabeling is the
core technique in SFDA to estimate the distribution of the target data,
it relies on nearest neighbors, which makes it sensitive to class distri-
bution shifts (CDS). We are able to calculate robust nearest neighbors
by leveraging additional generic features free of the source model’s CDS
bias. This provides a “second-opinion” regarding which nearest neighbors
are more suitable for adaptation. We evaluate our method using various
types of features, datasets and tasks, outperforming previous methods
in SFDA under CDS. Our code is available at https://github.com/
CyberAgentAILab/Robust_Nearest_Neighbors_SFDA-CDS.

Keywords: Source-free domain adaptation · Class distribution shift ·
Robust nearest neighbors

1 Introduction

After a deep neural network model is deployed, it normally finds data whose dis-
tribution is slightly shifted from that of the training data. This “domain shift”
(also referred as covariate shift) worsens the performance of the model and limits
its practical use. The research field of domain adaptation approaches this prob-
lem in order to make deep models more robust against label-less unseen data.
Several domain adaptation scenarios have been proposed over the years, being
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Fig. 1: We improve the pseudolabeling in source free domain adaptation by regulating
the nearest neighbors calculation via the inclusion of a “generic” feature extractor.
These features are not affected by the source model bias, and can be used as a reference
to gain robustness against CDS. The fire emoji indicates model weight modification
and the snowflake emoji indicates the model is frozen.

unsupervised domain adaptation (UDA) the most basic [3, 5, 30]. UDA meth-
ods aim to improve compatibility between the labeled data on which a model is
trained (i.e. source domain) and the label-less data such model will be fed with
after deployment (i.e. target domain). However, UDA methods require working
with both source and target data simultaneously. This is impractical for applica-
tions in which, for security and privacy reasons, the source data is not available
and only the already trained source model is provided, e.g . transfer learning
among patient data in hospitals, or client data in companies. For this reason,
source-free domain adaptation (SFDA) methods were proposed [7,22,40]. SFDA
divides the adaptation process into two steps, the supervised training of the
source model and the unsupervised adaptation of that model to the target data.
Some real applications impose even further restrictions, such as the impossibility
of modifying the model weights during adaptation [27]. This setting is referred
as test-time adaptation (TTA).

In the strictest definition of source-free, there is no control over how the
source model is trained, and the adaptation method needs to be solely based
on the source model and the label-less target data. This leads to scenarios in
which, unknowingly, a class distribution shift (CDS) exists between both do-
mains. That is, the ratio of samples for each class is significantly different in
the source and target domains. If not dealt with properly, the model becomes
sensitive to such imbalance, and its predictions become biased to the majority
class in the source domain. This is a very challenging scenario, as both covariate
and class distribution shifts need to be tackled without source data nor labels.

The principle in SFDA methods is feeding the source model with the target
data and assigning the most plausible labels (i.e. pseudolabels). This can be
done by observing the outputs at either the feature level (i.e. observing the
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nearest neighbors of a given sample) or at the logits level (i.e. observing the
predicted probabilities). Previous work in SFDA under CDS approached the
class distribution shift as a problem of noise at the logits level [20]. In order to
avoid pseudolabels to be biased towards majority classes in the source data, they
opt to modify the class distribution of the source data to be uniform. Although
controlling the training of the source model is against the strict SFDA scenario,
they had to relax the constraints since the CDS between source and target data
cannot be estimated by the source model itself. We hypothesize that, since the
CDS is unknown during adaptation, a model unrelated to the source data can
provide a “second opinion” on the target data without the bias. Furthermore,
instead of addressing pseudolabeling directly, we believe that a more fundamental
problem lies in the previous step, the nearest neighbors calculation itself.

Figure 1 depicts the main idea of our proposal for SFDA under CDS. Unlike
the previous work, we approach the majority/minority class bias at the near-
est neighbors level by introducing an additional model to the SFDA pipeline.
We opt for leveraging well-known pretrained models (i.e. ResNet, VisionTrans-
former, SwinTransformer) as they are widely available and have proved the gen-
eralizability of their features [4]. We regulate the nearest neighbors extracted in
the source model’s feature space by comparing them to the nearest neighbors
in the generic feature space. We consider the neighbors are “robust” if they ap-
pear in both the source and generic models. In the teacher-student knowledge
distillation fashion [13], the generic model remains frozen as the source model is
adapted by taking generic features as a reference. As learning additional mod-
ules is not required, our method can also be applied to the TTA setting without
modifications. In summary, our contributions are:

– We study the problem of SFDA under CDS, and identify a weakness in the
nearest neighbors (NN) calculation, which was unnoticed by previous works.

– We propose a method for reducing bias in the NN by introducing generic
features of an auxiliary model. Unlike previous works, we strictly adhere to
the SFDA-CDS settings and do not manipulate the training of the source
model.

– Our straightforward approach outperforms previous methods for both SFDA
and TTA settings in several benchmarks under CDS, and for the first time
in SFDA, without manipulating the training of the source model.

2 Related Work

Unsupervised Domain Adaptation (UDA). In order to tackle the covari-
ate shift between the two domains, previous works proposed learning domain
invariant features via adversarial learning [3, 5, 30], by minimizing inter-domain
distance [11,14], the generation of intermediate domains between source and tar-
get [6,19], or making the source data similar to the target [26]. Such a variety of
approaches is only possible since both source and target data are simultaneously
available.
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Source-Free Domain Adaptation (SFDA). In the strict definition of SFDA,
only the model trained on the source data is provided for adaptation, and source
data is never seen. However, a significant portion of the related work relaxes the
restrictions of SFDA by employing specific policies when training the source
model [16, 17, 39], which requires access to the actual source data. In our work,
we consider a more realistic setting, in which the source model is provided but its
training cannot be manipulated. In this situation, methods can just observe the
outputs of the source model when fed with the target data; the labels assigned by
the source model are called pseudolabels [18]. In order to understand the validity
of these pseudolabels, SFDA methods study the uncertainty of the predicted class
probabilities [37,42], or directly the distribution of the target features extracted
by the source model, via e.g . a nearest neighbors algorithm [7,22,40].

