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Abstract. Open-set domain adaptation aims to improve the general-
ization performance of a learning algorithm on a more realistic problem
of open-set domain shift where the target data contains an additional
unknown class that is not present in the source data. Most existing al-
gorithms include two phases that can be described as closed-set domain
adaptation given heuristic unknown class separation. Therefore, the gen-
eralization error cannot be strictly bounded due to the gap between the
true distribution and samples inferred from heuristics. In this paper, we
propose an end-to-end algorithm that tightly bound the risk of the entire
target task by positive-unlabeled (PU) learning theory and the joint error
from domain adaptation. Extensive experiments on various data sets
demonstrate the effectiveness and efficiency of our proposed algorithm
over open-set domain adaptation baselines.

1 Introduction

Given enough annotated training data, deep learning models can significantly
improve the performance across a wide variety of machine-learning tasks but
usually cannot generalize well to new domains, as it is commonly assumed that
the training and test data are drawn from the same distribution. In practice,
however, this assumption can be violated by several factors, such as the change
in light, noise, the angle at which the image is captured, and different types of
sensors, which is referred to as the domain shift that can harm the performance
when predicting the test data. As a solution, domain adaptation (DA) aims to
transfer the knowledge learned from a source domain, which is typically fully
labeled, into a different (although related) target domain.

As a more realistic setting [28], open-set domain adaptation allows the target
data to contain an additional unknown category, covering all irrelevant classes not
present in the source domain. The main idea of open-set unsupervised domain
adaptation (OUDA) approaches [1, 4, 8, 17, 28] is to jointly learn a classifier
from a hypothesis space for known and unknown classes in the source and
target domains. According to [2], the target error can be bounded by the source
error, the discrepancy distance between domains, the joint error coming from
the conditional shift [38], and the open-set risk that indicates the precision of
unknown class recognition. Open-set risk contributes substantially to the error
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bound when a large amount of target data is from the unknown class. However,
the latter two terms cannot be explicitly computed.

Unsupervised domain adaptation (UDA) methods [9, 19–21, 27, 32] show
effectiveness in adapting unlabeled data to new domains by distribution alignment,
but can fail to learn discriminative class boundaries, especially when the domain
shift is large. Most existing methods tend to ignore the joint error and only
focus on minimizing the discrepancy between domains, where samples from
different classes can be grouped if the domain shift is large enough. In that case,
the joint error becomes non-negligible, and the target error cannot be strictly
bounded [9, 38]. [37] provided a solution to this problem by incorporating the
joint error into the target error upper bound in the unsupervised setting, and we
generalize this idea towards the open-set domain adaptation setting.

Despite the promising performance, existing OUDA approaches [1, 3, 4, 8,
15, 17, 28, 34] lack an essential theoretical analysis of the generalization error
for the target risk. Some works claim to derive a rigorous target error bound,
while the minimization of joint error and the open-set risk are not theoretically
guaranteed [7,22]. Moreover, most existing algorithms can be described as closed-
set UDA after separation of the unknown [3,22,34,35]. In that case, the open-set
risk cannot be controlled since the generalization error is also affected by the gap
between empirical known target distribution and inferred known target samples,
which becomes hard to analyze.

Fig. 1a illustrates the potential problems of existing methods. Generally, it is
impossible to perfectly distinguish the unknown such that the following marginal
distribution alignment for UDA part is conducted under a large label shit. In
that case, the joint error would be crucial as there exists a trade-off between
marginal discrepancy and joint error [38]. Even if somehow we manage to obtain
a perfect separation, some target data class will be dragged towards the outside
of the corresponding decision boundary. In addition, the unknown class cannot
be grouped as a single cluster. Fig. 1b intuitively explains the core concept of our
algorithm PUJE Sec. 3, where we introduce two additional task classifiers and
minimize the predictive discrepancy between the classifiers with same color, such
that the unknown class will be pushed away from source data and grouped as a
single cluster. Furthermore, those target data outside the corresponding decision
boundary will be aligned back to the correct places.

OUDA problems can be considered as multi-class positive-unlabeled learning
problems (MPU) [36] with domain shift, where all the shared classes appearing
in both source and target domains are positive and the unknown class is negative.
Therefore, to minimize the aforementioned joint error and open-set risk to achieve
a tighter error bound for open-set adaptation, instead of unknown separation
and closed-set UDA, we combine PU learning theory and joint error-based target
error bound into an end-to-end learning framework. The following methods also
introduced PU learning to tackle OUDA problems. [18] required the unsupervised
source-like reconstruction for target data via encoder-decoder models whose
performance cannot be guaranteed especially for large domain shift and complex
dataset; [10] only dealt with the open-set label shift and assumed an identical
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(a) existing methods (b) proposed method

Fig. 1: Intuitive explanation of the difference between our algorithm PUJE and existing
methods. (a) existing methods do not explicitly minimize joint error and cannot group
unknown class as a single cluster; (b) our proposal is an upper bound of joint error
which can address large domain shift and group unknown class into a single cluster.

class conditional distribution of each instance across domains; [35] tackled a
slightly different task where the target data is changing over time and it did not
cover joint error and the gap between the empirical and inferred known target
distribution. Compared with previous works, the main contributions of this paper
can be summarized as follows:

· We propose an end-to-end algorithm with theoretical analysis for open-set
problem setting by PU learning-induced joint error based target error bound;

· We define a novel discrepancy measurement, namely open-set margin discrep-
ancy (OMD), which allows us to smoothly apply the strategy in PU learning
to the target error bound in domain adaptation;

· Extensive experiments confirm the effectiveness and efficiency of the proposal.

