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Abstract. Recent studies on motion estimation have advocated an opti-
mized motion representation that is globally consistent across the entire
video, preferably for every pixel. This is challenging as a uniform repre-
sentation may not account for the complex and diverse motion and ap-
pearance of natural videos. We address this problem and propose a new
test-time optimization method, named DecoMotion, for estimating per-
pixel and long-range motion. DecoMotion explicitly decomposes video
content into static scenes and dynamic objects, either of which uses a
quasi-3D canonical volume to represent. DecoMotion separately coordi-
nates the transformations between local and canonical spaces, facilitating
an affine transformation for the static scene that corresponds to camera
motion. For the dynamic volume, DecoMotion leverages discriminative
and temporally consistent features to rectify the non-rigid transforma-
tion. The two volumes are finally fused to fully represent motion and ap-
pearance. This divide-and-conquer strategy leads to more robust tracking
through occlusions and deformations and meanwhile obtains decomposed
appearances. We conduct evaluations on the TAP-Vid benchmark. The
results demonstrate our method boosts the point-tracking accuracy by a
large margin and performs on par with some state-of-the-art dedicated
point-tracking solutions.
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1 Introduction

Video content comprises two primary components: dynamic and static scenes. In
dynamic scenes (also denoted as dynamic objects), objects exhibit movement or
change over time, and the motion between video frames results from a combina-
tion of camera movement and the object’s inherent motion. Conversely, in static
scenes, objects remain unchanged, and inter-frame motion is solely influenced
by the camera’s rigid movement. Compared to static scenes, dynamic scenes are
more intricate in terms of both motion and appearance.

However, the advanced studies for establishing point correspondences in the
last few years have always dealt with different motions in two scenes with a uni-
fied framework. For example, feature matching methods [17,37,40] try to design
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learning methods for the dense features. Despite achieving good performance
on tasks involving dynamic object tracking, these methods struggle to model
consistent motion in static scenes. Dense optical flow estimation methods regard
pixel correspondences as a regression problem, and usually train a convolutional
neural network on a rendered video dataset [11], which are further improved by
constructing a pyramid cost volume [32], iterative inference [33], and multi-frame
prediction [14, 30]. However, these methods still show unsatisfactory robustness
in real-world videos, especially on dynamic objects.

In a recent study, OmniMotion [36] proposes a novel test-time optimization
method, which utilizes reliable correspondences and RGB frames as supervision
to learn a globally consistent neural radiance field [26] with learned transforma-
tion. The representation stores entire color and quasi-3D geometry information
in canonical space, along with transformation can establish long-range pixel tra-
jectories even facing occlusions. While promising, the method is optimized with
a unified neural field and transformation, which results in sub-optimal perfor-
mance of estimating the highly non-rigid motion of moving objects.

In this work, intending to learn accurate point correspondences, we propose
a decoupled representation that divides static scenes and dynamic objects in
terms of motion and appearance. Leveraging the significant difference between
them, we explicitly build individual 3D neural radiance fields for representa-
tion, and we carefully design the transformation and representation functions
for each scene. More specifically, for the dynamic objects, taking into account
the complex inter-frame motion and dramatic appearance changes, we utilize
more non-linear layers to approximate the non-rigid motion. Besides, we addi-
tionally encode the features in the field for better representation, along with
a feature rendering constraint to alleviate the problem of imprecise correspon-
dences on dynamic objects. For the static scenes, we approach the rigid-motion
by a simpler network with affine transformation and model the confidence of
whether the 3D points are changing or moving. With this confidence, we further
fuse two neural radiance fields and transformations to obtain the final appear-
ance and motion representations. Such a design enables DecoMotion to establish
the trajectory of any pixel within the whole video more accurately, especially on
dynamic objects. Additionally, the observed appearance decomposition enables
its application to video tasks like video inpainting, and object removal.

