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Abstract. Recent advancements in 3D perception systems have signifi-
cantly improved their ability to perform visual recognition tasks such as
segmentation. However, these systems still heavily rely on explicit human
instruction to identify target objects or categories, lacking the capability
to actively reason and comprehend implicit user intentions. We introduce
a novel segmentation task known as reasoning part segmentation for 3D
objects, aiming to output a segmentation mask based on complex and
implicit textual queries about specific parts of a 3D object. To facilitate
evaluation and benchmarking, we present a large 3D dataset comprising
over 60k instructions paired with corresponding ground-truth part seg-
mentation annotations specifically curated for reasoning-based 3D part
segmentation. We propose a model that is capable of segmenting parts of
3D objects based on implicit textual queries and generating natural lan-
guage explanations corresponding to 3D object segmentation requests.
Experiments show that our method achieves competitive performance to
models that use explicit queries, with the additional abilities to iden-
tify part concepts, reason about them, and complement them with world
knowledge. Our source code, dataset, and trained models are accessible
at this url.
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1 Introduction

The rapid advancements in 3D data capture technologies, including LIDARs and
RGB-D cameras, have led to a growing demand for automated analysis of 3D
point clouds. 3D semantic segmentation, the process of automatically assigning
predefined semantic labels to each point in a cloud, is crucial for enabling com-
plex tasks such as scene understanding. Similarly, 3D part segmentation involves
further segmenting object instances into their components, such as identifying
the handle of a pot or the lid of a bottle. These tasks find applications in various
fields including autonomous vehicles, mobile robotics, industrial automation,
augmented reality, and medical imagery analysis. While recent advancements
in pre-trained 3D representations and the introduction of various 3D datasets
have significantly improved 3D perception, the capacity for nuanced reasoning
in 3D contexts remains limited. This limitation is primarily due to the lack
of comprehensive datasets for reasoning and describing 3D scenes and objects.
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Fig. 1: Capabilities of PARIS3D. Parts of 3D objects are segmented based on
reasoning, shape, location, material, colour, and concept instructions. Additionally, for
the segmentations, PARIS3D can explain why it chose that region, or describe 3D
objects with respect to their parts. The original point clouds are on the left. The
segmented parts are shown to the right, highlighted in golden colour.

In contrast, 2D images accompanied by textual descriptions have contributed
to significant progress in large-scale image language models. Recent methods
have emerged, performing segmentation based on 2D images projected from 3D
scenes. However, they lack the ability to reason about object concepts and their
3D properties, functions, or parts in a conversational manner.

Here, we define a model as having reasoning capabilities when (i) it can
understand implicit instructions, such as referencing properties of an object or
its parts without explicit articulation, and (ii) explain or justify its responses,
whether generated text or predicted segmentation masks. Such reasoning ability
is one of the fundamental cognitive skills possessed by humans, essential for daily
activities ranging from locating items to manipulating tools. Previous 3D vision
methods are capable of exploring the semantics of a given environment based
on instructions containing pre-defined category names. These explicit categories
are limiting and do not address cases where instructions can be implicit and
may contain complex queries. For example, an automated system might need to
find the part of the kettle that can be opened to pour water, without knowing
the explicit category name "lid". To this end, we introduce the 3D reasoning
part segmentation task, which aims at segmenting object parts based on general
queries, including color, 3D information, and implicit functionalities.

In this work, we introduce a novel task termed reasoning part segmentation in
3D. This task involves generating a part segmentation mask for a 3D object based
on implicit textual queries requiring complex reasoning. These queries go beyond
simple references and encompass intricate descriptions, demanding sophisticated
reasoning or worldly knowledge. For example, knowing where to hold a kettle or
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which part of a bottle to open in a fine-grained manner. To address this chal-
lenging task, we propose PARIS3D (ReasonIng-based 3D PArt Segmentation),
a multi-modal Large Language Model (LLM) capable of reasoning on user input
text, predicting 3D part segmentation masks, and providing explanations for
the model’s response. As depicted in Figure 1, PARIS3D adeptly navigates di-
verse scenarios, encompassing complex 3D reasoning, material, color, shape, and
location-based knowledge, providing explanatory responses and detailed descrip-
tions. Additionally, to validate the effectiveness of PARIS3D and support future
research, we establish an evaluation benchmark and a dataset named RPSeg3D
for reasoning 3D part segmentation. Our RPSeg3D dataset comprises 2624 3D
objects and over 60k instructions, providing persuasive evaluation metrics for
the task.

