
Chains of Diffusion Models

Yanheng Wei1 , Lianghua Huang1∗ , Zhi-Fan Wu1 , Wei Wang1 , Yu Liu1 ,
Mingda Jia2 , and Shuailei Ma3

1 Alibaba Group, Beijing, China yanheng.wyh@alibaba-inc.com
2 Peking University Shenzhen Graduate School, Shenzhen, China

2201212832@stu.pku.edu.cn
3 Northeastern University, Shenyang, China xiaomabufei@gmail.com

Quantity Identity Layout Pose

Ours

DALI-E3

A soldier holding the other one to 
reach the roof.

Fig. 1: Comparison of our Chains and DALL-E3 [31], in multi-human scene genera-
tion. Chains outperform DALL-E3 on the aspects of accurate human quantity, identity,
layout, and pose with comparable image quality.

Abstract. Recent generative models excel in creating high-quality single-
human images but fail in complex multi-human scenarios, failing to cap-
ture accurate structural details like quantities, identity accuracy, layouts
and postures. We introduce a novel approach, Chains, which enhances
initial text prompts into detailed human conditions using a step-by-step
process. Chains utilize a series of condition nodes—text, quantity, lay-
out, skeleton, and 3D mesh—each undergoing an independent diffusion
process. This enables high-quality human generation and advanced scene
layout management in diffusion models. We evaluate Chains against a
new benchmark for complex multi-human scene synthesis, showing su-
perior performance in human quality and scene accuracy over existing
methods. Remarkably, Chains achieves this with under 0.45 seconds for
a 20-step inference, demonstrating both effectiveness and efficiency.

Keywords: Diffusion model · Multi-human generation · Conditional
generation

1 Introduction

The field of text-to-image synthesis has seen significant strides for the human
generation in recent years, particularly in generating high-quality images for
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single-human [18, 26, 31, 32, 46] and simple human-centric scenes [2, 4, 35, 37, 38,
42, 44, 49]. However, synthesizing complex multi-human scenarios while ensur-
ing image quality and structural accuracy (e.g., quantities, layouts, and shapes)
remains an open challenge [9, 22, 42, 44]. Generating complex scenes with mul-
tiple individuals demands several key aspects: accurately depicting the correct
quantity of human instances amidst occlusion and intricate actions, preserving
human identity according to the prompt, and ensuring the correct spatial distri-
bution of multiple individuals. Moreover, it is also crucial that the appearance
and pose of each human remain unambiguous.

However, existing general text-to-image methods, including advanced models
such as GPT4-Vision, DALL-E3, and Gemini, encounter challenges in generating
accurate representations of identity-bound multi-human scenes, particularly in
complex scenarios where each person engages in different actions. These methods
also exhibit shortcomings in detailing the overlap between multiple individuals,
leading to face artifacts and deformations in human limbs and faces that are
absent in single-person scenes. When it comes to the specific human-body gen-
eration or human-verb generation, they focus on single-human scenarios and
often tend to generate ambiguous human crowds with wrong quantities and
confounding body parts. As for the conditional generation methods like Layout-
to-image and with other conditions, they only ensure the correctness of the
spatial scene distribution, however lack high-quality human generation within
overlapping conditions.

Contrary to these imperfect generative models, human designers typically
adopt a sequential approach to such complex image creation. This process usu-
ally involves determining the layout, sketching the human structures, and then
adding details. This method allows for the construction of scenes with complex
spatial distributions in simpler, manageable steps, with each step governed by
the outcome of its preceding steps.

Inspired by this process, we propose a condition chains paradigm for text-
to-image multi-human synthesis, where we insert a sequence of condition nodes
representing increasingly detailed human structures between the text and image.
Each node in the chain conditions its predecessors for generation and acts as a
structural prior to constrain the next node, culminating in the image generation.

Considering the structures of the human body, existing layout-conditioned
text-to-image methods [12, 21, 48] inspire us to generate correct scene distribu-
tions correctly. Additionally, the use of keypoints [51] and 3D mesh [27, 33, 50]
contributes to the creation of high-fidelity human figures. Hence we construct
the condition chains with text, quantity, layout, skeleton, 3D mesh, and op-
tional semantic embeddings for image generation. Each node is conditioned on
all previous nodes, as depicted in Fig. 2. We utilize a transformer model [47] for
each intermediate node to predict conditions, with a quantity prediction head
and diffusion models [11] for synthesizing the following conditions from previous
conditions. Specifically, each condition within Chains can be derived from pre-
ceding conditions, supporting the flexible combination of multiple conditional
prompts beyond mere textual prompts.
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Fig. 2: Overview of the chained generation architecture. (a) Quantity prediction em-
ploys a transformer model for mapping text embeddings to softmax probabilities. (b)
Layout, skeleton, 3D-mesh, and semantic embedding generations use transformer-based
diffusion models for conditional denoising. (c) A modified ControlNet is utilized for gen-
erating the final image.