In summary, the main contribution of this work lies in: (i) We propose an op-
timized 3D video representation that decomposes video into dynamic objects and
static scenes for better tracking any pixel; (ii) For dynamic objects, we propose
to encode and render discriminative and temporal consistent features to rectify
the non-rigid transformation; (iii) We demonstrate our method quantitatively on
the TAP-Vid benchmark [9]. Our method significantly enhances point-tracking
accuracy and shows competitive performance.
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2 Related work

Optimization-based motion estimation. In the early days, motion estima-
tion results are mostly obtained by optimizing the pairwise non-parametric con-
straint equations [1,5,15], which are improved by optimizing motion globally over
an entire video. Particle video [29] generates a collection of semi-dense long-range
trajectories based on initial optical flows, while ParticleSfM [43] optimizes long-
range rigid-motion derived from pairwise optical flows within a Structure-from-
Motion (SfM) framework. By optimizing a globally consistent canonical volume
and coordinate transformation with reliable optical flows, OmniMotion [36] tries
to deal with the non-rigid motion of dynamic objects. However, the results ob-
tained by this method are not yet satisfactory.
Matching-based motion estimation. By matching between video frames,
there are two dominant approaches: feature matching [17,19,22,34,37] and dense
optical flow [11,16,32,33,39]. In feature matching, for example, by designing the
pretext tasks like frame reconstruction [18,34], cycle-consistent tracking [17,37],
and contrastive learning [40], dense representations are learned for matching in a
self-supervised manner. On the other hand, optical flow estimators regard it as a
regression problem, and employ the cost volumes to find pixel matching. FlowNet
[11] first leverages a rendered video dataset to train a regression model, which
further encourages the following methods to improve it by building pyramid cost
volume [32], iterative inference [33], and multi-frame prediction [3, 14,30,44].
Dynamic neural representation. Our method shares similar spirits with re-
cent studies about dynamic neural representation using coordinate-based neural
networks [23, 24, 28]. For instance, Nerfies [28] augments NeRF [26] by optimiz-
ing a time-dependent continuous volumetric deformation field that warps each
observed point into a canonical 5D NeRF. NSFF [23] proposes to represent a
dynamic scene by combining static NeRF with scene flow-based dynamic NeRF,
and is further improved by adopting a volumetric image-based rendering frame-
work [24]. However, the studies in this direction are mostly designed for problems
such as space-time novel view synthesis, while our method aims to establish long-
range accurate motion trajectories.

3 Method

This work presents a decoupled motion representation, we name it as DecoMo-
tion (Decomposing Motion). As follows, we will first revisit the OmniMotion [36],
and then further introduce the proposed decoupled representation. The specific
optimization process will also be presented in the next sections.

3.1 Representation in OmniMotion

OminiMotion [36] proposes a quasi-3D global motion representation, i.e., a data
structure that can encode not only the appearance but also the inter-frame
motion of all points in the scene. Such a representation can provide accurate
and consistent motion trajectories even when the query pixels are occluded.
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Canonical 3D volume. OmniMotion represents the scenes with a canonical
3D volume G. Following NeRF [26] , OmniMotion defines a coordinate-based
network Fθ that maps any 3D point u ∈ G to the corresponding color c and
density value σ. The density indicates the quasi-3D scene geometry of the video.

Transformation. Meanwhile, OmniMotion defines a continuous invertible trans-
formation Ti that maps the local 3D points xi in the local volume Li to the
canonical space: u = Ti(xi). The u is a time-independent 3D coordinate and can
be considered as a globally consistent index of a particular point in the scene.
By combining these invertible mappings, a 3D point can be mapped from one
local volume frame Li to another local volume Lj , i.e:

xj = T −1
j ◦ Ti (xi) . (1)

Motion rendering. Given a global representation G of the video and a transfor-
mation T , OminiMotion predicts the motion by volume rendering. Specifically,
for the query pixel pi, a set of local 3D points {xk

i }Kk=1 is sampled along the ray
by a fixed, orthographic camera [36]. These points are further mapped to the
local volume Lj using the invertible projections Ti and Tj . These mapped 3D
points {xk

j }Kk=1 are finally aggregated with alpha compositing:

x̂j =

K∑
k=1

Tkα(σk)x
k
j , where Tk =

k−1∏
l=1

(1− α(σl)) . (2)

The α value for k-th sample as α(σk) = 1−exp (−σk). The density and color
are queryed as: (σk, ck) = Fθ(Ti(xk

i )), we omit i when there is no ambiguity. To
get the final motion estimation result p̂j , x̂j is directly projected back to the 2D
image plane. In the same way, the image space color Ĉi for pi can be obtained
by compositing ck. The representation uses reliable correspondences as well as
the original RGB frames as labels for optimization. Given any novel coordinate
in the frame, the model can render consistent full-length motion in the video.

