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In this supplementary material, we first present additional qualitative exam-
ples on various tasks in Sec. 1, followed by a proof of convergence of the fast
reciprocal matching algorithm and an in-depth study of the related performance
gains in Sec. 2. We finally show an ablative study concerning the impact of
coarse-to-fine matching in Sec. 3.

Fig. 1: Qualitative MVS results on the DTU dataset [1] simply obtained by triangu-
lating the dense matches from MASt3R.

1 Additional Qualitative Results

We provide here additional qualitative results on the DTU [1], InLoc [7], Aachen
Day-Night datasets [9] and the Map-free benchmark [2].
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MVS on DTU. We show in Fig. 1 the output point clouds after post-processing,
shaded with approximate normals from the tangent planes based on the 50 near-
est neighbors. We wish to emphasize again that the point clouds are raw values
obtained via triangulation of the coarse-to-fine matches of MASt3R. The match-
ing was performed in an one-versus-all strategy, meaning that we did not leverage
the epipolar constraints coming from the GT cameras, which is in stark contrast
with all existing approaches for MVS. MASt3R is particularly precise and ro-
bust, giving sharp and dense details. The reconstructions are complete even in
low-contrast homogeneous regions like the surfaces of the vegetables or the sides
of the power supply. The matching is also robust to varied textures or materials,
and also to violations of the Lambertian assumption, i.e. specularities on the
vegetables, plastic surfaces or the white sculpture.

Fig. 2: Qualitative examples of matching on Map-free localization benchmark.

Qualitative matching results. We show a few examples of matches Fig. 2 for the
Map-free benchmark [2], in Fig. 3 for the InLoc [7] dataset and in Fig. 4 for
the Aachen Day-Night dataset [9]. The proposed MASt3R approach is robust to
extreme viewpoint changes, and still provides approximately correct correspon-
dences in such cases (right-hand side pairs of Map-free in Fig. 2), even for views
facing each other (coffee tables or corridor pairs of InLoc 3). This is reminis-
cent of the capabilities of DUSt3R that provided an unprecedented robustness
to such cases. Similarly, our approach handles large scale differences (e.g . on
Map-free in Fig. 2) repetitive and ambiguous patterns, as well as environmental
and day/night illuminations changes (Fig. 4). Interestingly, the accuracy of cor-
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Fig. 3: Qualitative examples of matching on the InLoc localization benchmark.

respondences output by MASt3R gracefully degrades when the viewpoint base-
line increases. Even in extreme cases where correspondences get very coarsely
estimated, approximately correct relative camera poses can still be recovered.
Thanks to these capabilities, MASt3R reach state-of-the-art performance or close
to it on several benchmarks in a zero-shot setting. We hope this work will foster
research in the direction of pointmap regression for a multitude of vision tasks,
where robustness and accuracy are critical.

2 Fast Reciprocal Matching

2.1 Theoretical study

We detail here the theoretical proofs of convergence of the Fast Reciprocal
Matching algorithm presented in Sec.3.3 of the main paper. Contrary to the
traditional bipartite graph matching formulation [3], where the complete graph
is used for the matching, we wish to decrease the computational complexity by
calculating only a smaller portion of it. As explained in equation (14) of the
main paper, considering the two predicted sets of features D1, D2 ∈ RH×W×d,
partial reciprocal matching boils down to finding a subset of the reciprocal cor-
respondences, i.e. mutual Nearest Neighbors (NN):



4 Leroy et al.

Fig. 4: Qualitative examples of matching on the Aachen Day-Night localization benchmark.
Pairs from the day subset are on the left column, and pairs from the night subset are
on the right column.
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We remind here the behavior of the algorithm: an initial set of k pixels of I1,
U0 = {U0

n}kn=1 with k ≪ WH, is mapped to their NN in I2, yielding V 1, that
are then mapped to their nearest neighbors back to I1:

U t 7−→ [NN2(D
1
u)]u∈Ut ≡ V t 7−→ [NN1(D

2
v)]v∈V t ≡ U t+1 (3)

After this back-and-forth mapping, the reciprocal matches (i.e. those which form
a cycle) are recovered and removed from U t+1. The remaining "active" ones are
mapped back to I2 and reciprocity is checked again. We iterate this process for a
few iterations. After enough iterations we discard any active sample remaining.