In summary, our key contributions are the following:

– We introduce the reasoning part segmentation task for 3D objects, emphasiz-
ing the necessity of reasoning capabilities which is crucial for the development
of intelligent perception systems.

– We provide a comprehensive dataset named RPSeg3D for reasoning-based
3D part segmentation, comprising over 2624 3D objects and 60k instructions,
serving as a useful resource for future research.

– We present PARIS3D, a novel approach for 3D part segmentation, and fur-
ther improve its capabilities by fine-tuning on our RPSeg3D dataset.

2 Related Work

3D Semantic Segmentation. The challenge of understanding and reasoning
within 3D environments has been an ongoing research focus. The goal of 3D se-
mantic segmentation is to acquire semantic predictions for each point in a cloud.
Notable contributions include point-based approaches [19, 38], methods which
incorporate intricately crafted point convolution methods [46, 50], voxel-based
strategies [5, 10], including those that employ 3D sparse convolutions [11] for
generating point-wise segmentation outcomes, as well as transformer-based tech-
niques [23]. Multi-view semantic segmentation methods such as DeepViewAgg
[41], Diffuser [22, 34], 3D-CG [15], 3D-CLR [16] in 3D vision concentrate on
improving representation learning by generating 2D renderings from 3D under
multiple view points. These works have shown the effectiveness of multi-view rep-
resentations in enhancing the performance and robustness of various 3D tasks.
Nonetheless, these methods rely on a predefined set of semantic labels, whereas
we focus in our proposed method on responding to complex reasoning-based
queries and explaining them.
Large Multimodal Models. Extensive research on Large Language Models
(LLMs) has demonstrated reasoning capabilities, prompting an exploration into
extending these skills into the visual domain through Large Multimodal Models.
LMMs are a highly adaptable and versatile means to perform tasks requiring
language and vision capabilities. Prominent models such as BLIP-2 [26], LLaVA
[29] and MiniGPT-4 [55] generally employ a dual-phase training process, aligning
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Method
Input Task

Point Reasoning
Conversation Segmentation Explanation

Cloud Query
SQA3D [33], 3D-VisTA [56] ✓ ✓ ✗ ✗ ✗

ViewRefer [13], Point-Bind [12] ✓ ✗ ✗ ✗ ✗

3D-OVS [30] ✗ ✗ ✗ ✓ ✗

OpenMask3D [45] ✓ ✗ ✗ ✓ ✗

PLA [6], OpenScene [37] ✓ ✗ ✗ ✓ ✗

Chat-3D [49] ✓ ✓ ✓ ✗ ✓

M3DBench [27] ✓ ✗ ✓ ✗ ✗

LLM-Grounder [52] ✓ ✗ ✓ ✗ ✓

3D-LLM [17] ✓ ✓ ✓ ✗ ✓

LL3DA [4], PointLLM [51] ✓ ✗ ✓ ✗ ✓

PARIS3D ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of recent 3D segmentation models and Large Multi-
modal Models (LMMs) emphasizing their capabilities for 3D reasoning and con-
versations. Reasoning query means the model is asked to self-reason a task and either
output text or perform an action. Segmentation highlights models that can respond
with 3D segmentation masks, and Conversation represents models that can provide
a conversation-style answer to the user. Among these, our proposed PARIS3D stands
out with comprehensive 3D understanding and reasoning, segmentation in response to
natural language queries, and conversational capabilities.