3.2 Decoupled representation

As analyzed above, dynamic objects and static scenes are different in terms of
movement and appearance. Therefore, we explicitly decouple the video into two
parts, and optimize representations for static scenes and dynamic objects sepa-
rately. The final representation is obtained by volumetric fusion. The overview
of our method is shown in Figure 1.

3D volume of static scenes. In contrast to a single global 3D volume, we
maintain canonical volume Gst, Gdy for static scenes and dynamic objects re-
spectively. For static scenes, Gst refers to the design of [36], i.e., accessing the
color cst and the density σst. At the same time, Gst also stores the confidence βst
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Fig. 1: Overview of the proposed decoupled representation. We explicitly define two
separate 3D canonical volumes Gdy and Gst to respectively characterize dynamic ob-
jects and static scenes in videos. In each representation, in addition to color and density,
the Gdy encodes the feature fdy to better represent dynamic objects, and feature ren-
dering loss is further proposed to rectify the non-rigid transformation. The Gst stores
the βst determining the confidence of being a static point. In each canonical volume,
we carefully design transformation functions T dy (solid line) and T st (dash line) to
map each local 3D point xk

i along the ray of the point pi to uk
j , v

k
j in another local

3D volume Lj . In order to render the 2D correspondence p̂j for pi, we get the canon-
ical volume Gcb of final representation by volume fusion with βst. Set of 3D points
{uk

j }Kk=1, {vkj }Kk=1 mapped from {xk
i }Kk=1 are aggregated by alpha compositing in the

Gcb (see Eq.(5)), and are projected to the image plane.

of whether each 3D point in the canonical volume is a static point or not through
network F st

θ . The pixel color Ĉst
i , motion mask B̂st

i , and 2D correspondence p̂st
j

for pi can be obtained by volume rendering similar to Eq.(2).

3D volume of dynamic objects. For dynamic objects, there are often ap-
pearance changes and deformations in video. Simple color features can no longer
guarantee temporal consistency, and are also very susceptible to similar dis-
tractors. Image features can represent objects more discriminatively and con-
sistently [17, 37], which would also be beneficial in obtaining continuous and
consistent motion trajectories. Therefore, we additionally encode the 3D feature
fdy in Gdy via F dy

θ . Through volume rendering, apart from the pixel color Ĉdy
i

and the 2D correspondence p̂dy
j for pi, the 2D feature F̂ dy

i can also be obtained:

F̂ dy
i (pi) =

K∑
k=1

T dy
k α(σdy

k )fdy
k , where T dy

k =

k−1∏
l=1

(
1− α(σdy

l )
)
. (3)
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Transformations. We also carefully design the static transformation T st and
the dynamic transformation T dy, respectively. For the static scenes, the move-
ment caused by the camera’s rigid-motion is mainly considered, so we model the
static mapping by optimizing the parameters of the 3D affine transformation
between frames, i.e., T st(·) = Aθ(·). The motion trajectories of the object are
the result of the superposition of the camera and the object’s own motion, which
often corresponds to a more complex non-linear transformation. Therefore, we
refer to the method of [36], and additionally utilize the Real-NVP [8] to model
the dynamic mapping, i.e., T dy(·) = Mθ(Aθ(·);ϕi), where ϕi stands for the indi-
vidually optimized latent code for each frame. Due to the ambiguity of motion
decomposition, we find that for static transformation, it is also beneficial to ap-
propriately add some non-linear transformation layers, which will be discussed
in the subsequent experimental analysis.