It is important to note that the NN algorithm we use is deterministic and
consistently returns the same index in the case where multiple descriptors in the
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other image share the same minimal distance (or maximal similarity), although
this is very unlikely since descriptors are real-valued.

Proof of Convergence. By design, Fast Reciprocal Matching (FRM) operates on
the directed bipartite graph G of nearest neighbors between I1 and I2. G contains
oriented edges E . All nodes, i.e. pixels, belong to G since we add an edge for each
pixel’s nearest neighbor, but note that all pixels cannot reach all other pixels.
For example, two reciprocal pixels in I1 and I2 are only connected to each other
and to no other pixels. This means G is composed of possibly multiple disjoint
sub-graphs Gi, 1 ≤ i ≤ HW with directed edges E i, as depicted in Fig. 5.

Proposition 1. There can be only one cycle in each sub-graph Gi.

Proof. This is a rather trivial fact, since we build G s.t. only one edge exits each
node. If one were to follow the path of a sub-graph Gi, once a node that belongs
to a cycle is reached, no edge can exit the cycle, for the only exiting edge is
already part of the cycle. A second cycle (or more) thus cannot exist in Gi.

Lemma 1. Each of the subgraph Gi is either a single cycle or a special arbores-
cence, i.e. a directed graph where, from any node there exist a single path towards
a root cycle.

Proof. The former follows naturally from the previous explanation: since there
can only be a single cycle in Gi, it can naturally be a cycle. We now demonstrate
the latter, i.e. when Gi is not trivially a cycle. Let us march on Gi starting
from an arbitrary node a, to which is attached a descriptor D1

a. The only edge
exiting this node goes to its nearest neighbor NN2(D

1
a) = b. Now at node b,

we do the same and follow the only edge exiting back to I1: NN1(D
2
b ) = c.

Alternating between I1 and I2, we get NN2(D
1
c ) = d, NN1(D

2
d) = e and so

forth. We denote s(u, v) = D1⊤
u D2

v the similarity score of an edge between two
nodes u and v, (u, v) ∈ E i. Because edges are nearest neighbors, we note that
s(a, b) ≤ s(c, b). This trivially stems from the fact that if s(c, b) < s(a, b) then
the nearest neighbor of b would no longer be c but at least a. Expanding this
property to the path along Gi it follows that:

s(a, b) ≤ s(c, b) ≤ s(c, d) ≤ s(e, d)... (4)

Meaning that the similarity score monotonously increases as we walk along
the graph. There is a finite number of nodes in Gi so this sequence reaches the
upper-bound similarity value s(u, v). Because s(u, v) is the maximal similarity
in Gi, this ensures that NN2(D

1
u) = v and NN1(D

2
v) = u forming a cycle of at

least two nodes. This means there is always a cycle in Gi, between the maximal
similarity pair. Following Proposition 1, we can conclude that there is no other
cycle in Gi and that each starting point is thus guaranteed to lead towards the
root via a single path, forming an arborescence with a cycle at its root.

Note that the root cycle can be of more than two nodes if more than one
greatest similarity of Eq. (4) are perfectly equal and the NN algorithm creates
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a greater cycle. Because G is a bipartite graph, Gi is also bipartite, meaning the
end-cycle is composed of an even number of nodes. In practice however, we work
with floating-point descriptors of dimension 24. For greater cycles to exist, e.g .
cycles of 4 nodes a, b, c, d, the similarities must satisfy increasingly prohibitive
constraints, e.g . s(a, b) = s(c, b) = s(c, d) = s(a, d). This is extremely unlikely
with real-valued distance and we consider it is negligible.

Corollary 1. Regardless of the starting point in Gi, the FRM algorithm always
converges towards reciprocal matches.