The final stage of image generation leverages a modified version of Control-
Net, as detailed in [51], enriched with composable chain conditions. Benefiting
from this flexible process, Chains are capable of generating synthetic intermedi-
ates at any point within the chain inference process. This characteristic equips
Chains with both the capability of condition-to-multi-condition generation and
multi-condition-to-image generation. For additional examples of generation and
an overview of the architecture, we direct the reader to Fig. 1 and Fig. 2,
respectively.

To assess the capability of generative models in producing complex multi-
human scenes, we have created a benchmark comprising 86 prompts for multi-
human scene generation, spanning several subcategories. These prompts encom-
pass three splits including human quality, scene layouts, identity accuracy and
human pose. Thus, providing a comprehensive evaluation of generative models
under diverse structural constraints. Detailed information on the benchmark is
available in Tab. 1.

Chains demonstrates its outperformance compared with recent state-of-the-
art end-to-end generation methods in our spatial structure benchmark, high-
lighting the spatial modeling ability of Chains. What is more, Our method also
shows better capability in attribute bindings compared to the end-to-end meth-
ods. Moreover, the generation speed of Chains is also fast, with each intermediate
stage taking around 0.45 second to complete a 20-step generation. This enables



4 Y. Wei, L. Huang, et al.

users to swiftly control the intermediate generation results before proceeding to
the generation of the final image. We have also conducted several ablation stud-
ies on the model and chain designs, indicating the potential for more efficient
chain implementation through model scale reduction and multi-tasking.

2 Related Works

Text-to-image Diffusion Models. The field of text-to-image human gener-
ation has witnessed significant advancements. Diffusion models [2, 4, 11, 34, 35,
37, 38, 42, 44, 45, 49] have emerged as the dominant approach in both research
and product communities, surpassing earlier works based on GANs [6,19,20,52]
and autoregressive [30, 39] models. However, the current text-to-image mod-
els [11, 29, 35, 40] and human generation models [15, 18, 26] primarily excel in
generating high-quality images for simple scenes with single or few humans.
However, their overall performance degrades when dealing with complex scenes
featuring multiple humans and objects. What is more, a notable challenge re-
mains in accurately capturing and rendering the complex spatial relationships
and ensuring the specific attributes of generated instances are consistent with
the description in textual prompts.
Layout-to-image Diffusion Models. Several recent works [7,12,21,48] aim to
enhance generation accuracy under spatial structural constraints, focusing on as-
pects like object quantities, object location, layouts, and relationships. However,
these methods often exhibit limited performance due to the due to the nega-
tive impact of explicit spatial constraints [21] and lack stability. Besides, they
are fragile in generating high-quality human instances. In contrast, Chains ap-
plies smooth constraints to image generation and enhances the spatial condition
at each step, which facilitates a balance between conditioning and high-quality
output.
Multi-condition Diffusion Models. The methods most related to Chains are
diffusion models with multi-instruction [9,14,41] along with ControlNet [51] that
operate under multiple distinct conditions. However, the ControlNet have lim-
ited inter-dependencies between different conditions. The instruction paradigm
requires instruction-specific tokens to aggregate different sub-task generators,
which introduces redundancy. Different from them, our Chains could generate
different conditioned intermediates within any stage of the forward progress of
the condition chain, which is more flexible and benefits from the inter-conditions
dependency.