Volume fusion. After obtaining the static and dynamic representations, we
obtain the final 3D volume Gcb by volume fusion, i.e., M(Gst, Gdy) = Gcb, in
order to get the final representation of the whole video scene, as well as the
pixels’ motion trajectories. We leverage the orthogonal approximation technique
described in previous work [25] to approximate the process:

σcb
k xk

j = βst
k uk

jσ
st
k + (1− βst

k )vkj σ
dy
k , (4)

where uk
j /vkj represents the local 3D points at Lj obtained by static/dynamic

transformation for xk
i . The motion rendering in Eq.(2) can be rewritten as:

x̂cb
j =

K∑
k=1

T cb
k

(
βst
k α
(
σst
k

)
uk
j +

(
1− βst

k

)
α
(
σdy
k

)
vkj

)
where T cb

k = exp

(
−

k−1∑
l=1

βst
l σst

l +
(
1− βst

l

)
σdy
l

) (5)

We obtain final 2D correspondence x̂cb
j by projecting p̂cbj to the image plane.

Similarly, we can get the rendered color Ĉcb
i by replacing 3D coordinate with

color in Eq.(5).

3.3 Optimization

In order to obtain a decoupled 3D representation of the video, we utilize a variety
of loss functions, including feature rendering loss, color rendering loss, motion
rendering loss, etc. This section will describe them in detail.

Data preprocessing. We refer to the previous method [35, 36] to get the op-
tical flow between every two frames of the video by the advanced optical flow
estimation method RAFT [33] and filter out the optical flow results with high
confidence as the training pseudo-labels. In addition to this, to realize feature
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rendering loss, we also extract the feature F by video correspondence learning
methods [6, 37, 40]. In order to achieve better decoupling, we also refer to the
previous methods [13, 24] to get the mask M of the moving objects by seman-
tic segmentation [7, 31] or motion segmentation [20, 38, 42], which serves as a
guidance for the network in the initial period of training.

Optimization for dynamic objects. For dynamic objects, the following loss
functions are used for optimization. After obtaining the collected reliable optical
flow f i→j = pj − pi, predict optical flow f̂

dy
i→j = p̂dy

j − pi and the motion
segmentation mask Mi, the L1 distance is used as the motion rendering loss,
and the motion segmentation mask forces the transformation network to focus
only on modeling the motion of the dynamic objects during the initial phase of
optimization, and the Ωf indicates the set of filtered flows:

Ldy
flo =

∑
f i→j∈Ωf

Mi(pi)
∥∥∥f̂dy

i→j − f i→j

∥∥∥
1

(6)

In addition to this, we also utilize the color rendering loss. The loss decreases
only if corresponding 2D points pi and pj map to 3D points in the canonical space
with the same color. We believe through this way, the representation implicitly
captures the correspondences by matching the appearance, which shares similar
spirits to previous matching-based motion estimation methods [32,34]. The loss
is defined as:

Ldy
pho =

∑
pi∈Ωp

Mi(pi)
∥∥∥Ĉdy

i (pi)− Ci(pi)
∥∥∥2
2

(7)

The Ωp indicates the set of filtered points. However, as introduced above, the
photometric error reflects only the similarity in color space and is very susceptible
to distractors. For example, in Figure 2(a), the pixels s1, s2, s3 are very similar in
color space, leading to a reduction of the photometric error even if s1 in the right
frame is incorrectly mapped to s3. Whereas in (b), s3 is significantly different
from the rest of the points in the feature space, which indicates this problem
can be mitigated by rendering discriminative features. Moreover, inter-frame
appearance changes and deformations make pixels inconsistent between frames,
especially on dynamic objects. Therefore, this paper proposes a feature-based
rendering loss:

Lfeat =
∑

pi∈Ωp

Mi(pi)
∥∥∥F̂ dy

i (pi)− Fi(pi)
∥∥∥
1

(8)

Using the pre-trained temporally-consistent and spatially-discriminative features [6]
as labels, we rectify the dynamic transformation and force corresponding pixels
to map to the same 3D point in canonical space. The loss function used for
dynamic objects is defined as Ldy = Ldy

flow + λdy
1 Ldy

pho + λdy
2 Lfeat.
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Fig. 2: The illustration of feature rendering loss. We also show the qualitative results
in the last row where the query points are marked with different colors. Please refer to
the corresponding video in the supplemental materials. (Zoom in for best view)