This follows naturally from the above: we did not make any assumption about
the starting point of this walk nor about the sub-graph it belongs to. For any
starting point in the graph, i.e. for all initial pixels U , the FRM algorithm will
by design follow the sub-graph of nearest neighbors that will ultimately lead to
the root cycle, which is by definition a reciprocal match.

We illustrate this behavior in Fig. 5. In the upper part (pink) the starting
point u0 directly lies in a cycle containing two nodes u0 and v0 and the algorithm
stops after the first cycle verification at step t = 1. The bottom part shows a
more complex case of convergence basin, where several starting points u1, u2,
u3, u4 lead to resp. two nodes v1 and v2 in I2. Following the path to the root
of the arborescence, and updating U and V along the way, the algorithm finds
a cycle between u1 and v1 at timestep t = 1. From 5 initial pixel positions, the
algorithm returned a unique reciprocal correspondence.

Note that it is possible to artificially build a graph that maximizes the number
of NN queries thus impacting the computational efficiency, but these are very
unlikely in practice as seen in Figure 2 (center) of the main paper. The number
of active samples, e.g . samples that did not reach a cycle, quickly drops to 0
after only 6 iterations, leading to a significant speed-up in computation (right).

Proposition 2. Starting from k ≪ HW samples, the FRM algorithm recovers a
subset Mk of all possible reciprocal correspondences of cardinality |Mk| = j ≤ k.

Proof. This fact comes trivially from the k sparse initial samples U . As explained
before, G is composed of at most HW sub-graphs Gi. Because we initialize the
algorithm with k ≪ HW seeds, these can at most span k sub-graphs each
leading to a single reciprocal match. Due to the potential presence of convergence
basins, as seen in Fig. 5, samples can merge along the paths to their root cycles,
decreasing the final number of reciprocals and explaining the inequality j ≤ k.

2.2 Performance improvement with fast matching

As observed in Figure 2 of the main paper, FRM significantly improves the
performance. In the minimal example we provide in Fig. 5, it is clearly visible
that the FRM provides a sampling biased towards finding reciprocal matches
with large basins (bottom), since a greater number of initial samples can fall onto
them compared to small basins (top). Note that the size of the basin is inversely
proportional to the maximal density of reciprocal matches. Interestingly with
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Fig. 5: Illustration of the iterative FRM algorithm. Starting from 5 pixels in I1

at t = 0, the FRM connects them to their Nearest Neighbors (NN) in I2, and maps
them back to their NN in I1. If they go back to their starting point (top pink), a
cycle (reciprocal match) is detected and returned. Otherwise (bottom) the algorithm
continues iterating until a cycle is detected for all starting samples, or until the maximal
number of iterations is reached. We show in orange the starting points of a convergence
basin, i.e. nodes of a sub-graph for which the algorithm will converge towards the same
cycle. For clarity, all edges of G were not drawn.

the FRM, this results in a more homogeneous distribution (i.e. spatial coverage)
of reciprocal matches than the full matching, as depicted in Fig. 6. As a direct
consequence of a more homogeneous spatial coverage, RANSAC is able to better
estimate epipolar lines than when lots of points are packed together in a small
image region, which in turn provides better and more stable pose estimates.

In order to demonstrate the effect of basin-biased sampling, we propose to
compute the full correspondence set M (Eq. (1)) and to subsample it in two
ways: first, we naively subsample it randomly to reach the same number of
reciprocals as the FRM. Second, we compute the size of each basin (as shown
in Fig. 7) and we bias the subsampling using the sizes. We report the results
of this experiment in Fig. 8. While random subsampling results in catastrophic
performance drops, basin-biased sampling actually increases the performance
compared to using the full graph (rightmost datapoint). As expected, the FRM
algorithm provides a performance that closely follows biased subsampling, yet by
only a fraction of the compute compared to basin-biased sampling which requires
to compute all reciprocal matches in order to measure basin sizes. Importantly,
these observations hold for both reprojection error and pose accuracy, regardless
of the variant of RANSAC used to estimate relative poses.
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Match density in first image I1 Matches in first image I1 Matches in second image I2 Match density in second image I2
Dense reciprocal matching, pose error = (0.2 , 578 cm)