The current state of the art in SFDA [22] refines pseudolabels by combin-
ing uncertainty estimation of the nearest neighbors and contrastive learning.
Contrastive learning brings samples with the same pseudolabel closer in feature
space, and separates those with a different pseudolabel. This facilitates finding
better neighbors, i.e. those belonging to the same class, but it assumes that there
is no bias in the class distribution during adaptation (e.g . majority/minority
classes). Thus, even the state of the art is vulnerable to CDS.

In order to overcome the lack of source data, a recent trend in SFDA is
distilling generic knowledge from powerful feature extractors to obtain state-of-
the-art accuracy in their respective tasks [41, 42]. Such feature extractors are
publicly available and can be used off-the-shelf without any cost. However, these
methods require learning an auxiliary classifier on the generic features along with
the source model end-to-end. This not only increases the number of trainable
parameters, but most importantly, since the auxiliary classifier is exposed to
both source and target CDS biases during training, such a logits-based SFDA
pseudolabeling is not guaranteed to succeed in a CDS scenario. Contrarily, we
study the applicability of generic feature extractors to the problem of SFDA
with class distribution shift, which, despite being a highly realistic scenario, has
not been researched yet. Our methodology tackles CDS directly at the feature
level and not at the logits level, and adapts (not freezes) the source classifier.
The suppl. material further details these differences.

UDA under CDS. In machine learning, a difference in the class distribution
between the training and test data causes a drop in performance [2]. Further-
more, when the training and test data belong to different domains, in addition
to such class distribution shift (CDS), methods also need to deal with the covari-
ate shift of the data samples. Previous approaches to this challenging scenario
include weighting samples according to their class imbalance [38] and aligning
features potentially from the same class [15, 32]. As with standard UDA, these
methods are only possible because of the simultaneous availability of source and
target data.

SFDA under CDS. In spite of being a realistic setting (e.g ., the SFDA dataset
DomainNet class distribution between source and target is naturally imbal-
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anced), most SFDA methods do not consider CDS. Moreover, many approaches
use a “diversity loss” [20–22], assuring that all classes are equally represented
to avoid converging to a posterior collapse (i.e. when all samples are assigned
the same label). This technique is inherently sensitive to severe CDS, when the
number of samples for the majority and minority classes is significantly different.

SFDA under CDS has been approached solely by treating CDS as noise in
the logits output by the source model [20]. Specifically, in addition to the most
probable class, the pseudolabeling losses are also calculated for the second most
probable class in an attempt to mitigate bias. However, this work also relaxes the
setting constraints by resampling the source data so its distribution is uniform
among all classes. This gives an unreasonable advantage when dealing with CDS,
since, as the source’s class bias is gone, the pseudolabels are only influenced by
the target’s bias.

Test-Time Adaptation (TTA) under CDS. In test-time adaptation (TTA),
the adaptation to the label-less target data needs to be done online during in-
ference, i.e. without re-training the source model. For this, previous approaches
range from interpolating target data statistics [25, 35] to optimizing the pa-
rameters of a batch normalization layer using entropy minimization [34]. Only
recently, TTA methods robust to class imbalance in the target data were pro-
posed [1, 10], although they assume no imbalance (i.e. majority/minority bias)
on the source data. The full TTA under CDS setting is approached in [27] by
including in the source model a label-shift adapter module optimized on the
estimated target data class imbalance.

3 Methodology

3.1 SFDA Fundamentals

Our setting consists of a source domain {xs ∈ Xs, ys ∈ Ys} and a target domain
{xt ∈ Xt, yt ∈ Yt}. Both share the same label space Ys = Yt with |Y | = L classes,
but a covariate shift exists (Fig. 1). Before applying SFDA, a source model
consisting of a pretrained (e.g . ImageNet) feature extractor fs and classifier hs

is trained on the source dataset in an unknown manner, and only the source
model is provided, along with the unlabeled target samples xt.

SFDA methods estimate the probability density p(yt, xt) for target samples
by adapting the source model without accessing the labels, as p̂(yt|xt)yt∈Yt

=
softmax(hs(fs(xt))). Our aim is optimizing the estimated probabilities of the
source model p̂ via a classification loss (e.g . cross-entropy loss) using pseudola-
bels. Pseudolabels p′ are calculated alternatively to p̂, and represent a closer
estimate to the real probability distribution p of the target labels. The basic
technique for calculating the pseudolabel of a certain sample xi

t is applying a
nearest neighbors algorithm in the feature space fs(xi

t) = zis ∈ Zs and recalculate
the probabilities of each class c accordingly. E.g., via soft-voting:

p′ic =
1

k

∑
n∈N

p̂nc (1)
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where N is the set of k neighbors around zis, including itself. The set of neighbors
is calculated as follows. Given a distance metric d, a feature sample zis, and a
bank of features F of size m, let M = {z1s , ..., zms } be a reordering of F such that
d(z1s , z

i
s) ≤ ... ≤ d(zms , zis). Then, N is the subset of the first k samples in M ,

where N = {z1s , ..., zks } and k < m. During the adaptation of the source model, p̂
and p′ are calculated for the samples within a batch, and fs and hs are updated
via backpropagation through the cross-entropy loss as:

ℓce = −p′ · log(p̂) (2)

After adaptation is completed, the predicted classes for the target samples are
y′t = argmaxc∈Y (p

′).