2 Preliminaries

In this section, we introduce notations, problem settings, and theoretical def-
initions for the tasks of closed-set unsupervised domain adaptation, open-set
unsupervised domain adaptation, and multi-class positive and unlabeled learning.

Definition 1 (Closed-set Unsupervised Domain Adaptation). For a
classification task, the learning algorithm has access to a set of n labeled points
Ŝ = {(xi

s, y
i
s) ∈ (X ⊆ RD × Y = {1, ...,K})}ni=1 from the source domain S, and

a set of m unlabeled points T̂ = {(xi
t) ∈ X}mi=1 from a different target domain

T . With training samples drawn i.i.d from both domains, the goal is to learn an
optimal target classifier f : X → Y.

Definition 2 (Multi-class Positive and Unlabeled Learning). For a
classification task, the learning algorithm has access to a set of n labeled points
P̂ = {(xi

p, y
i
p) ∈ (X ×Y ′ = {1, ...,K − 1})}ni=1 from the positive domain P , and a

set of m unlabeled points Û = {(xi
u) ∈ X}mi=1 from the unlabeled domain U , where

yiu ∈ Y. With training samples drawn i.i.d from positive and unlabeled domains,
the goal is to learn an optimal classifier f : X → Y for the unlabeled domain. Here,
U includes samples from unknown class K, but the class conditional distributions
for known classes remain invariant between P,U .
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Definition 3 (Open-set Unsupervised Domain Adaptation). For a clas-
sification task, the learning algorithm has access a set of n labeled points Ŝ′ =
{(xi

s′ , y
i
s′) ∈ (X × Y ′)}ni=1 from the incomplete source domain S′, and a set of

m unlabeled points T̂ = {(xi
t) ∈ X}mi=1 from a different target domain T , where

yit ∈ Y. With training samples drawn i.i.d from both domains, the goal is to learn
an optimal target classifier f : X → Y.

We show the relation between open-set domain adaptation and multi-class
positive and unlabeled learning as follows, which includes the hits on how to
apply the domain adaptation algorithm in the open-set scenario.

· In Definition 1, there is a domain shift between the distributions of the samples
from the source and target domains such that a classifier trained on S cannot
generalize on T . A typical solution is to align the feature distributions of
both domains by a feature extractor [9, 32].

· In Definition 2, the conditional distributions of the samples from known
class are identical for positive and unlabeled domains. As proved in [36],
the expected error on the unlabeled domain can be approximated by the
expected error on the positive domain and the probability that the unlabeled
sample has not been classified as unknown.

· In Definition 3, the incomplete source domain S′ can be regarded as the
positive domain P in MPU. The target domain T can be treated as U with
a domain shift. Assume that we can bridge the feature distributions with
UDA techniques, it becomes possible to address open-set problems with
well-established positive and unlabeled (PU) learning theories.

3 PU Learning induced Joint Error based OUDA (PUJE)

In this section, inspired by [37], we first rigorously reformulate the joint error-based
target upper bound to facilitate the further derivation of a practical objective
function for OUDA. To estimate the expectation over the complete source domain
S, we deploy the theory from multi-class positive and unlabeled learning to address
the open-set problems where the source domain S′ is incomplete. We lastly show
the entire loss of PUJE by combining the aforementioned joint error and PU
learning.

Theorem 1 (Approximated Joint Error based Target Upper Bound3).
Given the output space K = {k|k ∈ RK :

∑
y∈Y k[y] = 1, k[y] ∈ [0, 1]},

let fS , fT : X → K be the true labeling functions for the source and target
domains respectively, whose outputs are one-hot vectors denoting the corre-
sponding labels of inputs. Let ϵ : K × K → R denote a distance metric and
ϵD(f, f ′) := Ex∼Dϵ(f(x), f ′(x)) measure the expected disagreement between the
outputs of f, f ′ : X → K over a distribution D on X . For ∀f∗

S ∈ HS ⊆ H,∀f∗
T ∈

HT ⊆ H,∀h ∈ H : X → K where h(x)[y] indicates the probability of x ∈ X
labeled as y ∈ Y, the expected target error is bounded by
3 see proofs in the supplemental material
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ϵT (h) ≤ ϵS(h) + ϵT (f
∗
S , f

∗
T ) + ϵT (h, f

∗
S)− |ϵS(f∗

S , f
∗
T )− ϵS(h, f

∗
T )|+ θ (1)

θ = 2ϵT (fS , f
∗
S) + ϵS(fS , f

∗
S) + 2ϵS(f

∗
T , fT ) + ϵT (f

∗
T , fT ) = θfS + θfT (2)

According to Theorem 1, we show that the expected target error ϵT (h) :=
ϵT (h, fT ) is bounded by the expected source error ϵS(h) := ϵS(h, fS), the dis-
crepancy between domains [ϵT (f∗

S , f
∗
T )+ ϵT (h, f

∗
S)−|ϵS(f∗

S , f
∗
T )− ϵS(h, f

∗
T )|], and

the deviation from true labeling functions θ. The following Assumption 1 allows
us to derive the generalization error of Theorem 1 such that we can ignore the
residual term θ and relate target error bound with the empirical estimation of
source error and the discrepancy between domains.