visual representations with the linguistic embeddings of LLMs through extensive
image-text and video-text datasets [2,3,28,35,42–44]. Recent efforts have focused
on the convergence of multi-modal LLMs with vision tasks, where VisionLLM
[48] provides a versatile interaction interface for a spectrum of vision-centric tasks
through instruction tuning. Yet, it does not fully leverage the complex reasoning
potential of LLMs. GPT4RoI [53] integrates spatial boxes as inputs and trains
models on region-text pairs, showcasing a novel approach. Our method aims to
benefit from these advances in the LMM space by merging the vision-language
abilities of LMMs and the reasoning of LLMs in a novel 3D perception task.
Language Instructed 3D Tasks. The integration of point clouds with natural
language processing has widespread implications, drawing considerable interest
in the realms of 3D scene understanding. This fast-growing field promises en-
hancements in human-robot interaction, metaverse, robotics, and embodied in-
telligence. Central to the dialogue systems designed for 3D environments are two
critical capabilities: perception within three-dimensional spaces and reasoning.
Recently, there has been a rise in the number of tasks uniting 3D scenes and
language, such as 3D captioning, 3D question answering, 3D situated question
answering, embodied Q and A, planning, navigation, 3D assisted multi-turn di-
alogue, 3D object detection, and scene description. We divide the 3D perception
task models into 3 categories (see Table 1. Separated by dotted lines.). The first
encompasses models that perform tasks like 3D captioning, situated question an-
swering, and visual grounding [33, 56], visual grounding [14]. These models are
capable of providing a word or phrase as its text output. The second category
has 3D semantic segmentation models that output 3D segmentation masks. 3D-
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OVS [30], Openmask3D [45], OpenScene [37], PLA [7], perform open-vocabulary
semantic segmentation for 3D scenes. These methods, on the other hand, can-
not provide a conversational output to a user query or explain the reasoning for
their tasks. The third comprises models that employ an LLM and perform visual
perception tasks such as captioning, scene understanding, and visual grounding,
providing conversational outputs [4, 12, 17, 27, 49, 51, 52]. However, they do not
perform fine-grained semantic segmentation or reasoning-based 3D vision tasks.
As such, we identify a gap in performing 3D segmentation in response to complex
natural language prompts instead of a single phrase or word. Distinct from the
existing works in this domain, our research is committed to: (1) streamlining the
integration of 3D segmentation capabilities into multi-modal LLMs, and (2) en-
hancing current perception systems with 3D reasoning-based segmentation and
explanation abilities, thereby pushing the boundaries of what is achievable in
the intersection of language and visual understanding.

3 Reasoning 3D Part Segmentation

Semantic segmentation involves assigning a semantic label to each geometric
primitive, such as points [38], voxels [9], or superpoints [25]. In part segmenta-
tion, object instances are decomposed into their components. Given a coloured
point cloud P, the goal of a 3D segmentation model is to predict its label for each
point. However, in our reasoning segmentation task, we go further to output a 3D
segmentation mask M, given an input point cloud P and an implicit query text
instruction xtxt. The task shares a similar formulation with the referring segmen-
tation task [20], with an additional challenge for the model to reason about the
fine-grained parts in response to implicit queries and output the corresponding
segmentation mask. The complexity of the query text in reasoning part segmen-
tation is a key differentiator. Instead of providing the names of the parts, the
query text may include more intricate expressions that involve an understanding
of structures, geometries, and semantics of 3D objects. By introducing this task,
we aim to bridge the gap between user intent and system response, enabling
more intuitive and dynamic interactions in 3D object perception.

3.1 Our RPSeg3D Dataset

Considering the unavailability of established datasets and evaluation benchmarks
in the literature, we introduce a dataset, named RPSeg3D, specifically designed
for the reasoning 3D part segmentation task. Our dataset comprises 2624 3D
objects and over 60k instructions. We use 718 objects and their corresponding
instructions as the train set, and the remaining 1906 objects along with their in-
structions are used for testing. For reliable and fair assessment, we have aligned
the 3D objects with those from PartNet-Ensemble [31], annotating them with
implicit text instructions and using ground truth labels to generate high-quality
target masks. To generate the text instructions corresponding to each 3D object
part, we prepare a set of templates, for example, "Which part of this object
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Fig. 2: Examples of the annotated object-instruction pairs for training with two types
of queries. On the left is one view of the rendered image from the original point cloud.
On the right is the corresponding ground truth segmentation mask, shown in green.

Fig. 3: Preparing the instructions of RPSeg3D. Simple templates are provided
to GPT-3.5, which populates them with part information-related segmentation instruc-
tions. In parallel, colour, shape, location, and dimension-related data is extracted from
3D point clouds. Enriching the instructions with this information and manually check-
ing them for inaccuracies, we obtain the RPSeg3D dataset for part segmentation.