Optimization for static scenes. For static scenes, we also adopt motion and
color rendering loss for optimization:

Lst
flo =

∑
f i→j∈Ωf

(1−Mi(pi))
∥∥∥f̂ st

i→j − f i→j

∥∥∥
1

(9)

Lst
pho =

∑
pi∈Ωp

(1−Mi(pi))
∥∥∥Ĉst

i (pi)− Ci(pi)
∥∥∥2
2

(10)

Besides, the motion segmentation masks are utilized to supervise the rendered
motion mask B̂st

i (pi), giving guidance to static network in the early stages:

Lseg =
∑

pi∈Ωp

−(1−Mi(pi))log(B̂
st
i (pi))−Mi(pi)log(1− B̂st

i (pi)), (11)

the optimized motion confidence will be further used in volume fusion, and the
loss function used for static scenes is defined as Lst = Lst

flow + λst
1 Lst

pho + λst
2 Lseg.

Optimization for final representation. Based on obtaining the respective
representation and transformation of the static scenes and dynamic objects, we
attempt to obtain the final representation by volume fusion. We use the motion
and color rendering loss for optimization, denoted as Lcb = Lcb

flo + λcb
1 Lcb

pho :

Lcb
flo =

∑
f i→j∈Ωf

∥∥∥f̂ cb

i→j − f i→j

∥∥∥
1

(12)

Lcb
pho =

∑
pi∈Ωp

∥∥∥Ĉcb
i (pi)− Ci(pi)

∥∥∥2
2

(13)
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In addition to the above losses, we also adopt regularization schemes used
in prior work, e.g., the scene flow smoothness loss [23], the distortion loss [2],
which are labeled as Lreg. The final overall training loss is defined as follows:

L = Ldy + Lst + Lcb + Lreg (14)

4 Experiment

To validate the proposed method, we evaluate our method on the TAP-Vid
benchmark [9], which is designed to evaluate the performance of long-range mo-
tion estimation (point tracking) in the real world. This section first describes
the experimental setup including dataset, network, training, and evaluation de-
tails. After that, detailed ablation studies and performance comparisons with
the baseline methods will be presented to prove the effectiveness of the proposed
method for motion estimation.

4.1 Implementation details

Dataset. Since the proposed method is a test-time optimization method, consid-
ering the tractable, a more representative TAP-Vid-DAVIS [9] dataset is selected
for training and testing. This dataset, contains 30 videos in the real world, with
videos ranging from 34-104 frames and an average of 21.7 points annotations per
video. The videos in TAP-Vid [9] are downsampled to 256 × 256, which ensures
that no more information than expected is used.

Network. The parameters corresponding to the affine transformation Aθ are
predicted by the 2-layer MLP. Meanwhile, as discussed in Figure 4, we also
incorporate non-linear invertible transformation layers [8] in the static transfor-
mation network and set the number of layers nst to 3. The Mθ in the dynamic
transformation network consists of 6 invertible layers. The F dy

θ and F st
θ use the

GaborNet [12] with 3 layers and 512 channels per layer to encode the color,
motion confidence, and density. Considering the complexity of the features, we
leverage another GaborNet alone to do the feature rendering. Following Om-
niMotion [36], a 2-layer fully-connected layer with 256 channels is included to
compute the implicit representation ϕi for each video frame, and the normalized
time ti is used as the input to obtain the time embedding.

Training details. DecoMotion uses the Adam as an optimizer to train each
video sequence for 100k iterations. Warm-up strategy is used to slowly increase
the learning rate, and we decay the learning rate every 20k steps thereafter. In
each training batch, we extract 256 pairs of optical flows from 8 pairs of images.
For each pixel corresponding to a ray, we uniformly sample K = 32 local 3D
points in the z axis. In feature rendering, we use DINO [6] as an image feature
extractor in the data preprocessing stage to extract 768-d features for each point.
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Table 1: Ablation study for decomposition.