3 Method

3.1 Overview

Our approach seeks to validate the proposed condition chains paradigm in the
context of complex multi-human image generation. It decomposes the text-to-
image generation process into a progressive conditional generation with condi-
tion chain sequence, starting from text and progressing through intermediate
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denotes the concatenation of Fourier embeddings of time, quantity, image width, and image height.
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Fig. 3: Overview of the chained generation architecture. (a) Quantity prediction em-
ploys a transformer model for mapping text embeddings to softmax probabilities. (b)
Layout, skeleton, 3D mesh, and semantic embedding generations use transformer-based
diffusion models for conditional denoising. (c) A modified ControlNet is utilized for gen-
erating the final image.

nodes: quantity, layout, skeleton, 3D mesh, optional semantic embeddings, and
ultimately to the final image. Each node serves as a structural prior for the gen-
eration of subsequent nodes. An overview of our approach is provided in Fig. 2

We utilize an independent transformer for each intermediate condition node
in the chain. We model instance quantity prediction as a softmax classification
task, while all other stages follow a denoising diffusion process. The final image
generation employs a variant of ControlNet [51] with composable conditions.
The following sections detail each step in the chain.

3.2 Intermediate Generation stages

Text Encoding. Text prompt serves as the initial input for the chain, condi-
tioning the generation of subsequent nodes. We use the textual branch of the
CLIP-ViT-G [8, 16, 36] model, with a moderate size of 662M, to obtain the em-
bedding representation of the text. This model provides a text encoder aligned
with visual content, which we expect to facilitate the prediction of the remaining
nodes.

We exclude the last transformer block and the model’s head, as they are more
closely tied to the contrastive pretraining task of CLIP. Instead, we utilize the
output of the penultimate layer as the text representation. We do not add layer
normalization after the penultimate layer’s output. Consequently, we encode a
text into a tensor of dimensions L×1280, where L is the length of the tokenized
text.



6 Y. Wei, L. Huang, et al.

Category Subcategory Prompt

Quantity Basic Five children walking on the street.
Quantity Calculation Two boys and three girls sitting on the grass.
Quantity Indefinite City hall hosts student sports competition.

Layout Basic Students sitting around the table.
Layout Basic A man standing close and the other standing far away.
Layout Relationship A soldier holding the other one to reach the roof.
Layout View angle Top view of people walking on the street.
Layout Arrangement A group of people forming a human pyramid.
Layout Arrangement Kids standing in a queue.

Pose Face A portrait of a little boy.
Pose Half-body A head-to-waist depiction of a girl.
Pose Full-body A young lady dances jazz in the street.
Pose Multi-individuals A football team training for the day before the match.

Table 1: Categorized examples of prompts in our benchmark.

Quantity Generation. We train a softmax classifier on a large dataset of
(text,quantity) pairs to model the text-conditional distribution of individ-
ual quantities in an image. We leverage a transformer to map text embeddings
to softmax probabilities of quantity values, ranging from zero to a predefined
maximum quantity. The transformer takes a concatenation of text embeddings
and a learnable cls token as input, with the output derived from the cls token
serving as logits. We utilize a cross-entropy loss function during training. During
inference, we can adjust the sampling certainty of the quantity by applying a
temperature parameter to the logits before calculating softmax probabilities.

Layout Generation. Layout generation involves predicting the location and
size of each individual in an image. We express the layout as an N × 4 tensor,
where each row corresponds to an individual’s bounding box. Each bounding
box is described by a 4-dimensional vector [cx,cy,w,h], where [cx,cy] are the
center coordinates, and [w,h] represent the width and height of the bounding
box. Each element of the vector [cx,cy,w,h] is normalized by dividing by the
respective dimensions of the image width and height, ensuring that all values
are within the range of [0,1].

We model the layout generation as a denoising diffusion process conditioned
on both the text embeddings and the predicted quantity. A transformer [47] is
used to denoise the layout. The input of the transformer combines text embed-
dings, Fourier embeddings of the timestep, quantity, image width, image height,
and embeddings of the noisy layout. We extract the embeddings of the noisy
layout by applying a two-layer MLP with SiLU activation. We do not use posi-
tional embeddings as the individuals are unordered. The output from the last N
tokens of the sequence, passed through a head layer, are taken as the denoised
results.
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Fig. 5: Convergence curves for the FID metric across four stages (layout, skeleton, 3D
mesh, and embedding generation) within our chained generation pipeline during the
training process.

For batch-wise training or inference, we pad the bounding boxes to a max-
imum count, resulting in an Nmax × 4 tensor, and use masked attention in the
transformer to nullify the impact of padded tokens.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of individuals

105

106

107

108

Nu
m

be
r o

f i
m

ag
es

 (l
og

 sc
al

e)
Distribution of individuals in an image

Fig. 4: The distribution of the number of
individuals per image in the training data,
which reveals a significant imbalance.