<does this function/looks like this>?". We leverage GPT-3.5 [36] for building
instructions using these templates by supplying information about the part and
rephrasing. We also extract 3D information from the point cloud, thus design-
ing the instructions to cover relations, dimensions (length, height), comparisons,
colour, texture features, object concepts, and functions. This was further verified
manually to avoid inaccurate prompts at test time. The steps are illustrated in
Figure 3. To cover 3D object segmentation tasks effectively, our text instructions
consist of two types: 1) normal queries; 2) 3D queries; as illustrated in Figure
2. The dataset is partitioned into train and test splits, containing 718 and 1906
3D objects and over 16k and 47k instructions, respectively. As the primary pur-
pose of the dataset is evaluation, the testing set includes a larger number of
instructions.

3.2 Reasoning 3D Part Segmentation Architecture

Our method takes as input a dense and coloured 3D point cloud of an object.
One of the common methods of 3D analysis is predominantly using point clouds
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to represent 3D data. However, this contrasts with human spatial reasoning pro-
cesses. Humans typically engage with their surroundings through active explo-
ration, synthesizing perspectives from multiple vantages to form an integrated 3D
understanding, rather than processing a 3D environment at one go. Our approach
advocates for 3D reasoning derived from multi-view imagery. This approach also
benefits from the large-scale 2D pretraining available in vision-language models,
similar to previous methods that have taken advantage of pre-trained vision-
language models for 3D vision tasks. Thus, we render multiple images ximg from
K predefined camera poses by rasterization. The camera poses cover all parts
of the object since they are uniformly distributed around the input point cloud.
Given a complex text instruction xtxt along with the images, we feed them into
a multimodal LLM, denoted by F , and the visual backbone, Fenc. F outputs a
text response ŷtxt. In parallel, Fenc extracts the visual embeddings, f, from each
of the input images ximg. The formulation is as follows:

ŷtxt = F (ximg, xtxt), f = Fenc(ximg) (1)

Whenever the LLM is expected to yield a binary segmentation mask, the resul-
tant text output, denoted as ŷtxt is required to an extra token, which sends a
request for the segmentation output. Following this, the embedding at the last
layer, ĥseg, corresponding to the additional segmentation token is extracted. This
embedding is subsequently processed through an MLP (Multilayer Perceptron)
projection layer, represented as γ, to derive hseg and then input to the mask
decoder Fdec as its prompt embedding, thereby tightly coupling the text output
from F and the mask predicted by the decoder. Hence, the mask decoder takes
the visual features f along with <SEG> based prompt embeddings to perform
segmentation, generating the final segmentation mask, M̂ similar to [24]. The
process is as follows:

hseg = γ(ĥseg) (2)

The architectural specifics of the decoder, Fdec, are in accordance with [21].

M̂ = Fdec(hseg, f) (3)

Once the K segmentations are obtained from each camera angle, a 3D semantic
voting module computes scores and assigns the semantic labels for each part. We
have K semantic segmentation masks Mk, where k is the view from which the
image was rendered from the point cloud. We aggregate the masks from multiple
views and lift them to obtain a three-dimensional semantic segmentation of the
original point cloud. To achieve this, we segment the input point cloud P into a
set of superpoints SPi, similar to [25]. Superpoints refer to a way of represent-
ing large 3D point clouds as a collection of interconnected geometrically simple
shapes. This representation is advantageous because (i) it considers complete
object parts as a whole, making them easier to identify, (ii) this method can
provide a detailed description of the relationship between adjacent objects, and
(iii) the size of superpoints is determined by the number of simple structures in a
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Fig. 4: Overview of the proposed reasoning-based 3D part segmentation
approach named PARIS3D. It comprises four subsequent steps: (i) The 3D point
cloud is rendered into K multi-view images ximg using a renderer. (ii) These images
are passed through a frozen vision backbone (Fenc) and multi-modal large language
model (F ) of the reasoning module. F also accepts the text query xtxt, and produces
text outputs corresponding to each view. (iii) The decoder decodes the final layer
embedding which contains the extra token, thus producing K segmentation masks.
(iv) Finally, a mask to 3D segmentation algorithm lifts the projections back into 3D
and a view-guided scoring module is used to obtain the final text response.