3.2 Effect of CDS on the Nearest Neighbors

While using nearest neighbors (NN) as a reference for pseudolabeling has proved
effective to combat covariate shift [7,22,40], the effect of simultaneously dealing
with class distribution shift has not been studied yet.

Previous works [31, 36] proved that the NN algorithm is significantly im-
pacted by imbalanced class distributions, due to its sensitivity to the local data
structure. In a binary classification problem, let W and w be the number of
neighbors from the majority and minority class respectively. Mathematically, W
and w are a function of (k,Q, q), where k = (W +w) is the number of neighbors
considered, and Q and q the distributions of the majority and minority classes
in the latent space. The probability of a sample being nearest to a majority
class sample is W

k , and w
k of being nearest to a minority class sample. Under

severe imbalance, W ≫ w, so inevitably W
k ≫

w
k , which leads to a bias towards

the majority class [36]. In the labeled single-domain scenario, since (Q, q) are
known, this bias can be mitigated via oversampling/undersampling techniques,
or a weighted classification algorithm [31]. However, in the SFDA-CDS scenario
(Q, q) are not known nor estimable. This is because, when a certain sample is
misclassified as a majority class, it can be because of the original bias of the
source model or because the bias within the target data. Only the hyperpa-
rameter k is controllable, where a too-small k ignores the influence of minority
samples, and a too-big k considers too many majority samples [31].

Providing a full theoretical proof of the impact of CDS on SFDA is complex
and depends on specific assumptions about the data distribution. Therefore, we
provide an empirical proof to illustrate this phenomenon. We trained a base-
line classifier (i.e. ImageNet-pretrained ResNet101 [12]) in the source domain of
the SFDA dataset VisDA-C [29] and applied the basic pseudolabeling pipeline
to adapt the source model to the target domain. This pseudolabeling is used
in state-of-the-art SFDA methods (e.g . guided pseudolabels [22]) which, de-
spite proposing sophisticated modules for contrastive learning and pseudolabel
reweighting, still employ a vanilla NN algorithm with cosine distance d and soft-
voting. Although we accessed the ground truth labels yt ∈ {plane, ..., truck}
for observation, they are unavailable during the actual adaptation. Figure 2 (a)
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(a) (b) (c) (d) (e)

Fig. 2: Class histogram of the nearest neighbors (NN) in [22] given a target sample of
the class train (in red) on the VisDA-C dataset. (a) Source NN on VisDA-C (k = 10),
(b) Source NN on VisDA-C RSUT (k = 10), (c) Source NN on VisDA-C RSUT (K =
100), (d) Generic NN on VisDA-C RSUT (K = 100), (e) Robust NN on VisDA-C
RSUT (k = 10).
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Fig. 3: (a) Class distribution in the VisDA-C RSUT dataset. (b) “Second opinion”
strategy: The bias in the source nearest neighbors (NN) hinders pseudolabeling quality,
so we take the intersection with the NN of a generic model to mitigate the bias.

displays a histogram of the classes of the k = 10 neighbors N used to calculate
the pseudolabel p′ of an input target sample with label yit =train. The major-
ity of the neighbors belong to the correct class, and consequently y′it = train is
predicted. The accuracy of the adapted model is 90.0%.

Next, we use the CDS version of the dataset, VisDA-C RSUT [32]. RSUT
stands for Reversely-unbalanced Source and Unbalanced Target, where source
and target domains are subject to two reverse Pareto distributions (Fig. 3 (a)).
For the same target sample, Fig. 2 (b) shows that the NN in the source model
contain more samples from unrelated classes, including those with majority rep-
resentation in the source domain (i.e. bicycle). As a result, the accuracy of the
adapted model decreases to 83.59%. As mentioned above, this bias noise is in-
herent to the CDS setting, but unfeasible to estimate without either source or
target labels, as the source model predictions are influenced by both. As a rea-
sonable way to consider an unbiased estimation of the class distribution of the
target domain, we propose relying on an external reference model.
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3.3 Generic Features for Robust Nearest Neighbors

We propose leveraging an additional feature extractor g free of the major-
ity/minority bias of the source data (Fig. 3 (b)). As an initial experiment, we
use the same backbone as the source model before seeing the source data, i.e.
ResNet101 pretrained on ImageNet-1K, which provides a set of features g(xi

t) =
zig ∈ Zg. As a multipurpose public dataset, ImageNet is less biased and more
generic at least than the source data. Thus, while the feature space Zg lacks bias
in favor of generalizability, the feature space Zs of the source model suffers from
source bias but possesses domain knowledge (e.g . the label space). We hypothe-
size that combining both can lead to more “robust” nearest neighbors, and thus,
to more accurate pseudolabeling. Then, the adaptation process can be regarded
as a way of knowledge distillation from the generic model to the source model.

We propose replacing the set of source neighbors N with robust neighbors
R that are present in both Zs and Zg. This requires, looking further than the
original k = 10 samples, so we introduce an additional hyperparameter K = 100.
We let k ≤ K ≪ m, since including the entire feature banks (i.e. K = m)
is not desirable, as the generic model is not exempt of noise. Therefore, R =
{z1s , ..., zKs } ∩ {z1g , ..., zKg } = {z1r , ..., zor}. To validate our hypothesis, we consider
a conservative setting prioritizing the source neighbors, so that:

If o == k,N ← R (3)

If o > k,N ← {z1r , ..., zkr } (4)

If o < k,N ← {z1s , ..., zk−o
s } ∪ {z1r , ..., zor} (5)

Whereas the feature bank F needs to be updated on each training itera-
tion [22], the bank of the generic features G only needs to be created once at
the beginning.

Figure 2 (c) and (d) show the K NN in the source and generic feature spaces
respectively, and (e) shows the set R of robust NN, which contains less bias noise.
The final accuracy after adaptation is 86.6%, which means that pseudolabeling
by employing NN of the correct class leads to higher classification accuracy. The
suppl. material contains more visual examples of robust NN in this setting.