Skeleton Generation. The skele-
ton generation stage predicts the
pose of each individual, represented
as a 17-keypoint representation from
the COCO-Pose dataset [25]. We
use YOLOv8 [17] to gather pose
data, treating detections as the
groundtruth. Consequently, we ex-
press the skeletons of individuals in
an image as an N × (17 × 3) ten-
sor. Each keypoint is represented by
a 3-dimensional [x,y,score] vector,
with [x,y] denoting the coordinates
and score the prediction confidence.
We normalize [x,y] by dividing them
by image width and height, respectively, ensuring a value range of [0,1].

Like the layout distribution, we use a denoising diffusion model to learn the
skeleton distribution in an image. A transformer maps noisy skeletons to de-
noised ones, leveraging the same architecture as in the layout generation, with
the input embeddings replacing the noisy layout embeddings by the point-wise
addition of clean layout and noisy skeleton embeddings. We derive the skeleton
embeddings through a two-layer MLP with SiLU activation. The denoising re-
sults are obtained from the output of the last N tokens of the sequence passed
through a head layer.

3D mesh Generation. The 3D mesh generation stage predicts a SMPLX [33],
which is a comprehensive 3D model that encapsulates the body, fully articulated
hands, and expressive face, for each human, providing a refined structure of the
body. This representation is compactly encoded as an 182-dimensional vector.
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Hence, an image’s 3D models can be collectively represented as an N × 182
tensor.

We use a denoising diffusion model to learn the distribution of 3D models of
individuals in an image. The transformer architecture is the same as the layout
and skeleton generation modules, with the input embeddings replacing the last
N tokens with the point-wise addition of clean layout, clean skeleton, and noisy
3D model embeddings. The 3D model embeddings are derived through a two-
layer MLP with SiLU activation. The denoising results are obtained from the
output of the last N tokens passed through a head layer.

3.3 Semantic Embedding Generation

In this stage, an embedding vector is synthesized to represent each individual’s
attributes. To obtain the groundtruth embedding vector, we extract the features
from the facial region of each individual using the visual branch of the CLIP-
ViT-G [8,16,36] model. We directly use the global output from the cls token of
the CLIP model as the representation. As a result, the individual embeddings in
an image can be expressed as an N × 1280 tensor. We apply L2 normalization
on the tensor and multiply the output by

√
1280 to ensure a standard deviation

of around 1.0.
Similar to the generation of layout, skeletons, and 3D meshs, we use a de-

noising diffusion model with a transformer architecture to learn the embedding
distribution. The transformer is similar to that described in layout, skeleton and
3D mesh generation in Sec. 3.2, except that we replace the last N tokens of the
input embeddings with the point-wise addition of clean layout embeddings, clean
skeleton embeddings, clean SMPL embeddings, and noisy semantic embeddings.
We use a two-layer MLP with SiLU activation to map the semantic embeddings
before adding them with other conditions. We obtain the denoising results by
projecting the output of the last N tokens through a head layer.

3.4 Image Generation

The last stage in the generative chain is the image generation. This is mod-
eled using a variant of ControlNet [51] with composable conditions. Specifically,
we consider three conditions: the SMPLs rendered on a black background, the
SMPL-X parameters, and the semantic embeddings. The meshes are rendered
to match the size of the target image and are then processed by ControlNet
through a hint embedding module equipped with stacked convolutional blocks.
This serves to map the conditions to additive feature maps. In scenarios in-
volving multiple individuals, each 3D mesh is visualized and fed separately into
the hint embeddings. The results are then summed before being passed to the
remaining modules of ControlNet. The SMPL-X parameters and semantic em-
beddings are mapped through separate MLP layers to align the dimension with
text embeddings. The mapping results are then pointwisely summed and con-
catenated with text embeddings along the sequence length dimension, which are
subsequently used as the cross-attention context for ControlNet. We randomly
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Methods Quantity Identity Layout Pose Average

SDXL [35] 0.60 0.63 0.61 0.59 0.60
SDXL variant [35] 0.63 0.69 0.70 0.65 0.66
ControlNet w/ SDXL variant [51] 0.78 0.65 0.67 0.66 0.69
Midjourney 0.80 0.69 0.71 0.73 0.73
Ours 0.83 0.75 0.78 0.73 0.77

Table 2: Average human ratings for text-to-image generation models, computed by
averaging scores within categories and then across categories for overall score.

zero-out the mapped semantic embeddings with a probability of 50% to support
image generation both with and without semantic embeddings as the condition.