Match density in first image I1 Matches in first image I1 Matches in second image I2 Match density in second image I2
Fast Reciprocal matching with k = 3K, pose error = (0.1 , 25 cm)

Fig. 6: Illustration of the difference in matching density when using dense recipro-
cal matching (baseline) and fast reciprocal matching with k = 3000. Fast reciprocal
matching samples correspondences with a bias for large convergence basins, resulting
in a more uniform coverage of the images. Coverage can be measured in terms of the
mean and standard deviation σ of the point matches in each density map, plotted as
colored ellipses (red, green and blue correspond respectively to 1σ, 1.5σ and 2σ).

Fig. 7: Illustration of convergence basins for one of the image in Fig. 6. Each basin is
filled with the same (random) color. A convergence basin is an area for which any of
its point will converge to the same correspondence when applying the fast reciprocal
matching algorithm.
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Fig. 8: Comparison of the performance on the Map-free benchmark (validation set)
for different subsampling approaches: ‘naive’ denotes the random uniform subsampling
of the original full set of reciprocal matches; ‘fast’ denotes the proposed fast recip-
rocal matching; and ‘basin’ denotes random subsampling weighted by the size of the
convergence basin. The ‘fast’ and ‘basin’ strategies perform similarly whereas naive
subsampling leads to catastrophic results.

Table 1: Coarse matching compared to Coarse-to-Fine for the tasks of visual localiza-
tion on Aachen Day-Night (left) and MVS reconstruction on the DTU dataset (right).

Methods Coarse-to-Fine Day Night

MASt3R top1 × 74.9/90.3/98.5 55.5/82.2/95.8
MASt3R top1 ✓ 79.6/93.5/98.7 70.2/88.0/97.4

MASt3R top20 × 80.8/93.8/99.5 74.3/92.1/100
MASt3R top20 ✓ 83.4/95.3/99.4 76.4/91.6/100

Methods Acc.↓ Comp.↓ Overall↓

DUSt3R [8] 2.677 0.805 1.741
MASt3R Coarse 0.652 0.592 0.622
MASt3R 0.403 0.344 0.374

3 Coarse-to-Fine

In this section, we showcase the important benefits of the coarse-to-fine strategy.
We compare it to coarse-only matching, that simply computes correspondences
on input images down-scaled to the resolution of the network.

Visual localization on Aachen Day-Night [9]. For this task, the input images
are of resolution 1600 × 1200 and 1024 × 768, in both landscape and portrait
are downscaled to 512×384/384×512. We report the percentage of successfully
localized images within three thresholds: (0.25m, 2°), (0.5m, 5°) and (5m, 10°)
in Tab. 1 (left). We observe significant performance drops when using coarse
matching only, by up to 15% in top1 on the Night split.

MVS. The input images of the DTU dataset [1] are of resolution 1200 × 1600
downscaled to 384×512. As in the main paper, we report here the accuracy, com-
pleteness and Chamfer distance of triangulated matches obtained with MASt3R,
in the coarse-only and coarse-to-fine settings in Tab. 1 (right). While coarse
matching still outperforms the direct regression of DUSt3R, we see a clear drop
in reconstruction quality in all metrics, nearly doubling the reconstruction errors.
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Table 2: Absolute camera pose on 7Scenes [6] and Cambridge-Landmarks [4] dataset.
We report the median translation and rotation errors cm/◦.