Although the state-of-the-art methods in both SFDA [20] and TTA [27] under
CDS also aim to add robustness to the pseudolabeling scheme, instead of ap-
proaching the biased prediction logits, we approach the bias that stems from the
nearest neighbors in the source model’s feature space. This way, it was possible
to understand why the performance dropped and how to improve it. Moreover,
higher accuracy gains can be expected from stronger feature extractors, as shown
on Sec. 4.

3.4 Validation of the Proposed Method

Hyperparameter K. We compared the performance of pseudolabeling (PL)
in [22] on VisDA-C RSUT using different ranges of K for calculating robust
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Table 1: Accuracy (%) on VisDA-C RSUT for different values of K.

Method K = 10 K = 50 K = 100 K = 500

PL + ResNet101 83.96 86.34 86.6 83.56

(b)
Without robust NN With robust NN

(a)

Fig. 4: (a) Percentage of correct NN used for pseudolabeling during the adaptation of
the source model on VisDA RSUT. (b) Source model’s feature space w/wo our method
in VISDA-C RSUT. Minority classes (circled) are better clustered.

nearest neighbors. Table 1 shows that 100 is the best performing value. K = 10
is too small to find common neighbors, so the accuracy is almost that of the
original method. Similarly, the range of K = 500 is too large and unrelated
common neighbors are included, resulting in a performance drop.

Source, Generic and Robust Neighbors. Figure 4 (a) compares the per-
centage of correct neighbors, i.e. those belonging to the same class as yit, as
the source model is adapted. While the generic neighbors do not improve during
adaptation, the source neighbors improve getting closer to the performance of the
generic neighbors. This results in robust neighbors that surpass the performance
of both the generic model and the original guided pseudolabels in [22].

Feature Space Visualization. Figure 4 (b) is a visualization via tSNE [24] of
the feature space of our SFDA pipeline in which the NN are calculated. In par-
ticular, the minority classes appear better clustered when applying our method,
which results in less biased pseudolabels.

4 Experimental Results

4.1 Experimental Settings

Metrics. For a fair comparison with the related work, we use the setting in [20].
We calculate the class-wise mean accuracy, as it reflects better the classification
performance when all classes (majorities and minorities) should be properly
classified. Otherwise, the model may display high accuracy just by classifying
properly a subset of the majority classes only [8].
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Datasets. We evaluate our method in three standard SFDA datasets. VisDA-
C [29] contains twelve object classes in two domains: real and synthetic. Office-
Home [33] contains sixty-five object classes in four domains, from which three
are used as a benchmark in the relevant works [20,27]: clipart, product and real.
Finally, DomainNet [28] contains forty object classes in four domains: clipart,
painting, real and sketch. Following the related work, we use the RSUT version of
VisDA-C and Office-Home (see Fig. 3 (a)), created by [32] in order to apply CDS.
On the other hand, the domains in DomainNet are naturally class distribution
shifted, so no class resampling is applied, but a subset of the dataset is used
instead [32]. As a result, each dataset represents a different type of CDS. The
suppl. material details their respective class distributions, and the splits used for
training the source model and adapting it to the target.

Source/Adapted Model. In order to evaluate our proposed robust nearest
neighbors, we introduce them into the SFDA state-of-the-art, guided pseudola-
bels (PL guided) [22]. This method calculates pseudolabels for the test data
via nearest neighbors, weights them according to the uncertainty of their predic-
tions, and refines the feature space via contrastive learning. Additionally, as a
reference, we provide the results on the pseudolabeling baseline (PL base), i.e.,
no weighting nor contrastive learning. Following this benchmark’s standards, the
architecture used for the source models is: ResNet101 for VisDA-C and ResNet50
for Office-Home and DomainNet, pretrained in ImageNet-1K. The source model
training and adaptation regimes are those of the original setting [22]; stochastic
gradient descent is run during 100 epochs and batch size 64 in VisDA-C (RSUT),
and 200 epoch and batch size 128 in Office-Home (RSUT) and DomainNet (sub-
set). Likewise, the source data is learned with the standard cross-entropy loss
and label-smoothing.

Generic Models. We chose a range of standard convolutional neural networks
(CNNs) and transformers in order to study the performance variations when
using different backbones. We use the same pretrained ResNet [12] backbones
as the source/adapted model for each dataset. In addition, we employ the Vi-
sion Transformer (ViT-B/32) [9] and the Swin Transformer (Swin-B/4) [23]
pretrained in ImageNet-21k. This list is not exhaustive and it demonstrates the
ability of our method to successfully leverage different types of feature spaces.
The suppl. material contains more details about the architectures and their
weights. Robust nearest neighbors are calculated with hyperparameters k = 10
and K = 100.

4.2 Source-Free Domain Adaptation under CDS

Tables 2, 3 and 4 show the classification accuracy after adaptation on the target
domain. The results are divided in seven blocks from top to bottom as follows: (1)
the source model without adaptation, (2) UDA methods, (3) UDA under CDS
methods, (4) SFDA methods, (5) SFDA under CDS method, (6) SFDA via basic
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Table 2: Class-wise average accuracy of SFDA on VisDA-C (RSUT). The source
domain are synthetic images and the target domain are real images.

Method plane bcyl bus car horse knife mcycl person plant sktbrd train truck Avg.