4 Experiments

4.1 Data Preparation

We gather a comprehensive text-image dataset from publicly available sources
including LAION-5B [43], COYO-700M [3], CC12M [5], and DataComp-1B [10].
To ensure high quality and appropriate content, we meticulously applied quality
and content filters, resulting in a refined collection of 200 million text-image
pairs.

In the next step of data preparation, we utilize the YOLOv8 model [17] to
analyze each image. This model help us determine the number of individuals
present, their respective bounding boxes, and pose skeletons. Additionally, we
employ the OSX model [23] to estimate the SMPL-X parameters [33] for each
individual depicted in the images. The frequency distribution of individuals per
image is illustrated in Fig. 4.

Metric SDXL variant [35] Ours

FID 5.00 5.31

Table 3: FID scores of our chained
generation framework compared to
the end-to-end baseline on the sub-
set of COCO validation dataset
where at least one person is present
in the image.

Upon analyzing the dataset, we identify a
significant skew in the distribution of individ-
uals per image. To counteract this imbalance
and ensure robust model performance across
different numbers of individuals, we adopt a
balanced sampling approach. We categorize
the dataset based on the number of individu-
als in each image. During the training process,
we sample from each category i with a proba-
bility pi ∼ Mτ

i proportional to the category’s
size Mi raised to the power of τ . We empirically set τ = 0.5 across all training
stages.

For the training of the quantity prediction model, we utilized the entire
dataset. In contrast, for the training of generative models of layout, skeletons,
3D meshes, semantic embeddings, and images, we use a subset of the dataset
featuring at least one individual per image.
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4.2 Implementation Details

Each intermediate generation stage (i.e., the generation of quantity, layout, skele-
tons, 3D meshes and semantic embeddings) utilizes an independent transformer
model [47] with approximately 1 billion parameters. The transformer has 24 lay-
ers with a dimension of 2048 and 32 attention heads. We employ the AdamW
optimizer [28] with a learning rate of 1×10−4, a weight decay of 0.1, and a maxi-
mum gradient norm of 4.0 for training the quantity prediction model. The layout,
skeleton, 3D mesh, and semantic embedding generation models are trained with
a learning rate of 1×10−4 and a weight decay of 0.06. We use a diffusion process
with a cosine schedule and v-prediction mode [13, 24]. Each stage undergoes a
training period of 160,000 steps, conducted on 16 A100 GPUs, utilizing a total
batch size of 4096.

Evaluation aspects Quantity Layout Pose Overall
Success rate 0.87 0.82 0.78 0.82

Table 4: Average human ratings for text-to-3D
mesh generation, computed by averaging scores
within categories and then across categories for the
overall score.

For the image generation
phase, we utilize a variant
of SDXL [1, 35] that ex-
cels at portrait generation
as the base model. On this
base model, we train the
ControlNet [51], incorporat-
ing composable conditions in-
cluding SMPL-X parameters,
optional semantic embeddings, and rendered meshes. This training adheres to
the original diffusion parameters of the SDXL model. Here, we set the learning
rate at 1× 10−6 and do not apply weight decay.

4.3 Benchmark

Generation task Layout Skeleton 3D mesh

Separate models 0.0086 0.037 0.135
Multi-task model 0.0132 0.042 0.152

Table 5: Ablation analysis on multi-task v.s. sepa-
rate models for layout, skeleton, and 3D mesh gen-
eration.

We develop a human prompt
benchmark to evaluate the
ability of generative models
to synthesize intricate scenes
while complying with struc-
tural constraints. The bench-
mark, comprising 86 manu-
ally crafted prompts across
categories such as quantity, viewpoint, spatial layout, relationship, action, and
posture, enables a comprehensive assessment of generative models under diverse
conditions. The prompts are concise and clear, facilitating rapid assessment of
the generated results. Using these intricate constraints to evaluate generative
models sheds light on their capabilities and flaws. Tab. 1 illustrates the bench-
mark’s examples.

4.4 Chains-to-Image Generation

In this section, we evaluate the quality of the generated images and their align-
ment with corresponding query prompts. To measure the image quality, we em-
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ploy the Fréchet Inception Distance (FID) metric, comparing the generated im-
ages to real images from a subset of the COCO dataset [25]. This subset includes
images with at least one person present in their annotations. The FID scores are
presented in Tab. 3. Our approach achieves a comparable FID score with the
end-to-end baseline.