Assumption 1. Let Ŝ, T̂ denote empirical samples with finite size from source
and target domains. Assume that there exists approximated labeling functions
f∗
S , f

∗
T such that the empirical deviation θ̂fS , θ̂fT are close enough to zero.

Definition 4 (Empirical Rademacher Complexity). Let F be a class of
real-valued functions : X → R and D̂ = {x1, ..., xm} a finite sample drawn i.i.d.
from a distribution D, the empirical Rademacher Complexity of F is defined by

ℜ̂D̂(F) =
1

m
Eσ[sup

f∈F

m∑
i=1

σif(xi)], (3)

where σi is an independent uniform random variable taking values in {−1,+1}.

Theorem 2 (Generalization Error3). Given Theorem 1 and Definition 4,
Assumption 1 and function space Fϵ

f,f ′ : X → ϵ(f(X), f ′(X)) bounded by M > 0,
for any δ > 0, with probability at least 1− 2δ, for ∀h ∈ H:

ϵT (h) ≤ ϵŜ(h) + ϵT̂ (f
∗
S , f

∗
T ) + ϵT̂ (h, f

∗
S)− |ϵŜ(f

∗
S , f

∗
T )− ϵŜ(h, f

∗
T )|+ 2[ℜ̂Ŝ(F

ϵ
h,fS )

+ ℜ̂T̂ (F
ϵ
f∗
S ,f∗

T
) + ℜ̂T̂ (F

ϵ
h,f∗

S
) + ℜ̂Ŝ(F

ϵ
f∗
S ,f∗

T
) + ℜ̂Ŝ(F

ϵ
h,f∗

T
) + ℜ̂Ŝ(F

ϵ
fS ,f∗

S
) (4)

+ 2ℜ̂Ŝ(F
ϵ
fT ,f∗

T
) + ℜ̂T̂ (F

ϵ
fT ,f∗

T
) + 2ℜ̂T̂ (F

ϵ
fS ,f∗

S
)] + 3M(5

√
log 9

δ

2m
+ 6

√
log 9

δ

2n
)

In the following part, we introduce the techniques from PU learning to estimate
the expectation over source domain S by the incomplete source domain S′ and
target domain T for the open-set scenario.

Definition 5 (Unknown Predictive Discrepancy). Let υ : K × K → R
denote the Unknown Predictive Discrepancy as a distance metric and υD(f, f ′) :=
Ex∼Dυ(f(x), f ′(x)) measure the expected disagreement between the K-th outputs
of f, f ′ : X → K over a distribution D on X . Let eK : X → [0, ..., 1] ∈ K denote
a function that can predict any input as unknown. The deviation from eK for
a hypothesis h ∈ H is referred to as the shorthand υD(h) := υD(h, eK) that
measures the probability that samples from D have not been classified as unknown.
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Assumption 2. Let Si = PS(x|y = i), T i = PT (x|y = i) denote class condi-
tional distributions, S′ = PS(x|y ≠ K), T ′ = PT (x|y ̸= K) indicate incomplete
domains that do not contain unknown class SK , TK . Given a feature extractor
g : X ⊆ RD → Z ⊆ RF , assume that the feature space can be aligned by UDA
techniques such that ZK = PSK (z) = PTK (z), Z ′ = PS′(z) = PT ′(z).

Proposition 1. Let h ∈ HFg : Z → K denote the decomposed hypothesis where
h ◦ g ∈ H. Given Definition 5, Assumption 2, υSK (h ◦ g) = υTK (h ◦ g) that
represents probability that samples from SK have not been classified as unknown
class, is equivalent to ϵSK (h◦g) that measures the classification error on unknown
class according to the definition.

Lemma 1 (Estimated Source Error3). Let
∑K

i=1 π
i
S = 1,

∑K
i=1 π

i
T = 1

denote the label distribution of S and T respectively. Given Proposition 1, the
expected error on S can be estimated by the error on S′ and Unknown Predictive
Discrepancy (Definition 5) on T with a mild condition that πK

S = πK
T = 1− α:

ϵS(h ◦ g) = α[ϵS′(h ◦ g)− υS′(h ◦ g)] + υT (h ◦ g) (5)

Remark 1. According to Definition 5, minimizing υT (h ◦ g) means classifying
target samples as the unknown class. In practice, a multiplier β < 1 is applied
on υT (h ◦ g) to prevent all target samples from being recognized as unknown.