Source model 64.49 16.67 46.86 78.81 63.28 7.49 75.86 17.55 65.02 12.88 70.48 3.18 43.55
PADA [3] 95.65 52.86 87.74 66.67 84.96 1.34 64.50 18.06 31.05 1.80 0.10 0.01 42.06
MCD [30] 63.04 41.43 83.96 67.28 86.59 93.85 85.59 76.27 84.09 11.26 5.04 2.95 58.45
BSP [5] 100.0 57.14 68.87 56.79 83.74 26.74 78.73 16.20 63.70 1.85 0.10 0.10 46.15
COAL [32] 86.96 40.0 71.70 79.63 89.43 22.46 86.47 46.18 82.95 34.99 72.76 7.04 60.05
MDD (Implicit) [15] 82.61 81.43 83.96 62.96 86.59 88.50 73.29 76.04 85.76 50.35 69.50 23.40 72.03
SHOT [21] 56.52 14.29 78.30 50.0 96.07 62.92 89.81 64.35 84.43 50.97 66.97 24.51 61.59
ISFDA [20] 86.95 64.29 82.71 60.7 95.53 96.17 84.94 78.97 90.01 71.35 80.97 27.63 76.69
PL base 84.95 90.0 86.11 80.68 97.54 88.69 89.1 81.31 92.73 84.81 63.07 33.15 81.01
+ Ours (ResNet101) 91.4 83.0 83.33 75.0 98.03 82.19 92.83 85.35 95.35 90.63 87.33 41.76 83.85
+ Ours (ViT-B) 90.32 93.0 81.94 81.25 97.04 94.16 83.48 81.06 94.34 87.24 82.61 40.13 83.88
+ Ours (Swin-B) 93.55 93.0 85.42 82.95 97.04 93.8 93.15 85.1 91.72 91.6 89.49 42.86 86.64
PL guided [22] 93.55 82.0 81.25 75.0 97.54 93.8 95.64 84.09 95.76 80.29 82.34 53.87 83.59
+ Ours (ResNet101) 94.62 84.0 72.92 77.84 96.06 91.24 95.33 87.63 95.96 94.99 93.66 54.96 86.6
+ Ours (ViT-B) 89.25 87.0 80.56 84.09 94.58 96.35 95.02 82.83 96.36 93.05 91.24 50.27 86.72
+ Ours (Swin-B) 93.55 93.0 79.86 82.39 98.52 96.71 96.88 86.36 96.36 94.51 94.88 53.11 88.84

Table 3: Class-wise average accuracy of SFDA on Office-Home (RSUT). The domains
are clipart (C), product (P) and real (R).

Method C→P C→R P→C P→R R→C R→P Avg.

Source model 52.27 53.31 35.84 67.31 38.35 69.77 52.81
PADA [3] 38.34 40.71 26.76 57.09 32.28 60.77 42.66
MCD [30] 39.01 44.47 29.99 62.95 33.17 66.03 45.94
BSP [5] 30.36 32.59 20.05 66.19 23.82 72.80 40.97
COAL [32] 57.33 59.22 40.61 73.26 42.58 73.65 58.40
MDD (I) [15] 63.15 61.15 45.38 74.21 50.04 76.08 61.67
SHOT [21] 65.07 63.55 46.1 74.81 50.16 77.37 62.84
ISFDA [20] 66.84 67.28 50.33 76.78 53.69 77.25 65.36
PL base 63.70 61.67 33.69 71.94 35.66 74.27 56.82
+ ResNet50 62.54 61.90 29.86 70.27 33.73 74.53 55.47
+ ViT-B 66.97 63.03 35.74 71.08 38.12 77.31 58.71
+ Swin-B 70.51 70.40 41.95 79.94 43.86 81.18 64.64
PL guided [22] 66.81 68.11 37.99 76.62 40.22 76.53 61.05
+ ResNet50 66.99 66.72 34.05 75.32 37.65 77.27 59.67
+ ViT-B 70.49 67.86 39.54 75.14 40.90 79.93 62.31
+ Swin-B 75.50 76.59 46.84 82.85 48.21 84.26 69.04

pseudolabeling with our proposal, and (7) SFDA via guided pseudolabeling with
our proposal. The best performance is bolded and the second-best is underlined.

Similar patterns can be observed for all three datasets. Our method provides
the best results when leveraging a strong generic feature extractor, outperform-
ing the previous work in SFDA under CDS [20] without needing to impose a uni-
form distribution on the source data. The reason is that, although approaching
bias reduction at the logits level can correct the source model’s predictions par-
tially, the performance improvement is limited compared to reducing bias at the
nearest neighbors level. As a result, by empirically exploring the essence of the
problem, we successfully provided a solution to the most challenging SFDA-CDS
setting for the first time, via a simple method. In particular, Swin-B provides the
best results in two of the three datasets. Unlike ViT-B, Swin-B model extracts
features at different local and global levels, which makes it more robust against
covariate shifts [42]. In VisDA-C, the difference in accuracy between the basic
pseudolabeling and our method indicates that the robust nearest neighbors pro-
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Table 4: Class-wise average accuracy of SFDA on DomainNet (subset). The domains
are clipart (C), painting (P), real (R) and sketch (S).