7Scenes (Indoor) Cambridge (Outdoor)
Method Chess Fire Heads Office Pumpkin Kitchen Stairs S. Facade O. Hospital K. College St.Mary’s G. Court

DUSt3R 3/0.97 3/0.95 2/1.37 3/1.01 4/1.14 4/1.34 11/2.84 6/0.26 17/0.33 11/0.20 7/0.24 38/0.16
MASt3R 2/0.81 2/0.88 1/0.88 3/0.95 4/1.07 4/1.29 3/0.95 4/0.15 17/0.29 8/0.14 5/0.16 13/0.07

4 Additional Visual localization experiments

In table 2, we provide additional visual localization results on 7Scenes [6] and
Cambridge-Landmarks [4]. For these experiments, we use the same parameters
as in DUSt3R: we use DUSt3R as a 2D-2D pixel matcher, we leverage the known
query intrinsics. We keep the top 20 retrieved images for Cambridge-Landmarks
and top 1 for 7Scenes and do not use Coarse-to-Fine for neither method.

5 Limitations

Even though MASt3R yields state-of-the-art performance on multiple bench-
marks, it is of course subject to several limitations that we review below.

Reliability of metric depth estimates. To the best of our knowledge, MASt3R
is the first method that performs metric depth prediction in binocular settings
(i.e. existing metric depth estimation methods are monocular). In the binoc-
ular setting, depth estimation is arguably a much less ambiguous task, yet it
fundamentally remains data-driven and relies on priors, which provides little
guarantee, similar to any monocular metric-depth methods.

Robustness to changes. MASt3R is moderately robust to illumination changes,
seasonal changes, dynamic/transient objects and/or long-term changes. It can
typically accommodate moderate changes (say day/night), but may dramatically
fail when confronted with more significant changes (such as summer/winter as
in Fig. 9). The reason is that, MASt3R being a purely data-driven approach, it
can only handle similar types of changes as to what was seen during training.
Logically, the fact that we trained MASt3R with mostly static scenes that are
perfectly 3D consistent makes the model learning to reject pairs with small
changes, that would look otherwise extremely similar to human observers (e.g .
the temple pairs in Fig. 9, where the only changes are the illumination and the
presence/absence of scaffholds). Among all datasets used for training, perhaps
MegaDepth [5] and Niantic’s Map-free dataset [2] are the only ones comprising
any significant long-term changes. We hypothesize that MASt3R could become
significantly more robust if trained with more of such adequate data.
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Fig. 9: Example of failure cases due to difficult seasonal changes (top row, cameras are
incorrectly estimated) or scene changes (presence of scaffolds in the bottom row).

Problems with coarse-to-fine matching. We observe consistent errors during the
fine matching in the presence of repetitive patterns. While fine matching signifi-
cantly improves over coarse matching in term of precision, it has the downside of
losing the global context. Thus, in the presence of repetitive patterns, matching
becomes an ill-posed problem in the absence of further clue. An example of such
failure is illustrated in Fig. 10.

Scalability. DUSt3R [8] introduced a procedure for globally aligning all pointmaps
in the same world coordinate system. Even though this paper only focuses on
pairwise matching, the same procedure could be applied, since MASt3R also out-
puts pointmaps and confidence maps. However, and much like DUSt3R, MASt3R
scales poorly to large image collections due to its pairwise nature, making the
cost quadratic in the total number of images unless some pruning is used (e.g .
image retrieval).

6 Detailed experimental settings

In our experiments, we set the confidence loss weight α = 0.2 as in [8], the
matching loss weight β = 1, local feature dimension d = 24 and the temperature
in the InfoNCE loss to τ = 0.07. We report the detailed hyper-parameter settings
we use for training MASt3R in Table 3.
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Fig. 10: Example of failure cases due to coarse-to-fine matching losing context when
matching crops of the two images.

Table 3: Detailed hyper-parameters for the training

Hyper-parameters fine-tuning

Optimizer AdamW
Base learning rate 1e-4
Weight decay 0.05
Adam β (0.9, 0.95)
Pairs per Epoch 650k
Batch size 64
Epochs 35
Warmup epochs 7
Learning rate scheduler Cosine decay

Input resolutions
512×384, 512×336
512×288, 512×256
512×160

Image Augmentations Random crop, color jitter

Initialization DUSt3R [8]
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