To reformulate the intractable discrepancy ϵS(f
∗
S , f

∗
T ), ϵS(h, f

∗
T ) in Theorem 1,

we decompose the approximated labeling functions given feature extractor g such
that f⋆

S ◦ g = f∗
S , f

⋆
T ◦ g = f∗

T where f⋆
S ∈ HSg ⊆ HFg , f

⋆
T ∈ HTg ⊆ HFg . We

further define ϵ in a way such that, under some circumstances, it is equivalent to
the Unknown Predictive Discrepancy for ∀f ∈ HFg

3:

ϵTK (f ◦ g, f⋆
T ◦ g) = υTk(f ◦ g, f⋆

T ◦ g) (6)

Corollary 1. Given Assumption 2, the feature extractor g can align the feature
distributions of source and target domain such that the expectation over SK is
equal to that over TK , which leads Eq. (6) to: ϵSK (f◦g, f⋆

T ◦g) = ϵTK (f◦g, f⋆
T ◦g) =

υTK (f ◦ g, f⋆
T ◦ g) = υSK (f ◦ g, f⋆

T ◦ g).

Lemma 2 (Estimated Discrepancy3). Given Corollary 1, analogous to
Lemma 1, the discrepancy measured on source domain ϵS(f

∗
S , f

∗
T ), ϵS(h, f

∗
T ) can

be estimated by the discrepancy on S′ and Unknown Predictive Discrepancy
(Definition 5) with a mild condition that πK

S = πK
T = 1− α:

{
ϵS(f

⋆
S ◦ g, f⋆

T ◦ g) = α[ϵS′(f⋆
S ◦ g, f⋆

T ◦ g)− υS′(f⋆
S ◦ g, f⋆

T ◦ g)] + υT (f
⋆
S ◦ g, f⋆

T ◦ g)
ϵS(h ◦ g, f⋆

T ◦ g) = α[ϵS′(h ◦ g, f⋆
T ◦ g)− υS′(h ◦ g, f⋆

T ◦ g)] + υT (h ◦ g, f⋆
T ◦ g)

(7)
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Definition 6 (Overall Loss of PUJE). Let Ŝ′, T̂ denote empirical data from
S′, T . Given a feature extractor g : X ⊆ RD → Z ⊆ RF , decomposed hypothesis
and approximated labeling functions h, f⋆

S , f
⋆
T ∈ HFg : Z → K, replacing the

intractable terms in Theorem 2 with Eqs. (5) and (7) and ignoring the Rademacher
Complexity terms, the overall loss of PUJE can be regrouped as the sum of
classification loss Lcls and the discrepancy between domains Ldis:

Lpuje = α[ϵŜ′(h ◦ g)− υŜ′(h ◦ g)] + βυT̂ (h ◦ g) + ϵT̂ (f
⋆
S ◦ g, f⋆

T ◦ g) + ϵT̂ (h ◦ g, f⋆
S ◦ g)

−|υT̂ (f
⋆
S ◦ g, f⋆

T ◦ g)− υT̂ (h ◦ g, f⋆
T ◦ g) + α[ϵŜ′(f

⋆
S ◦ g, f⋆

T ◦ g)
+υŜ′(h ◦ g, f⋆

T ◦ g)− ϵŜ′(h ◦ g, f⋆
T ◦ g)− υŜ′(f

⋆
S ◦ g, f⋆

T ◦ g)]|
= Lcls(h; g) + Ldis(f

⋆
S , f

⋆
T , h; g) (8)

4 Methodology

In this section, we first define Approximated Labeling Function Space HSg
,HTg

such that the intractable Ldis(f
⋆
S , f

⋆
T , h; g) due to unknown f⋆

S , f
⋆
T can be upper

bounded by supf ′
S∈HSg ,f

′
T∈HTg

Ldis(f
′
S , f

′
T , h; g). To fulfill Eq. (6), we propose

Open-set Margin Discrepancy to quantify ϵ that measures the disagreement
between classifiers. We lastly show the entire training algorithm.

4.1 Approximated Labeling Function Space

Proposition 2. Let HS ,HT : X → K be two sets of functions that can minimize
a part of the empirical residual θ̂S , θ̂T respectively, f∗

S ∈ HS , f
∗
T ∈ HT must hold

as f∗
S , f

∗
T can minimize the entire θ̂ given Assumption 1. Accordingly, decomposed

functions f⋆
S , f

⋆
T must lie in HSg

= {f |∀f ◦ g ∈ HS},HTg
= {f |∀f ◦ g ∈ HT }

such that a sufficient condition of the following inequality: Ldis(f
⋆
S , f

⋆
T , h; g) ≤

supf ′
S∈HSg ,f

′
T∈HTg

Ldis(f
′
S , f

′
T , h; g) is fulfilled.