To assess the alignment between the generated images and the query prompts,
we involve human evaluators, with three annotators assigned to each query,
and their responses are averaged. Leveraging the prompt benchmark detailed in
Sec. 4.3, we conduct a comparative analysis between the end-to-end baseline and
our chained generation approach regarding adherence to structural constraints.
The voting results, both in terms of individual aspects and overall average, are
outlined in Tab. 2. For the performance of baselines on our Chains benchmark,
we feed the text prompts directly to SDXL, SDXL variant and Midjourney, as for
the ContrloNet, we utilize both the text prompt and Chains-generated human
keypoints as the conditions for a fair comparison.

The experiment results highlight the robust spatial structure understand-
ing and representation ability of Chians, in all four evaluation splits. Chains
outperform the base method ControlNet with the SDXL variant by an average
8% enhancement, and especially 10% and 11% gain on the Identity and Lay-
out. Compared with the recent sota Midjourney, Chains also has better spatial
ability and an average 4% higher performance. Notably, our chained generation
approach surpasses the end-to-end baseline in terms of adhering to structural
constraints.

4.5 Text-to-Mesh Generation

Fig. 6: Failure cases of text-to-mesh generation. The
mesh generation model fails to depict uncommon
poses and counterfactual human body proportions,
such as cartoon-like figures.

To better understand the
complete text-to-image chain,
we initially explore the tran-
sition from text to 3D mesh
generation. These SMPLs of-
fer crucial insights into struc-
tural compliance, indepen-
dent of image generation.
This separation prevents pre-
mature engagement with com-
plex details.
FID and Convergence: We
establish a validation dataset
containing 10,000 unique text-
image pairs, ensuring no over-
lap with the training data.
For performance evaluation,
we compute the Fréchet In-
ception Distance (FID), comparing structures generated from these texts with
the ground truth derived from the validation images. Throughout the training,
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Fig. 7: More generation comparisons between the state-of-the-art methods. For in-
stance, in the first column, only our Chains generates the accurate number, and in
the fourth column, the rest of the models do not accurately focus on the layout and
pose, with the detailed analysis presented in section.4.6.

we monitor FID, plotting convergence curves for layout, skeleton, 3D mesh, and
embedding generation stages in Fig. 4, demonstrating the models’ promising
statistical performance and training stability.

Compliance with constraints: To assess how well the generated struc-
tures adhere to the specified constraints, we rely on human evaluators, as this
aspect is challenging to assess via automated algorithms or models. For the
benchmark detailed in Sec. 4.3, we assign three annotators to each query. They
judge whether the generated structures conform to the prompts, with their re-
sponses averaged to obtain a final score. Results for each constraint category, as
well as aggregated voting outcomes, are presented in Tab. 4. Overall, the gen-
erated structures demonstrated a high degree of compliance with the prompts,
especially for constraints related to quantity.
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4.6 Visual Comparison with State-of-the-Arts

We provide an in-depth visual comparison in Fig. 7, where each column show-
cases images generated by baseline methods and our Chains, responding to
prompts that focus on various elements of image structure. As demonstrated
in the first column, only Chains accurately produces an image featuring five
children, showcasing its superior capability in determining the correct number
of human figures. In the second column, the initial three methods do not success-
fully create images of grandparent pairs, and Midjourney produces only a single
grandchild. Conversely, Chains precisely generates an image with the correct
human identities as per the prompt, ensuring the number of figures is accurate.
Notably, in the fourth column, only Chains effectively synthesizes a group of
students sitting around a round table, as opposed to incorrectly placing them
on one or two sides of a rectangular table, highlighting Chains’ adeptness at un-
derstanding spatial relationships. In the final column, Chains alone accurately
generates two people positioned back-to-back, whereas all other baseline meth-
ods fail to replicate this scenario.

4.7 Ablation Analysis

In this section, we conduct a comprehensive analysis of our chained generation
framework, exploring various aspects and configurations.

Group photo of ten 
people, pencil 

drawing

Fig. 8: A failure case of image generation. The image gener-
ation may exhibit misalignment with the SMPL, especially
when the number of individuals is large.

