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In the supplementary material, we first introduce more details of the frame-
work (Sec. 1). Subsequently, we provide additional method details (Sec. 2), then
show the dataset partitioning details (Sec. 3), and conduct additional experi-
ments (Sec. 4). Then, we present more visualization results (Sec. 5). Finally,
we have included some additional discussions(Sec. 6)).

1 More Framework Details

1.1 Embedding Network

The architecture of the embedding network is kept the same as [7], which is
composed of three modules: feature extractor, attention learner and metric
learner. We also adopt DGCNN [6] as the backbone of our feature extractor.
The input support and query point clouds are first processed through the embed-
ding network, which outputs support features and query features for executing
subsequent operations.

1.2 Transductive Inference

In the final prediction phase, we employed a transductive inference approach
similar to that used in [7] to obtain the final predictions for the query. Specifi-
cally, this approach involves using transductive label propagation to construct a
graph that includes both labeled multi-prototypes and unlabeled query points.
Labels are then propagated within this graph utilizing a random walk method,
thereby facilitating the determination of the final query predictions. The hyper-
parameter settings are consistent with those used in [7]. Contrary to [7] approach,
in our method for generating multiple prototypes, the foreground prototypes are
derived not only from the foreground points of the support set but also from
the foreground target regions we excavate in the query images. Moreover, after
generating the background prototypes, we further employ a mask cross-attention
mechanism to adapt them to the background of the query images.
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Table 1: Test class names for each split of S3DIS and ScanNet.

split=0 split=1

S3DIS beam, board, bookcase, ceiling,
chair, column

door, floor, sofa, table, wall,
window

ScanNet
otherfurniture, picture,

refrigerator, show curtain, sink,
sofa, table, toilet, wall, window

bathtub, bed, bookshelf,
cabinet, chair, counter, curtain,

desk, door, floor

2 Application of Mask Cross Attention (MCA)
Mechanism to Background Prototypes

We obtain L background prototypes Pb 2 RL×d by employing K-means on sup-
port background features, as multiple prototypes enhance the representation
of complex and cluttered backgrounds. But directly utilizing the background
prototype Pb to guide the segmentation of query backgrounds can lead to sub-
optimal results due to contextual gaps between the support and query. Con-
sequently, we use the mask cross attention (MCA) mechanism that leverages
background features within the query to guide Pb in adapting to the query’s
background. In summary, for background prototype Pb, query features Fq, and
the obtained target area Meθ, we perform a mask cross attention operation,
akin to Mask2Former [2], where queries (Q) is derived from Pb, keys (K) and
values (V) are sourced from the query features Fq, Meθ is utilized to execute a
masking operation, formally:

Q = PbWQ, Kj = fjW
K, Vj = fjW

V , (1)

among which, WQ 2 Rd×dk , WK 2 Rd×dk ,WV 2 Rd×dv are linear projections.
Our masked attention modulates the attention matrix via

Pb = softmax(M + QKT)V. (2)

Moreover, the attention mask M at coordinate positions i is

M(i) =

{
0 if Meθ(i) = 0
�1 otherwise . (3)

Through the MCA operation, we confine the attention to the query background
regions, enabling Pb to adapt more effectively to the background of the query
while mitigating interference from foreground points.
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3 Dataset Split

The class names included in each split of the S3DIS [1] and ScanNet [3] datasets
are detailed in Table 1, presenting a clear categorization of the datasets.

4 Additional Ablations.

4.1 Effectiveness of the Mask Cross Attention Mechanism (MCA)
to Background Prototypes.

We conduct experiments to compare the performance of using MCA to Pb

against two alternatives: 1) the direct use of the original Pb (Experiment a);
and 2) the implementation of cross-attention between Pb and the query fea-
ture Fq, without using a masking mechanism (Experiment b) where queries (Q)
is derived from Pb, while the keys (K) and values (V) are sourced from the
query features Fq. As illustrated in Table 2, our MCA approach (Experiment
c) surpasses these other methods, underscoring the effectiveness of our proposed
strategy.

Table 2: Results of different methods for processing Pb under 1-way 1-shot setting on
S3DIS (S0).

Method mIoU(%)

(a) Directly using Pb 75.87

(b) Cross-attention between Pb and Fq 75.80

(c) MCA 76.54

4.2 Threshold parameters.

The threshold hyperparameter is shared across datasets. Additional experiments
on the threshold for the ScanNet dataset are shown in Fig. 2.

4.3 Qualitative results.

To better demonstrate the role and effectiveness of each module we proposed, we
add qualitative results including an ablation study where each of the 2 modules
is turned off, as shown in Fig. 1.
† Corresponding author
⋆ Equal contribution
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4.4 Loss functions.

To explore the impact of the weight parameter, λ, within our loss equation,
defined as Loss = LossCE + λLossself , a series of experiments was conducted
on the S3DIS dataset, adhering to the 1-way 1-shot S0 setting. The findings,
detailed in Table 3, indicate that a λ value set to 1 optimizes performance.

chair floor door table sofa wall bookcase window background

Input Point Cloud Ground Truth AttMPTI+QGE Ours

Fig. 3: qualitative results of our method in a 2-way 1-shot setting on the S3DIS [1]
dataset, in comparison to the ground truth and the AttMPTI+QGE approach. Four
combinations of 2-way are illustrated from the top to bottom rows, i.e., “chair, floor ”
(first row), “door, table” (second row), “sofa, wall” (third row), and “bookcase, window ”
(last row).
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