Definition 7 (Approximated Labeling Function Space). Let LHS
, LHT

denote a part of the empirical residual θ̂fS , θ̂fT respectively. Let f⋆
S ◦ g = f∗

S ∈
HS , f

⋆
T ◦ g = f∗

T ∈ HT denote the decomposed approximated labeling functions
where f⋆

S ∈ HSg ⊆ HFg , f
⋆
T ∈ HTg ⊆ HFg . Given Proposition 2, Approximated

Labeling Function Space HSg ,HTg can be defined as the sets whose members
f ′
S , f

′
T ∈ HFg

can minimize LHS
, LHT

:

{
HSg

= {f ′
S | argming,f ′

S∈HFg
LHS

(f ′
S ; g) := Lcls(f

′
S ; g)}

HTg
= {f ′

T | argming,f ′
T∈HFg

LHT
(f ′

T ; g) := (1− γ)Lcls(f
′
T ; g) + γLreg}

(9)

HSg consists of functions minimizing the expected error on S, which can be
estimated by Lemma 1. To build a reliable function space HTg without target
labels, we approximate the target error with the weighted average (γ ∈ [0, 1])
of error rate on labeled samples and a semi-supervised regularization term
Lreg = Lent + Lpse + ωLcon.
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Regularized Entropy Minimization As introduced in [11,27,31], we impose a
class balance prior that can penalize classifiers with complex decision boundaries
on entropy minimization [12] to yield a more sensible solution:

Lent = −Ex∈T̂

∑
y∈Y

f ′
T (g(x))[y] log f

′
T (g(x))[y]

+
∑

y∈Y
Ex∈T̂ f

′
T (g(x))[y] logEx∈T̂ f

′
T (g(x))[y] (10)

Pseudo Labeling As introduced in [30, 31], for input x ∈ T̂ and its random
augmentation x′ [5], we minimize cross entropy for x with pseudo labels of x′:

Lpse = −Ex∈T̂ log f ′
T (g(x))[argmaxy∈Y h(g(x′))[y]] (11)

Consistency Regularization As introduced in [14, 29], we penalize the differ-
ence of the outputs for input x ∈ T̂ and its random augmentation x′:

Lcon = Ex∈T̂ |f
′
T (g(x))− f ′

T (g(x
′))| (12)

4.2 Open-set Margin Discrepancy

Definition 8 (Induced Labeling Function). Let f : X → K denote a multi-
class labeling function, where f(x)[y] indicating y-th element of the output f(x) for
the probability of x classified as y. Thus an induced labeling function l◦f : X → Y
is given by: l(f(x)) = argmaxy∈Y f(x)[y].

Definition 9 (Open-set Margin Discrepancy (OMD)). Let y = l(f(x)), y′ =
l(f ′(x)) denote the predictions on input x from f, f ′ : X → K given Definition 8.
Open-set Margin Discrepancy between f, f ′ over a distribution D is given by

ϵD(f, f ′) = Ex∼D[omd(f(x), f ′(x))] (13)
omd(f(x), f ′(x)) = max(| log(1− f(x)[y])− log(1− f ′(x)[y])|,

| log(1− f(x)[y′])− log(1− f ′(x)[y′])|) (14)

For OUDA, generally the classifier is not discriminative for unknown class K
due to the lack of labeled samples to reduce the misclassification rate. To address
this, we model log(1− f(x)[K]) that has a more stable gradient.

Remark 2. According to Definition 5, υD(f, f ′) measures the expectation of
disagreement on the K-th output between two functions f, f ′ : X → K over a
distribution D, which can also indicate the difference between probabilities of
categorizing inputs as known classes. To fulfill Eq. (6), we quantify υD(f, f ′) as:

υD(f, f ′) = Ex∼D| log(1− f(x)[K])− log(1− f ′(x)[K])| (15)
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Algorithm 1 PUJE

Input: incomplete source data Ŝ′; unlabeled target data T̂
Output: labeling functions f ′

S , f
′
T ; feature extractor g; hypothesis h

Parameter: trade-off parameter λ; learning rate η; known class ratio estimator α
for epoch = 1, 2, . . . do

Step 1: estimate known class ratio α on T with prediction of g, h
Step 2: optimize g, f ′

S , f
′
T to satisfy the approximated labeling function space

(g, f ′
S , f

′
T )← (g, f ′

S , f
′
T ) + η∆(g, f ′

S , f
′
T )

∆(g, f ′
S , f

′
T ) = −

∂(LHS
(f ′

S ;g)+LHT
(f ′

T ;g))

∂(g,f ′
S
,f ′

T
)

Step 3: maximize the discrepancy w.r.t. f ′
S , f

′
T within the function space

(f ′
S , f

′
T )← (f ′

S , f
′
T ) + η∆(f ′

S , f
′
T )

∆(f ′
S , f

′
T ) = −

∂(LHS
(f ′

S ;g)+LHT
(f ′

T ;g)−λLdis(f
′
S ,f ′

T ,h;g))

∂(f ′
S
,f ′

T
)

Step 4: minimize the entire target error bound w.r.t. g, h for fixed f ′
S , f

′
T

(g, h)← (g, h) + η∆(g, h)

∆(g, h) = − ∂(Lcls(h;g)+λLdis(f
′
S ,f ′

T ,h;g))

∂(g,h)

end for

4.3 Training Algorithm

Given the feature extractor g : X ⊆ RD → Z ⊆ RF and hypotheses h, f ′
S , f

′
T ∈

HFg : Z → K, we introduce a trade-off parameter λ to balance the classification
loss and discrepancy as Eq. (16). During each epoch, we first estimate the known
class ratio α (initially set to 1) in target data by the predictions of h. Then we
train the hypothesis h, approximated labeling functions f ′