Lst Ldy Lcb TAP-Vid-DAVIS
AJ ↑ < δxavg ↑ OA ↑
52.6 69.9 85.3

✓ 27.6 31.0 77.6
✓ 54.3 73.3 85.2

✓ 57.9 76.4 86.0
✓ ✓ ✓ 59.9 79.0 86.1

The rest of the settings including reliable sample filtering, hard sample mining
strategy, and far and near depth for volume rendering refer to the work in [36].
Further implementation details are presented in the supplemental materials.

Evaluation metrics. Following the TAP-Vid benchmark [9] and OmniMotion
[36], we report the tracking position accuracy (< δxavg), Occlusion Accuracy
(OA), Average Jaccard (AJ), and Temporal Coherence (TC) for predict motion
trajectories. Please refer to the benchmark for more information.

4.2 Ablation study

We perform detailed ablation studies on point tracking. Considering DecoMo-
tion is a test-time optimization method, to ensure the executability of the ex-
periments, a subset of TAP-Vid-DAVIS [9] (480p) is randomly sampled.

The effectiveness of decomposition. We first study how each design in our
decoupled representation affects the performance of point tracking. The original
OmniMotion is set as the baseline. The results are shown in Table 1. The Lst,
Ldy and Lcb represents the loss functions used in each representation optimiza-
tion. Solely optimizing representation for static scenes substantially harms the
performance, the learned static transformation can not deal with the complex
motion patterns of dynamic objects. Whereas the proprietary transformation
for dynamic objects improves the tracking performance from 69.9% to 73.3%.
With the help of the motion segmentation mask, the dynamic transformation
can focus on learning the difficult parts, achieving the globally optimal capa-
bility of estimating the object’s motion. However, the dynamic transformation
still fails to capture the camera motion. By combining the static part with Lcb

in volume fusion, the tracking accuracy is further improved to 79.0%. The re-
sults demonstrate the effectiveness of the divide-and-conquer strategy in motion
estimation.

The motion segmentation models [42] are complex and sometimes could be
brittle. A dynamic/static point could be incorrectly assigned to a static/dynamic
point, which misleads the optimization. Without the guidance of motion seg-
mentation masks, we find optimizing the final representation solely with Lcb
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Original video Static scenes Dynamic objects Predicted  mask

Fig. 3: The rendering results for static scenes and dynamic objects. Only optimized
with Lcb, we still observe the decomposition in terms of motion and appearance.

still shows competitive results. In Figure 3, we show rendering results of static
appearance Ĉst

i , dynamic appearance Ĉdy
i , and motion segmentation mask B̂st

i ,
we can still observe the decomposition in terms of appearance and motion. More-
over, thanks to the insightful feedback of reviewers, we are seeking more elegant
ways to provide reasonable results without a segmenter, e.g. first optimizing the
globally-rigid component alone, and then adding the non-rigid component to
explain the remainder. We regard it as our future work.

Feature rendering. We analyze the effect of the proposed feature rendering.
The results are shown in Table 2. In (a), we regard the DecoMotion without
using any appearance rendering loss as the baseline. With the implicit appear-
ance matching in canonical space, both color and feature rendering enhance the
performance of motion estimation. Moreover, the proposed feature rendering fur-
ther boots up the performance from 76.1% to 79.0%. As shown in the last row of
Figure 2, the given query points are misled by the distractors in the background.
By using feature rendering loss, the query points are accurately matched to the
object in another frame, even facing large deformations. Nevertheless, the fea-
ture rendering on static scenes does not help much. We believe this is because of
the relatively poor representation ability of the pre-trained features [6] and the
slight inter-frame changes in the background. Besides, in (b), we use different
pre-trained features as supervision, compared with FGVC [21] that more spe-
cializes in extracting local features, the VFS [40] and DINO [6], which are better
at representing objects, show better performance.

Table 2: Ablation study for feature rendering.

(a) Abalation for feature rendering in dif-
ferent scenes.

Lpho Lfeat TAP-Vid-DAVIS

Dynamic Static Dynamic Static AJ ↑ < δxavg ↑ OA ↑

51.2 69.7 85.6

✓ 55.6 74.5 85.8

✓ ✓ 57.3 76.1 85.5

✓ ✓ ✓ 59.9 79.0 86.1

✓ ✓ ✓ ✓ 60.2 79.2 85.9

(b) Ablation for different features.