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source model 53.55 76.70 53.06 55.55 84.39 60.19 58.84 67.89 53.08 54.60 57.78 74.62 62.52
PADA [3] 53.09 74.69 52.86 59.33 79.84 57.87 65.91 67.13 58.43 66.97 61.08 76.52 64.48
MCD [30] 56.61 79.78 53.66 58.31 83.38 60.98 61.97 69.33 56.26 56.27 66.78 81.74 65.42
BSP [5] 67.52 86.50 70.90 70.33 86.83 68.75 67.29 73.47 69.31 72.40 71.47 84.34 74.09
COAL [32] 69.98 89.63 71.29 68.01 89.81 70.49 73.58 75.37 70.50 73.21 70.53 87.97 75.89
MDD (Implicit) [15] 70.59 88.50 70.44 75.71 88.37 71.65 78.54 75.09 69.43 77.97 72.41 89.35 77.33
SHOT [21] 72.5 87.90 73.80 75.29 89.90 74.79 77.17 75.82 71.43 77.81 73.08 88.23 78.14
ISFDA [20] 75.11 90.09 74.78 76.70 89.57 76.07 81.52 77.29 73.55 79.70 73.13 87.55 79.58
PL base 76.32 92.13 75.53 76.92 91.42 74.90 73.44 78.55 72.93 76.14 73.66 91.86 79.48
+ Ours (ResNet50) 67.93 91.51 60.22 55.49 90.46 64.82 60.46 70.90 60.10 63.71 68.13 89.65 70.28
+ Ours (ViT-B) 75.96 94.88 79.19 83.87 94.58 79.08 80.83 78.16 78.25 79.11 73.70 92.47 82.51
+ Ours (Swin-B) 77.03 94.52 69.08 75.64 93.58 71.13 75.48 78.24 69.27 76.61 74.48 92.39 78.95
PL guided [22] 77.56 91.27 75.79 76.44 90.24 76.11 75.75 79.50 74.63 76.22 77.05 90.96 80.12
+ Ours (ResNet50) 71.25 90.80 65.69 62.18 89.42 67.35 61.19 72.50 64.30 65.62 72.09 90.46 72.74
+ Ours (ViT-B) 79.71 93.91 80.26 83.56 92.83 79.06 82.68 80.77 79.27 82.80 78.44 93.52 83.9
+ Ours (Swin-B) 79.97 93.69 74.40 77.49 92.51 75.09 79.43 81.01 72.48 79.42 77.86 93.43 81.4

Table 5: Class-wise average accuracy of TTA on VisDA-C (RSUT). The source domain
are synthetic images and the target domain are real images.

Method Avg.

Source model 51.45
ONDA [25] 50.68
LAME [1] 50.72
CoTTA [35] 49.88
NOTE [10] 49.37
TENT [34] 48.68
+ Label shift adapter [27] 72.97
Pseudolabel 47.12
+ Ours (ResNet101) 50.07
+ Ours (ViT-B) 49.60
+ Ours (Swin-B) 52.49

vide the highest boost on the minority “tail” classes of the source dataset (esp.
skateboard, train, truck). This is coherent with our hypothesis that pseudolabel-
ing is affected significantly by the majority/minority bias.

Regarding ResNet, while it is outperformed by the other generic models, it
can provide comparable performance when the target domain are real images.
In particular, given the similarity between the target domain in VisDA-C and
ImageNet, ResNet’s robust neighbors are as effective as the stronger generic
models.

Moreover, our method is capable of improving basic pseudolabeling under
the RSUT setting, without training additional modules and objective functions.
When using strong feature extractors, the simpler base pseudolabeling can sur-
pass the performance of the more complex guided pseudolabels method [22] (e.g .
PL base + Swin-B vs. PL guided in Tab. 2 and 3).

4.3 Test-Time Adaptation under CDS

The nature of our method also allows it to improve the adaptation accuracy on-
the-fly without retraining the source model, which suits the time-test adaptation
(TTA) setting. For this, we run our method in inference mode, relying only on
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Table 6: Class-wise average accuracy of TTA on Office-Home (RSUT). The domains
are clipart (C), product (P) and real (R).

Method C→P C→R P→C P→R R→C R→P Avg.

Source model 45.39 44.53 32.94 64.33 40.22 68.92 49.39
ONDA [25] 44.84 47.57 35.20 62.09 40.61 63.83 49.02
LAME [1] 41.68 42.27 32.40 63.57 37.92 66.94 47.46
CoTTA [35] 44.46 48.19 35.63 62.34 40.73 62.20 48.92
NOTE [10] 43.02 42.38 38.64 61.69 41.40 64.33 48.58
TENT [34] 49.60 49.51 38.96 63.08 41.25 64.52 51.15
+Adapter [27] 49.60 53.13 37.81 66.45 41.35 68.35 52.78
Pseudolabel 55.48 57.23 26.72 69.92 31.12 73.58 52.34
+Ours (ResNet50) 58.96 61.6 24.09 69.78 29.57 72.97 52.83
+Ours (ViT-B) 60.26 59.97 26.35 69.25 31.03 76.83 53.95
+Ours (Swin-B) 65.23 67.62 29.32 79.87 37.74 81.18 60.16

Table 7: Class-wise average accuracy of TTA on DomainNet (subset). The domains
are clipart (C), painting (P), real (R) and sketch (S).

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source model 52.73 74.87 52.15 58.42 81.22 61.82 66.03 69.58 55.31 63.92 59.68 75.43 64.26
ONDA [25] 56.82 78.32 54.81 63.99 81.79 61.86 67.14 70.09 58.11 71.60 69.34 80.77 67.89
LAME [1] 49.20 72.45 48.69 57.81 80.09 60.85 65.25 68.19 53.97 61.0 55.66 73.25 62.20
CoTTA [35] 56.88 77.33 54.18 63.69 81.31 60.26 67.44 70.07 57.14 71.69 68.85 80.56 67.45
NOTE [10] 55.38 74.15 57.98 65.59 81.66 64.65 71.29 73.32 63.28 72.28 68.31 80.25 69.01
TENT [34] 63.26 77.10 59.76 66.69 80.02 64.32 71.88 74.34 62.25 73.13 72.64 78.73 70.34
+ Label shift adapter [27] 63.26 81.11 60.39 67.38 82.99 67.23 71.88 74.83 64.40 71.88 71.56 82.67 71.63
Pseudolabel 59.45 87.48 57.27 56.31 88.68 65.57 62.28 69.66 55.23 59.42 60.24 83.15 67.06
+ Ours (ResNet50) 60.39 89.94 50.13 48.41 88.70 56.68 51.28 66.48 47.60 52.19 59.38 84.89 63.01
+ Ours (ViT-B) 66.15 92.6 62.81 65.9 90.97 71.36 71.0 73.28 63.61 70.47 63.01 87.59 73.23
+ Ours (Swin-B) 65.78 92.41 58.47 61.06 91.10 66.34 66.1 72.03 56.84 65.6 63.57 87.77 70.59

the predicted pseudolabels of the robust nearest neighbors. Note that, since no
learning is involved, the accuracy results are the same for both the base and
guided pseudolabeling settings of our method.