S , f
′
T , feature extractor

g to minimize the error on labeled data Lcls with hypothesis space constraints
LHS

, LHT
, while optimizing the discrepancy Ldis adversarially by the min-max

game over g and f ′
S , f

′
T (Algorithm 1):

{
minf ′

S ,f ′
T∈HFg

LHS
(f ′

S ; g) + LHT
(f ′

T ; g)− λLdis(f
′
S , f

′
T , h; g)

minh∈HFg ,g
LHS

(f ′
S ; g) + LHT

(f ′
T ; g) + Lcls(h; g) + λLdis(f

′
S , f

′
T , h; g)

(16)

4.4 Intuition

In this section, we intuitively explain how our method can align the source and
target domains while separating the unknown in Fig. 2. According to [24], unlike
the entropy minimization that tends to cut through unlabeled data, consistency
regularization helps to draw a manifold-aware decision boundary. Based on this
conclusion, the decision boundary of f ′

T induced by consistency regularization
Lcon can preserve the cluster structure (Fig. 2a). According to Algorithm 1,
f ′
S tries to maximize Ldis while classify target samples as unknown class to

minimize LHS
(f ′

S ; g) (Definition 7 and Lemma 1), which can lead to a new
decision boundary shown in Fig. 2b. Meanwhile, feature extractor g tries to
minimize Ldis by pushing target samples close to f ′

S towards source clusters,



10 D.Zhang et al.

(a) minf′
T

LHT
(b) minf′

S
(LHS

− Ldis) (c) ming Ldis

Fig. 2: Intuitive explanation of the mechanism of the proposed PUJE in Algorithm 1.
(a) LHT includes consistency regularization Lcon that helps to draw a manifold-aware
decision boundary for f ′

T (Step 2); (b) f ′
S can increase Ldis by classifying most of the

unlabeled target samples as unknown, which also decreases LHS (Step 3); (c) feature
extractor g pushes unlabeled target samples close to the decision boundary of f ′

S towards
source cluster, while those close to f ′

T towards outside to reduce Ldis, which can lead
to a separated unknown cluster (Step 4).

while those close to f ′
T towards outside such that unlabeled target samples far

from source clusters can be eventually separated and grouped into a new cluster
for the unknown progressively as illustrated in Fig. 2c.

5 Evaluation

We evaluated our proposal on two benchmarks, Office-Home and Syn2Real-O. In
the implementation, the Lreg weight γ and the trade-off parameter λ were set to
0.1 and 0.01 according to [37]. In addition, we empirically set PU coefficient β to
0.03 and consistency coefficient ω to 20 for Office-Home and 5 for Syn2Real-O.
All experiments were conducted with the ImageNet [6] pre-trained ResNet-50 [13]
as the feature extractor g and 2-layer linear networks for classifiers f ′

S , f
′
T , h.

We trained the model by Stochastic Gradient Descent optimizer with a 0.001
learning rate annealed according to [9], 24 batch-size, a momentum of 0.9. We
quantitatively compare our results against various OUDA baselines, including
OSBP [28], STA [17], DAOD [8], PGL [22], ROS [3], OSLPP [34] and ANNA [15].

Evaluation Metrics To evaluate the proposed method and the baselines, we
utilize the widely used measures [22, 28], i.e., normalized accuracy for all classes
(OS), normalized accuracy for the known classes only (OS⋆) and harmonic mean
HOS=2(OS⋆ × UNK)/(OS⋆ + UNK) [3,15,18,34].

Office-Home [33] is a widely-used domain adaptation benchmark, which consists
of 15,500 images from 65 categories and four domains: Art (Ar), Clipart (Cl),
Product (Pr), and Real-World (Rw). Following the same splits used in previous
methods [22], we select the first 25 classes in alphabetical order as the known
classes and group the rest as the unknown.
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Table 1: Accuracy of ResNet-50 model fine-tuned on Office-Home dataset (OS)

METHOD Pr→Ar Pr→Cl Pr→Rw Rw→Ar RW→Cl Rw→Pr
UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS

OSBP 47.1 65.3 64.6 38.3 48.7 48.3 27.0 81.6 79.5 37.1 73.5 72.1 29.3 55.3 54.3 37.7 81.9 80.2
STA 77.0 48.4 49.5 95.4 40.8 42.9 59.1 77.3 76.6 71.2 68.6 68.7 61.0 45.4 46.0 58.9 74.5 73.9

DAOD 44.3 67.7 66.8 44.7 60.3 59.7 40.8 85.0 83.3 49.8 73.2 72.3 47.4 60.4 59.9 56.8 82.8 81.8
PGL 34.7 73.7 72.2 38.4 59.2 58.4 27.6 84.8 82.6 6.1 81.5 78.6 25.1 66.8 65.0 38.0 84.8 83.0
PUJE 38.4 74.8 73.4 42.2 64.4 63.6 37.9 87.7 85.8 23.4 81.0 78.8 39.2 71.2 70.0 39.1 88.2 86.3