scene, rather than the total number of points, making the representation several
orders of magnitude smaller, thus more efficient to work with. Each superpoint
contains points with similar normals and colours, suggesting they belong to the
same instance. This superpoint-based part labelling not only conserves compu-
tational resources but also potentially improves performance by leveraging 3D
priors. In the 3D semantic voting step, we assign semantic labels for each su-
perpoint through a voting mechanism similar to [31]. This technique leverages
information from multiple views and the superpoints, so that even if one mask
covers irrelevant points, the aggregation of masks from all views counters the
effect of such errors. For a superpoint SPi and a part category j, a score si,j
is computed reflecting the proportion of visible points present in the predicted
segmentation masks of category j in each view:

si,j =

∑
k

∑
p∈SPi

[Vk(p)][∃b ∈ M j
k : Im(p)]∑

k

∑
p∈SPi

[Vk(p)]
(4)

Here, [·] is the Iverson bracket, which turns true predicates into 1 and false
into 0. M j

k , represents the predicted mask of category j in view k. Vk(p) indicates
the visibility of 3D point p in the view k. Im(p) checks if the projection of point p
in view k falls within the mask m. The superpoint is then assigned the semantic
label of the part category with the highest score.

To provide the most relevant text explanation corresponding to the 3D masks,
we propose a view-guided scoring module. It assigns a score to each view based
on its correspondence with the final semantic labels. The best text explanation
is chosen based on the highest score. Specifically, for each view, we compute the
intersection over union (IoU) of the mask with the projections of the final 3D
semantic labels output by the model, and the corresponding text explanation is
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saved. This is called the view-guided score of the explanation. At the end of the
score computation for all the masks, we choose the text explanation with the
highest score, and in turn, the most correspondence with the output labels.

3.3 Training the PARIS3D Architecture

Training Data Formulation The training data consists of 718 3D objects
rendered into multiview images, resulting in over 16k image-instruction pairs.
Out of the 718, 360 objects with their instructions are used for training the
model and 358 objects with their instructions are used for validation. Each image
is provided with an annotation file, which has instructions corresponding to
the 3D point cloud that the image came from, the name of the image, and its
ground truth mask. Generation of instructions follows the same steps as Section
3.1 illustrated in Figure 3. Images in the training set may have more than one
instruction in its "instruction" field. This is helpful to introduce diversity as users
may randomly select one as the reasoning query during training, thus obtaining
a better model.

Distillation-Based Explanation Refining Training the multiview model re-
quires explanatory data as well as training image-instruction pairs. To build the
explanatory data, we built an annotation pipeline using a distillation approach.
Using the multi-view images as input to the teacher model [24], we generate
explanations for each part of the object. These explanations serve as our pseu-
dolabels which we use as ground truth explanations of the student model. We
augment these annotations with 3D features extracted from the 3D point clouds
from which the images were rendered. The 3D feature-augmented explanations
contain appropriate responses and critical elements differentiating object parts
from each other such as location, size, shape, material, and colour.

Objective We leverage LoRA [18] to perform efficient fine-tuning of the pre-
trained multi-modal LLM F [29] to retain its generalization capability. We com-
pletely freeze the vision backbone Fenc. The decoder Fdec is fully fine-tuned.
The word embeddings of the LLM and the projection layer of γ are also train-
able, allowing the model to learn the specific meanings and semantic concepts of
parts. The model is trained end-to-end using the text generation loss Ltxt and
the segmentation mask loss Lmask. The overall objective is given as:

L = λtxtLtxt + λmaskLmask (5)

Here, Lmask encourages the model to produce high-quality segmentation results.
It is a combination of per-pixel binary cross-entropy (BCE) loss and DICE loss,
with corresponding loss weights λbce and λdice, given by:

Lmask = λbceBCE(M̂,M) + λdiceDICE(M̂,M) (6)

where ytxt and M are the ground-truth targets. Ltxt is the auto-regressive cross-
entropy loss for text generation. It is computed as:

Ltxt = CE(ŷtxt, ytxt) (7)
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4 Experiments

We perform quantitative and qualitative evaluation of PARIS3D on our dataset
for reasoning-based semantic segmentation.