Tables 5, 6 and 7 show the classification accuracy on the target domain. The
results are divided in four blocks from top to bottom as follows: (1) the source
model without adaptation, (2) TTA methods with partial support to CDS, (3)
TTA method with full support to CDS, and (4) TTA via pseudolabeling with our
proposal. Our method outperforms all TTA methods with the single exception
of the state of the art [27] on VisDA-C. However, unlike [27], our method does
not require optimizing an adapter module for CDS.

5 Discussion and Conclusions

Cost of the Generic Model and Robust NN. Our results are obtained em-
ploying pretrained models publicly available with fixed parameters, so applying
our method incurs no extra training cost. Regarding the computational com-
plexity of calculating our robust nearest neighbors (NN), given n samples, our
method calculates the K NN in the d dimensional generic feature space, which
has a complexity of O(K · n · d). Then, it finds the common samples with the
source k NN, which has a complexity of O(n · log(n)).
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Table 8: Mean class-accuracy (%) on VisDA-C RSUT for different degrees of CDS.
The ∆ indicates the performance drop between the strongest CDS vs. the weakest.

Method CDS CDS↑ CDS↑↑ ∆

PL guided [22] 83.59 80.24 77.79 -5.8
+ Ours (ResNet101) 86.60 82.60 80.46 -6.14
+ Ours (ViT-B) 86.72 84.84 83.88 -2.84
+ Ours (Swin-B) 88.84 87.57 85.52 -3.32

Effect of Different Levels of CDS. All our experiments considered the CDS
configuration of the public datasets used in the comparison works. In addition,
we included a study on different levels of CDS in Tab. 8. The stronger the generic
model is, the more resilience to CDS our method provides. The suppl. material
includes the same study for a subset of the baselines and comparison works.

Selection of the Generic Model. While our method is not tied to any spe-
cific architecture, our results suggest that as long as the generic features are
stronger than the source features (i.e. more sophisticated architectures, more
parameters), the adaptation will improve. Using the same source architecture
(i.e., ResNet) still produces reasonable results for target domains similar to
ImageNet, but does not guarantee adaptation improvement. This effect is not
abnormal; [42] also shows in Tab. 3 and 5 how ResNet decreases accuracy, while
the stronger architecture always improves accuracy. More details in the suppl.
material.

Extension to Multiple Generic Models. Our method allows for a straight-
forward way for adding new “robust opinions” by simply finding common nearest
neighbors of the target samples in additional models’ feature space. However, the
more models added, the harder finding common neighbors would be, and may
require adjusting hyperparameter K. Such study is left for future work.

5.1 Conclusions

This paper studied the effect of class distribution shift (CDS) in the task of
source free domain adaptation (SFDA). Instead of proposing additional mod-
ules and objective functions to improve the SFDA’s pseudolabeling process, we
study the weakness of the nearest neighbors algorithm used in many previous
works. We proved that, by adding robustness to the nearest neighbors via an
external feature extractor, the accuracy of the subsequent adaptation improves,
outperforming previous methods in both SFDA and test-time adaptation (TTA)
tasks under CDS. This study stays within the scope of standard-size convolu-
tional networks and transformers, but we believe that distillation from powerful
generic models to custom architectures will gain relevancy with the widespread
of large foundation models.



Robust Nearest Neighbors for SFDA-CDS 15

References

1. Boudiaf, M., Mueller, R., Ben Ayed, I., Bertinetto, L.: Parameter-free online test-
time adaptation. In: Proc. Conference on Computer Vision and Pattern Recogni-
tion. pp. 8344–8353 (2022)

2. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance
problem in convolutional neural networks. Neural networks 106, 249–259 (2018)

3. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In:
Proc. European conference on computer vision. pp. 135–150 (2018)

4. Chen, W., Yu, Z., De Mello, S., Liu, S., Alvarez, J.M., Wang, Z., Anandkumar,
A.: Contrastive syn-to-real generalization. In: Proc. International Conference on
Learning Representations. pp. 1–12 (2021)

5. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. Discriminability: Batch
spectral penalization for adversarial domain adaptation. In: Proc. International
Conference on Machine Learning. pp. 1081–1090 (2019)

6. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge
for adversarial domain adaptation. In: Proc. Conference on Computer Vision and
Pattern Recognition. pp. 12455–12464 (2020)

7. Dong, J., Fang, Z., Liu, A., Sun, G., Liu, T.: Confident anchor-induced multi-source
free domain adaptation. Advances in Neural Information Processing Systems 34,
2848–2860 (2021)

8. Dong, Q., Gong, S., Zhu, X.: Imbalanced deep learning by minority class incremen-
tal rectification. IEEE Transactions on Pattern Analysis and Machine Intelligence
41(6), 1367–1381 (2018)

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

10. Gong, T., Jeong, J., Kim, T., Kim, Y., Shin, J., Lee, S.J.: NOTE: Robust contin-
ual test-time adaptation against temporal correlation. Proc. Advances in Neural
Information Processing Systems 35, 27253–27266 (2022)

11. Gu, X., Sun, J., Xu, Z.: Spherical space domain adaptation with robust pseudo-
label loss. In: Proc. Conference on Computer Vision and Pattern Recognition. pp.
9101–9110 (2020)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. Conference on Computer Vision and Pattern Recognition. pp. 770–778
(2016)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