Multi-tasking: We
explore the perfor-
mance of merging the
layout, skeleton, and
SMPL generation tasks
into a single model.
In this setup, the
three tasks are dis-
tributed across differ-
ent GPU nodes and
jointly trained with
a shared transformer
backbone. Results are
detailed in Tab. 5 and compared to the single-task baseline. While we observe a
speedup, there is also a reduction in performance. We acknowledge the trade-off
and leave the exploration of multi-tasking for efficiency improvements in future
endeavors.
Failure cases of SMPL generation: Fig. 6 illustrates some of the failure cases
related to SMPL generation. These issues are primarily attributed to misalign-
ment, possibly stemming from inaccuracies in the estimation of the 3D mesh
model when generating groundtruth meshes. SMPL-X may encounter challenges
in representing meshes for uncommon poses (e.g., backflips), even when skele-
tons are accurately generated. Counterfactual human body proportions, such as
cartoon-like figures with oversized heads and slender limbs, also pose challenges.
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Failure cases of image generation: Fig. 8 showcases an instance where image
generation encounters difficulties. In scenarios involving numerous individuals,
the generated images may exhibit misalignment with the SMPLs, sometimes
introducing additional persons even when the conditioned SMPLs do not contain
them. These challenges highlight room for potential future improvements.

5 Conclusion and Discussion

This paper introduces a novel generation framework for high-quality multi-
human scene generation with multi-modal condition chains, breaking down the
complex task of generation with high-fidelity human conditions into a condition
evolution sequence of several simple manageable stages. Our framework, demon-
strated through comprehensive benchmarking, outperforms traditional end-to-
end text-to-image methods and layout-to-image methods with better human
quality and more precise spatial layout distributions. The ability to manipulate
intermediate stages further enhances the human interoperable and instruction
usage of Chains.

Our approach also faces limitations, such as misalignments and inaccuracies
in mesh and image generation, particularly in challenging poses or crowd scenes
with even large numbers of humans and objects. What is more, the implemen-
tation of the chain condition approach for objects remains unexplored. Future
work will focus on addressing these limitations, and also adapting our framework
to a wider range of domains.
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Fig. 1: Visualization for Chains, we meticulously ablate each component within
Chains through generated cases, including layout, skeleton, 3D mesh, and se-
mantic embeddings. Additionally, we compare our results with the current state-of-
the-art layout to image method, GLIGEN [21] and InteractDiffusion [12], where the
sota models use the same layout condition as our Chains.

A Closer Visual Comparisons

In addition to the comparative analysis presented in our submission, we have
included further comparisons with state-of-the-art methods such as GLIGEN [21]
and InteractDiffusion [12] in Fig. 1.

B Ablation for Chains Components.

In Fig. 1, we conduct the visual comparison of the component-to-image genera-
tion using Chains. It is evident that the layout condition provides customized
supervision of multi-human distribution and locations, which is shared by re-
cent layout-to-image methods. Additionally, the inclusion of skeleton and 3D
mesh components introduces more fine-grained supervision, enhancing the gen-
eration of high-quality human details such as clear faces, hands, and fingers. This
comparison indicates that the chain-of-thought generation method outperforms
traditional text-to-image and layout-to-image methods in producing high-quality
multi-human scenes.
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C Model Limitations

C.1 Conditions out of control.

As illustrated in Tab. 2 and Tab. 4 of our paper, our model demonstrates ro-
bust structural control in the majority of cases. The rare occasional instances
of suboptimal control, as observed in Fig. 6, can be attributed to the inaccu-
racies in crowd detection and counting. The discrepancies in Fig. 7 stem from
the out-of-distribution of the SMPL-X normal shapes. We believe that adopting
more accurate representations could mitigate these issues and further improve
the control accuracy. Thanks.

C.2 Discussion on error accumulation.

In the chained generation process, errors are typically stage-specific and orthog-
onal, meaning that issues like quantity and layout are confined to individual
stages and do not propagate through subsequent stages. Moreover, Chains is
inherently robust, for example, it is capable of generating accurate meshes from
imperfect skeletons, effectively correcting initial deviations. As demonstrated in
Fig. 2, the experiments confirm that the sequential error accumulation has a
limited impact on our model’s performance.

Top 
view of 
a man

Three kids 
swimming in 

the pool

3D MeshSkeleton Generated Images

Fig. 2: This figure shows that 3D mesh prediction is error-tolerant to skeleton condition
prediction.

C.3 Limited control over hand posture and facial expression.

We found that, the 3D mesh sometimes provides limited control over hand and
face, it is mainly due to the inaccuracies of OSX algorithm in estimating 3D
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meshes for these delicate areas. These inaccuracies can lead to misalignments in
the mesh-to-image generation model. Using a more advanced model like SMPLer-
X could improve control and quality.
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