Implementation Details and Metrics For the experiments, we follow [24]
where the multi-modal LLM F is LLaVA-13B-v1-1 [29] and the vision backbone
Fenc is the ViT-H SAM. The projection layer of γ is an MLP with channels of
[256, 4096, 4096]. We use our dataset RPSeg3D which contains coloured point
clouds and rendered 2D images of them. Using Pytorch3D [40], each input point
cloud is rendered into K = 10 colour images. The fine-tuning scripts for the
LLaVA and SAM architecture are based on DeepSpeed [1] engine. We adopt the
settings of [24] for the optimizer (AdamW [32]) and its learning rate (0.0003).
Similar steps are followed for the learning rate scheduler (WarmupDecayLR),
text generation loss λtxtgen weight (1.0) and the mask loss λmask weight (1.0),
the BCE loss λbce (2.0), dice loss λdice (0.5), batch size per device (2), and
the gradient accumulation step (10). The semantic segmentation metric used is
category mIoU, following [31]. It is calculated as follows: first, mIoU for each
part category is calculated for all test objects. Then, part mIoUs that belong to
each object category are averaged to compute the object category mIoU.

4.1 Reasoning Part Segmentation Results

We establish the reasoning part segmentation task on our dataset RPSeg3D.
Table 2 shows the results of reasoning part segmentation. We observe that with-
out any fine-tuning, the model’s performance is low compared to its fine-tuned
counterparts. The general observation is that 3D queries help the model to out-
put better masks. We compare our method to two baselines. The first baseline
is LISA [24] applied to the multiple views without any finetuning. The second
baseline consists of LISA finetuned on few-shot part segmentation data. When
fine-tuned with 3D information, our model performs better than the baselines
for normal and 3D prompts.

4.2 3D Semantic Segmentation Comparison with Existing Models

Table 3 shows the results of semantic segmentation compared to existing meth-
ods. Our method has better performance than all the fully supervised baselines
and achieves competitive results with [31]. For this baseline, we observe that the
model with prompt tuning done separately on each category achieves impressive
few-shot performance but when unified into a single model for all categories, the
performance is only slightly better than its zero-shot performance (27.2%). This
is attributed to the redundant part names across object categories, hindering the
model’s learning of the semantic meanings of part names. This results in perfor-
mance to drop significantly from when only one category is learnt per model. To
prompt for segmentation, the baseline models [38, 39, 54] are provided with the
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Method
Val Test
Normal Query 3D Query Overall Normal Query 3D Query Overall

LISA-MV 16.60 20.16 18.38 17.60 20.57 19.08
LISA-MV (ft) 50.43 50.28 50.35 50.75 50.81 50.78
PARIS3D 55.33 55.50 55.42 55.94 57.60 56.77

Table 2: Results of reasoning part segmentation. LISA-MV [24] is LISA in multi-
view setting without fine-tuning. LISA-MV (ft) is the experiment in which it has been
fine-tuned on few-shot part segmentation data. Our proposed PARIS3D method has
been fine-tuned with 3D queries and explanations. When fine-tuned with 3D informa-
tion, our model performs better than the baselines for normal and 3D prompts. Here
Test is the test set of 1906 shapes and Val is the validation set of 358 3D shapes with
their instructions.

3D Data Method
Overlapping Categories Non-overlapping Categories Overall

(45)
Bottle Chair Display Door Knife Lamp

Storage-
Furniture

Table
Overall
(17)

Camera Cart
Dis-
Penser

Kettle
Kitchen
Pot

Oven
Suit-
case

Toaster
Overall
(28)

Extra data
(45x8+28k)

PointNet++ [38] 48.8 84.7 78.4 45.7 35.4 68.0 46.9 63.7 55.6 6.5 6.4 12.1 20.9 15.8 34.3 40.6 14.7 25.4 36.8
PointNeXt [39] 68.4 91.8 89.4 43.8 58.7 64.9 68.5 52.1 58.5 33.2 36.3 26.0 45.1 57.0 37.8 13.5 8.3 45.1 50.2
SoftGroup [47] 41.4 88.3 62.1 53.1 31.3 82.2 60.2 54.8 50.2 23.6 23.9 18.9 57.4 45.5 13.6 18.3 26.4 30.7 38.1

Few-shot
(45x8)