Method < δxavg ↑

w/o Lfeat 76.1

Lfeat w/ FGVC [21] 76.7

Lfeat w/ VFS [40] 77.3

Lfeat w/ DINO [6] 79.0
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Fig. 4: The ablation study for the transformations. The nst, ndy represent the number
of non-linear layers [8] used in static and dynamic transformations.

The design of transformation. In Figure 4, the nst, ndy represent the number
of non-linear invertible layers [8] used in static and dynamic transformations.
For static transformation, purely utilizing affine transformation, i.e., nst = 0,
gives the worst performance. We find the motion confidence prediction is not
always perfect. If a dynamic point is incorrectly predicted as a static point,
the affine transformation alone can not deal with it well. Adding some non-
linear layers in the static transformation improves the performance. However,
including more layers does not bring benefits. Besides, increasing the ndy in
dynamic transformation shows a more significant improvement compared with
the method without decoupling.

4.3 Comparisons on point tracking

We compare our method with the state-of-the-art methods of point tracking.
The quantitative results are shown in Table 3. Apart from optimization-based
methods Deformable-Sprites and OmniMotion, we add MFT that utilizes in-
put pairwise correspondences from RAFT as our competitors. Compared with
the most direct competitor OmniMotion, DecoMotion leads the tracking posi-
tion accuracy < δxavg by 6.9%/7.2% on DAVIS-Strided and DAVIS-First. Also,
DecoMotion is superior to Deformable-Sprites and MFT, surpassing MFT by
3.6%/3.1%. We also include some dedicated point-tracking methods that track
through occlusions by estimating multi-frame point trajectories for comparisons.
Note DecoMotion is only supervised by RAFT which has limited capability of
providing accurate point correspondences, DecoMotion still shows on-par per-
formance, leading the tracking position accuracy by 0.7% on DAVIS-Strided.

We select several representative videos for inference. DecoMotion produces
more accurate and stable pixel correspondences over frames. For example, in the
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Table 3: Quantitative results for point tracking on TAP-Vid [9]. The “(RAFT)” indi-
cates using pairwise correspondences from RAFT [33] as input or supervision.

Method
DAVIS Strided DAVIS First

AJ ↑ < δxavg ↑ OA ↑ TC ↓ AJ ↑ < δxavg ↑ OA ↑ TC ↓
Flow-Walk-C [4] 35.2 51.4 80.6 0.90 - - - -

Flow-Walk-D [4] 24.4 40.9 76.5 10.41 - - - -

RAFT-C [33] 30.7 46.6 80.2 0.93 27.1 42.1 77.6 0.95
RAFT-D [33] 34.1 48.9 76.1 9.83 31.4 44.5 74.1 10.3

TAP-Net [9] 38.4 53.4 81.4 10.82 33.0 48.6 78.8 -

PIPs [14] 39.9 56.0 81.3 1.78 36.4 53.8 76.1 -

Context-TAP [3] 48.9 64.0 - - 42.7 60.3 - -

FGVC [21] - 66.4 - - - 62.8 - -

PIPs++ [44] - 73.7 - - - 69.1 - -

TAPIR [10] 61.3 73.6 88.8 - 56.2 70.0 86.5 -

Deformable-Sprites [41] 20.6 32.9 69.7 2.07 - - - -

OmniMotion [36] (RAFT) 51.7 67.5 85.3 0.74 44.9 62.7 80.7 0.73

MFT [27] (RAFT) 56.1 70.8 86.9 - 47.3 66.8 77.8 -

DecoMotion (RAFT) 60.2 74.4 87.2 0.69 53.0 69.9 84.2 0.69

D
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Fig. 5: Qualitative results for point tracking. Given the query points marked with
different colors in the first frame (blue border), we visualize the visible correspondences
in randomly sampled frames. Please refer to more videos in the supplemental materials.
(Zoom in for best view)
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Original video frames Rendered static scenes Rendered dynamic objects

Fig. 6: The rendering results for decoupled static scenes and dynamic objects. Please
refer to the corresponding videos in the supplemental materials.

left case of Figure 5, the dancing girl presents a very complex movement with
large deformations, the baseline methods either lose track or get imprecise re-
sults, while DecoMotion can consistently track points accurately, which validates
the superior ability of DecoMotion to handle the motion of dynamic objects.