METHOD Ar→Cl Ar→Pr Ar→Rw Cl→Rw Cl→Pr Cl→Ar MEAN
UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS UNK OS⋆ OS

OSBP 28.6 57.2 56.1 25.8 77.8 75.8 23.0 85.4 83.0 33.0 77.2 75.5 16.7 71.3 69.2 32.1 65.9 64.6 31.3 70.1 68.6
STA 64.1 45.9 46.6 62.0 67.2 67.0 66.2 76.6 76.2 57.4 65.2 64.9 60.2 57.6 57.7 72.7 49.3 50.2 67.1 59.7 60.0

DAOD 71.1 55.5 56.1 66.6 69.2 69.1 63.7 79.3 78.7 54.8 78.2 77.3 54.6 70.2 69.6 55.1 62.9 62.6 54.1 70.4 69.8
PGL 19.1 63.3 61.6 32.1 78.9 77.1 40.9 87.7 85.9 5.3 85.9 82.8 24.5 73.9 72.0 33.8 70.2 68.8 27.1 75.9 74.0
PUJE 57.1 66.6 66.3 52.1 82.8 81.6 45.2 88.9 87.2 55.9 81.8 80.8 51.4 81.5 80.3 42.5 71.0 69.9 43.7 78.3 77.0

Table 2: Accuracy of ResNet-50 model fine-tuned on Syn2Real-O dataset. ∗ indicates
our re-implementation with the officially released code.

METHOD plane bcycl bus car horse knife mcycl person plant sktbrd train truck UNK OS⋆ OS HOS
OSBP 73.6 57.9 58.2 65.2 67.4 29.5 84.1 47.0 67.8 5.7 89.1 0.5 66.6 53.8 54.8 59.5
STA 64.1 70.3 53.7 59.4 80.8 20.8 90.0 12.5 63.2 30.2 78.2 2.7 59.1 52.2 52.7 55.4
PGL 81.5 68.3 74.2 60.6 91.9 45.4 92.2 41.0 87.9 67.5 79.2 6.4 49.6 66.8 65.5 56.9
PGL∗ 81.3 77.5 66.5 71.7 90.6 35.7 92.4 41.2 82.6 46.9 82.3 4.9 59.6 64.5 64.1 62.0
ANNA 41.2 54.6 39.7 59.4 51.2 25.6 82.6 54.8 78.9 10.5 76.6 2.0 67.4 48.1 49.6 56.1
PUJE 90.7 73.8 75.1 72.4 77.8 33.8 91.2 58.8 79.5 46.5 84.9 5.1 69.0 65.8 66.0 67.3

Syn2Real-O [26] is a more challenging synthetic-to-real benchmark, which
is constructed from the VisDA-17 [25]. The Syn2Real-O dataset significantly
increases the ratio of unknown data in the target domain to 0.9 by introducing
additional unknown samples. In this dataset, the source domain contains training
data from the VisDA-17 as the known set, and the target domain includes the test
data from the VisDA-17 (known set) plus 50k images from irrelevant categories
of MSCOCO [16] dataset (unknown set).

As reported in Tabs. 1 and 2, we observe that our method PUJE consistently
outperforms the state-of-the-art results, improving OS and HOS by 3.0% and
5.3% on the benchmark datasets of Office-Home and Syn2Real-O respectively.
Note that our proposed approach provides significant performance gains for the
more challenging dataset of Syn2Real-O that requires knowledge transfer across
different modalities. In the sub-tasks with a larger domain shift, e.g., Rw→Cl
and Pr→Cl in Office-Home, we can observe similar results demonstrating the
strong adaptation ability of the proposed framework. PGL reported a higher
OS score in Syn2Real-O, but we cannot reproduce the results with the officially
released code. During the re-implementation based on their early stop strategy,
we found the UNK was around 30%, which is far below the reported score. A
potential reason to explain this is that maybe they did not remove the unknown
category from the source data.
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Table 3: Accuracy of ResNet-50 model fine-tuned on Office-Home dataset (HOS)

METHOD Pr→Ar Pr→Cl Pr→Rw Rw→Ar RW→Cl Rw→Pr
UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS

ROS 64.3 57.3 60.6 71.2 46.5 56.3 78.4 70.8 74.4 70.8 67.0 68.8 73.0 51.5 60.4 80.0 72.0 75.7
OSLPP 76.2 54.6 63.6 67.1 53.1 59.3 71.2 77.0 74.0 75.0 60.8 67.2 64.3 54.4 59.0 70.8 78.4 74.4
ANNA 70.3 63.0 66.5 74.8 54.6 63.1 78.9 74.3 76.6 77.3 66.1 71.3 73.1 59.7 65.7 81.0 76.4 78.7
PUJE 77.8 56.9 65.7 76.8 51.2 61.5 75.2 80.1 77.5 67.3 71.1 69.1 77.9 62.4 69.3 70.5 85.8 77.4

METHOD Ar→Cl Ar→Pr Ar→Rw Cl→Rw Cl→Pr Cl→Ar MEAN
UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS UNK OS⋆ HOS