PartSLIP* [31] 83.4 85.3 84.8 40.8 65.2 66.0 53.6 42.4 56.3 58.3 88.1 73.7 77.0 69.6 73.5 70.4 60.0 61.3 59.4
PointNet++ [38] 27.0 42.2 30.2 20.5 22.2 10.5 8.4 7.3 18.1 9.7 11.6 7.0 28.6 31.7 19.4 3.3 0.0 21.8 20.4
PointNeXt [39] 67.6 65.1 53.7 46.3 59.7 55.4 20.6 22.1 39.2 26.0 47.7 22.6 60.5 66.0 36.8 14.5 0.0 41.5 40.6
SoftGroup [47] 20.8 80.5 39.7 16.3 38.3 38.3 18.9 24.9 32.8 28.6 40.8 42.9 60.7 54.8 35.6 29.8 14.8 41.1 38.0
ACD [8] 22.4 39.0 29.2 18.9 39.6 13.7 7.6 13.5 19.2 10.1 31.5 19.4 40.2 51.8 8.9 13.2 0.0 25.6 23.2
Prototype [54] 60.1 70.8 67.3 33.4 50.4 38.2 30.2 25.7 41.1 32.0 36.8 53.4 62.7 63.3 36.5 35.5 10.1 46.3 44.3
PartSLIP+ 64.8 69.5 59.5 24.5 34.5 37.1 32.0 40.1 35.3 25.5 75.7 15.6 30.5 58.4 31.1 49.4 6.6 26.7 29.9
Ours 84.0 81.0 70.1 68.4 47.2 61.2 39.4 45.1 55.1 29.3 71.7 40.1 59.3 78.8 59.1 61.6 24.9 59.1 57.6

Table 3: Comparison to previous 3D part segmentation methods. Object category
mIoU(%) is shown. In the 45x8+28k setting, baseline models use an additional 28k
training shapes for 17 overlapping object categories. These are categories present in
common with PartNet datset. For the remaining 28 non-overlapping object categories,
there are only 8 shapes per object category during training. PartSLIP* indicates that
one model has been trained for each category. + shows our implementation of
PartSLIP where one model is trained for all the categories together.

class IDs of the parts to be segmented (e.g: 0 to 103 including the background).
In [31], the model is provided with the names of the parts to be segmented (e.g.
"seat", "arm", "back" of a chair). Our method, PARIS3D, uses language in-
structions to prompt segmentation. For a fair comparison, we use hand-crafted
prompts with short instructions containing generic concept and location-based
clues about the part to be segmented.

4.3 Ablation Study

Instruction Rephrasing. We perform additional experiments with varying
instruction types to study the merits of using rephrased prompts in training
the model (Table 4 here) compared to using only category names and manually
generated prompts for each category. These experimental results on the test set
show that GPT-generated prompts provide superior performance, both without
and with color and 3D information. In both cases, performance improves from
using category names to manual prompts to GPT prompts, indicating the strong
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Fig. 5: Qualitative results of PARIS3D’s performance. We showcase examples
from three tasks: reasoning 3D object part segmentation, object description, and rea-
soning question-answering, demonstrating its capabilities in offering in-depth reasoning,
3D understanding, part segmentation, and conversational abilities.

Instruction Category Manually GPT- Category Manually GPT-
Type Name Generated generated Name generated generated
Colour + 3D ✗ ✗ ✗ ✓ ✓ ✓

Overall mIoU 38.0 41.5 46.7 43.0 52.4 57.6
Table 4: A study on the effectiveness of rephrased prompts on the overall model
performance. Here, the ability of the model to accurately segment an object part based
on an implicit (reasoning-based) description is evaluated for different types of training
prompts. The results show the superior performance of GPT-generated prompts over
manual prompts, both with and without colour and 3D information.

generalization capabilities introduced by GPT-based prompts. For instance, us-
ing color and 3D information prompts along with ’manual prompts’ resulted in
an overall mIoU of 52.4%. However, using GPT to expand simple templates into
varied prompts for describing object part categories resulted in about a 5.2%
improvement over the manually curated training templates (last vs second-last
column).
One Model vs Multiple Models. One of the baseline models [31] trained a
model for each of the 45 categories, loading one at a time to evaluate each cat-
egory. When we replicate this setting for PARIS3D, there are significant jumps
in performance as shown in Table 5. However, one-model-for-one-category does
not offer a generalizable solution in a real-world problem setting, where multiple
object categories and their parts need to be analysed.
Number of Rendered Views. The effect of incrementing the number of views
rendered from the input point cloud is shown in Table 6. With only 1 view in-
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Method Chair Dispenser Keyboard Eyeglasses Bucket
PartSLIP [31] 85.3 73.7 53.6 88.3 36.5