4.4 Visualize the appearance decomposition

We present the visualization of the decoupled static scenes and dynamic objects
in Figure 6. Using the individual 3D canonical volume and transformation, we
generate each frame in the given video by volume rendering. We can clearly
observe the static part focuses on learning the appearance of static scenes, while
the dynamic part pays more attention to the dynamic objects. With such a
decoupled representation, our method can “remove” the dynamic objects while
maintaining reasonable structure.

5 Conclusion

In this work, we introduce an innovative test-time optimization approach for es-
tablishing accurate pixel correspondences. We separately establish 3D represen-
tation for static scenes and dynamic objects. For dynamic objects, we address
their complex pattern by incorporating more non-linear layers with a feature
rendering loss. For static scenes, we employ a simpler network to handle rigid
motion, while also modeling the confidence of whether 3D points are static or
not. Then we fuse these two canonical volumes to better represent motion and
appearance. Quantitative results on point tracking and qualitative results of
appearance decomposition validate the proposed method.
Acknowledgements. We thank anonymous reviewers for their valuable feedback.
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27. Neoral, M., Šerỳch, J., Matas, J.: Mft: Long-term tracking of every pixel. In:
WACV. pp. 6837–6847 (2024)

28. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: ICCV. pp. 5865–5874
(2021)

29. Sand, P., Teller, S.: Particle video: Long-range motion estimation using point tra-
jectories. IJCV 80, 72–91 (2008)

30. Shi, X., Huang, Z., Bian, W., Li, D., Zhang, M., Cheung, K.C., See, S., Qin, H.,
Dai, J., Li, H.: Videoflow: Exploiting temporal cues for multi-frame optical flow
estimation. In: ICCV (2023)

31. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: Transformer for seman-
tic segmentation. In: ICCV. pp. 7262–7272 (2021)

32. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: CVPR. pp. 8934–8943 (2018)

33. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
ECCV. pp. 402–419 (2020)

34. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking
emerges by colorizing videos. In: ECCV. pp. 391–408 (2018)

35. Wang, C., MacDonald, L.E., Jeni, L.A., Lucey, S.: Flow supervision for deformable
nerf. In: CVPR. pp. 21128–21137 (2023)

36. Wang, Q., Chang, Y.Y., Cai, R., Li, Z., Hariharan, B., Holynski, A., Snavely, N.:
Tracking everything everywhere all at once. In: ICCV (2023)

37. Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-
consistency of time. In: CVPR. pp. 2566–2576 (2019)

38. Xie, J., Xie, W., Zisserman, A.: Segmenting moving objects via an object-centric
layered representation. In: NeurIPS. vol. 35, pp. 28023–28036 (2022)

39. Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.: Gmflow: Learning optical flow
via global matching. In: CVPR. pp. 8121–8130 (2022)

40. Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: A video
frame-level similarity perspective. In: ICCV. pp. 10075–10085 (2021)

41. Ye, V., Li, Z., Tucker, R., Kanazawa, A., Snavely, N.: Deformable sprites for un-
supervised video decomposition. In: CVPR. pp. 2657–2666 (2022)

42. Yuan, Y., Wang, Y., Wang, L., Zhao, X., Lu, H., Wang, Y., Su, W., Zhang, L.:
Isomer: Isomerous transformer for zero-shot video object segmentation. In: ICCV.
pp. 966–976 (2023)



Decomposition Betters Tracking Everything Everywhere 17

43. Zhao, W., Liu, S., Guo, H., Wang, W., Liu, Y.J.: Particlesfm: Exploiting dense
point trajectories for localizing moving cameras in the wild. In: ECCV. pp. 523–
542 (2022)

44. Zheng, Y., Harley, A.W., Shen, B., Wetzstein, G., Guibas, L.J.: Pointodyssey: A
large-scale synthetic dataset for long-term point tracking. In: ICCV. pp. 19855–
19865 (2023)


	Decomposition Betters Tracking Everything Everywhere