14. Hu, L., Kan, M., Shan, S., Chen, X.: Unsupervised domain adaptation with hier-
archical gradient synchronization. In: Proc. Conference on Computer Vision and
Pattern Recognition. pp. 4043–4052 (2020)

15. Jiang, X., Lao, Q., Matwin, S., Havaei, M.: Implicit class-conditioned domain align-
ment for unsupervised domain adaptation. In: Proc. International Conference on
Machine Learning. pp. 4816–4827 (2020)

16. Kundu, J.N., Kulkarni, A.R., Bhambri, S., Mehta, D., Kulkarni, S.A., Jampani, V.,
Radhakrishnan, V.B.: Balancing discriminability and transferability for source-free
domain adaptation. In: Proc. International Conference on Machine Learning. pp.
11710–11728 (2022)



16 A. Tejero-de-Pablos et al.

17. Kundu, J.N., Venkat, N., Babu, R.V., et al.: Universal source-free domain adap-
tation. In: Proc. Conference on Computer Vision and Pattern Recognition. pp.
4544–4553 (2020)

18. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In: Proc. International Conference on Machine
Learning Workshops. vol. 3-2, p. 896 (2013)

19. Li, S., Xie, M., Gong, K., Liu, C.H., Wang, Y., Li, W.: Transferable semantic
augmentation for domain adaptation. In: Proc. Conference on Computer Vision
and Pattern Recognition. pp. 11516–11525 (2021)

20. Li, X., Li, J., Zhu, L., Wang, G., Huang, Z.: Imbalanced source-free domain adap-
tation. In: Proc. ACM International Conference on Multimedia. pp. 3330–3339
(2021)

21. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source
hypothesis transfer for unsupervised domain adaptation. In: Proc. International
Conference on Machine Learning. pp. 6028–6039 (2020)

22. Litrico, M., Del Bue, A., Morerio, P.: Guiding pseudo-labels with uncertainty es-
timation for source-free unsupervised domain adaptation. In: Proc. Conference on
Computer Vision and Pattern Recognition. pp. 7640–7650 (2023)

23. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
Transformer: Hierarchical vision transformer using shifted windows. In: Proc. In-
ternational Conference on Computer Vision. pp. 10012–10022 (2021)

24. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of machine
learning research 9(11) (2008)

25. Mancini, M., Karaoguz, H., Ricci, E., Jensfelt, P., Caputo, B.: Kitting in the wild
through online domain adaptation. In: Proc. International Conference on Intelli-
gent Robots and Systems. pp. 1103–1109 (2018)

26. Na, J., Jung, H., Chang, H.J., Hwang, W.: FixBi: Bridging domain spaces for
unsupervised domain adaptation. In: Proc. Conference on Computer Vision and
Pattern Recognition. pp. 1094–1103 (2021)

27. Park, S., Yang, S., Choo, J., Yun, S.: Label shift adapter for test-time adaptation
under covariate and label shifts. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 16421–16431 (2023)

28. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for
multi-source domain adaptation. In: Proc. International Conference on Computer
Vision. pp. 1406–1415 (2019)

29. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: VisDA: The
visual domain adaptation challenge. arXiv preprint arXiv:1710.06924 (2017)

30. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: Proc. Conference on Computer Vision
and Pattern Recognition. pp. 3723–3732 (2018)

31. Shi, Z.: Improving k-nearest neighbors algorithm for imbalanced data classification.
IOP Conference Series: Materials Science and Engineering 719(1), 012072 (2020)

32. Tan, S., Peng, X., Saenko, K.: Class-imbalanced domain adaptation: An empirical
odyssey. In: Proc. European Conference on Computer Vision Workshops. pp. 585–
602 (2020)

33. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: Proc. Conference on Computer
Vision and Pattern Recognition. pp. 5018–5027 (2017)

34. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: TENT: Fully test-
time adaptation by entropy minimization. In: Proc. International Conference on
Learning Representations. pp. 1–15 (2021)



Robust Nearest Neighbors for SFDA-CDS 17

35. Wang, Q., Fink, O., Van Gool, L., Dai, D.: Continual test-time domain adaptation.
In: Proc. Conference on Computer Vision and Pattern Recognition. pp. 7201–7211
(2022)

36. Weiss, G.M., Provost, F.: The effect of class distribution on classifier learning: an
empirical study. Tech. rep., Rutgers University (2001)

37. Xia, H., Zhao, H., Ding, Z.: Adaptive adversarial network for source-free domain
adaptation. In: Proc. International Conference on Computer Vision. pp. 9010–9019
(2021)

38. Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias:
Weighted maximum mean discrepancy for unsupervised domain adaptation. In:
Proc. Conference on Computer Vision and Pattern Recognition. pp. 2272–2281
(2017)

39. Yang, S., Wang, Y., Van De Weijer, J., Herranz, L., Jui, S.: Generalized source-free
domain adaptation. In: Proc. International Conference on Computer Vision. pp.
8978–8987 (2021)

40. Yang, S., van de Weijer, J., Herranz, L., Jui, S., et al.: Exploiting the intrinsic
neighborhood structure for source-free domain adaptation. Advances in Neural
Information Processing Systems 34, 29393–29405 (2021)

41. Zara, G., Conti, A., Roy, S., Lathuilière, S., Rota, P., Ricci, E.: The unreasonable
effectiveness of large language-vision models for source-free video domain adap-
tation. In: Proc. International Conference on Computer Vision. pp. 10307–10317
(2023)

42. Zhang, W., Shen, L., Foo, C.S.: Rethinking the role of pre-trained networks in
source-free domain adaptation. In: Proc. International Conference on Computer
Vision. pp. 18841–18851 (2023)


	Robust Nearest Neighbors for Source-Free Domain Adaptation under Class Distribution Shift