PARIS3D 86.5 75.6 88.2 92.2 83.9
Table 5: Results of PARIS3D on one model trained for each of 5 categories. In [31],
45 models were trained and each point cloud was tested by loading its corresponding
model to perform evaluation. Repeating this exact setting by training a model on each
category for PARIS3D, we easily gain +1.2%, +1.9%, +34.6%, +3.9%, and +47.4%
improvements on the tested categories.

formation provided, the segmentations are not meaningful. With 5 views, the
segmentation quality improves, and improves further with an increase in the
number of views. For each point cloud, we use 10 rendered views in our main
experiments.
Single prompt vs Multiple prompts. In Table 7, we show ablation exper-
iments regarding the number of training prompts. Single prompt refers to one
concept-based reasoning training instruction that follows a template. In further
experiments, we use the template to generate multiple (about 5-6) rephrased in-
structions for each part category using [36]. Training with these multiple training
prompts per part category results in a better-performing model than with a sin-
gle prompt.

No. of views Bottle Bucket Camera
1 1.1 1.1 1.2
5 23.7 40.1 12.1
10 84.8 84.9 29.3

Table 6: Ablation experiments on the
number of rendered views.

No. of prompts Bottle Knife Clock Chair
1 73.8 44.3 45.5 69.5

5-6 83.9 52.7 51.3 78.7
Table 7: Ablation experiments on the
number of prompts provided in train-
ing data.

4.4 Qualitative Results

In Figure 5, we provide examples of PARIS3D output for 3D object part segmen-
tation tasks. PARIS3D is capable of segmenting fine-grained details in categories
like buttons of a remote or legs of an eyeglass from implicit queries that expect
it to do self-reasoning to generate the right answer, and then segment the part.
Moreover, it can perform tasks like object description and question-answering
with regard to object parts and give detailed answers. This demonstrates its
conversational, reasoning, and part segmentation capabilities.
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Fig. 6: Qualitative results on real-world examples of point clouds. The input
point cloud is shown on the left and the segmentation mask is in yellow on the right.
Our model generalizes to point clouds with a significant domain gap from those it was
trained on and displays impressive results with segmenting small object parts such as
the furniture’s knob in this example.

4.5 Generalizability to Real-World Examples

Most existing 3D tasks and their corresponding models can usually only handle
cases within the same distribution of the training sets without generalization,
since they are sensitive to the format of the input and significant domain gap
between synthetic experiments and real-world examples. Thus, it can be difficult
to use them in use cases involving real point clouds from an everyday setting. To
demonstrate the generalizability of PARIS3D to data derived from the real world,
we perform our 3D segmentation on real point clouds shot using a smartphone’s
LiDAR sensor, as suggested by [31]. In Figure 6, we show qualitative examples
of passing the fused point clouds through the PARIS3D architecture to obtain
part segmentation labels as in the previous experiments without much drop in
performance.

5 Conclusion

In this work, we introduce a novel challenge within 3D segmentation, reasoning-
based part segmentation. This task requires models to infer, reason, and ex-
plain based on implicit user instructions, making it considerably more complex
than the regular 3D referring segmentation task. We introduce a dataset for
this task, RPSeg3D, to enable effective evaluation. We believe this dataset will
play a crucial role in fostering the growth of technologies in this area. Addi-
tionally, we outline a pipeline that integrates 3D segmentation capabilities into
multimodal Large Language Models (LLMs), showcasing our model, PARIS3D,
which exhibits competitive performance. It additionally demonstrates the ability
to identify part concepts, reason about them, and complement them with world
knowledge. However, we identify limitations: Although the model has improved
generalizability, there is a possibility that the model may occasionally result in
inaccurate predictions while being prompted with inappropriate, incorrect, or
biased text inputs. Also, the model in its current form cannot perform instance
segmentation. This is a direction for future research as we expand the dataset
to accommodate such tasks.
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