ROS 74.1 50.6 60.1 70.3 68.4 69.3 77.2 75.8 76.5 72.2 65.3 68.6 71.6 59.8 65.2 65.5 53.6 58.9 72.4 61.6 66.2
OSLPP 67.1 55.9 61.0 73.1 72.5 72.8 69.4 80.1 74.3 73.9 67.2 66.9 73.3 61.6 66.9 79.0 49.6 60.9 71.7 63.8 67.0
ANNA 78.7 61.4 69.0 79.9 68.3 73.7 79.7 74.1 76.8 80.2 66.9 73.0 73.6 64.2 68.6 73.1 58.0 64.7 76.7 65.6 70.7
PUJE 83.5 58.5 68.8 78.9 79.6 79.3 76.3 82.1 79.1 80.6 71.2 75.6 72.8 71.4 72.1 81.2 54.7 65.4 76.6 68.8 71.7

Table 4: Ablation studies of semi-supervised regularization losses. We report the
Accuracy (%) on Office-Home of A → R and C → P using a ResNet50 backbone.

Config. Ar→Pr Cl→Rw
UNK OS⋆ OS UNK OS⋆ OS

default 52.1 82.8 81.6 55.9 81.8 80.8
w/o Lpse 69.6 78.1 77.8 64.8 77.8 77.3
w/o Lcon 26.3 81.7 79.6 33.3 80.9 79.1
w/o Lent 50.2 81.1 79.9 53.9 80.5 79.5

HOS Metric Instead of OS score, [18] proposed the harmonic mean of OS⋆ and
unk, HOS=2(OS⋆ × UNK)/(OS⋆ + UNK) to penalize large gaps between OS⋆

and unk. We agree that the OS score does not reflect UNK when the number
of known classes grows. However, the HOS score is still unfair. OS⋆ and UNK
are equally valued in HOS, but UNK is much easier to improve than OS⋆ which
depends on the power of the adaptation algorithm. [15] utilizes a weak adaptation
algorithm based on [28] that leads to a relatively loose alignment (Fig. 4) on
the feature space of source and target domains such that unlabeled data is
more frequently assigned to the unknown class. We believe that if a method can
achieve a high OS⋆ score, it is possible to obtain a decent HOS score by tuning
hyper-parameters or additional losses. For our proposal, we can increase β = 0.25
to improve UNK at the sacrifice of OS⋆ (Tab. 3).

Ablation Study To investigate the impact of the semi-supervised regularization,
we compare three variants of the PUJE model on the Office-Home dataset shown
in Tab. 4. Without Lpse, OS⋆ decreases because it can no longer leverage the
pseudo labels that can help to build reliable hypothesis space HTg

(Definition 7).
Without Lcon, UNK drops as it is not likely to draw a manifold-aware decision
boundary that is beneficial to the separation of unknown data (Fig. 2a).

Robustness against Varying Openness To verify the robustness of the
proposed PUJE, we conducted experiments on the Syn2Real-O with the openness
varying in {0.25, 0.5, 0.75, 0.9}. Here, openness is defined by the ratio of unknown
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(a) PU Coefficient (b) SSL Coefficient (c) Openness

(d) Trade-off in Ar→Cl (e) Convergence in Ar→Cl (f) Convergence in Rw→Cl

Fig. 3: (a)-(b): sensitivity to varying loss coefficient β, ω verified in Ar→Pr and Cl→Rw
tasks; (c): performance comparisons w.r.t. varying openness of the Syn2Real-O task;
(d): training cure of the proposed algorithm that characterizes a trade-off between the
classification accuracy on known classes and the unknown class; (e)-(f): convergence
analysis of the Office-Home task compared to other baselines with confidence intervals.

samples in the entire target data. We show the results of PGL and PUJE in Fig. 3c.
Note that the PGL approach heuristically sets the hyper-parameter according
to the true unknown ratio to control the openness, while PUJE automatically
estimates the weight α during the training procedure. We observe that PUJE
consistently outperforms the baseline by a large margin, especially on unknown
recognition, which confirms its robustness to the change in openness.

Training Curve In Fig. 3d, we illustrate the recognition performance of PUJE
over training steps in the Ar→Cl task. All metrics show a performance gain
over the first several steps. Then, the normalized accuracy OS⋆ experiences a
downward while the accuracy for the unknown class keeps improving, which
characterizes a trade-off between OS⋆ and UNK. In addition, the behavior of
f ′
S , f

′
T meets the expectation of our alignment mechanism where f ′

S starts to
detect unknown data, which is followed by f ′

T (Fig. 2b). From Figs. 3e and 3f,
we observe that some previous works [15, 22] do not converge at the reported
optimum, and they tackle this problem by ceasing the model updates before the
score starts to decline. However, this early stop strategy can fail without enough
labeled target data to validate the current performance. In contrast, our method
can reach a reliable convergence.

Sensitivity to PU & SSL Coefficient We show the sensitivity of our approach
to various PU and SSL loss coefficient β, ω. We tested the value of β from [0.01, 0.5]
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(a) OSBP (b) PGL (c) ANNA (d) PUJE

(e) OSBP (f) PGL (g) ANNA (h) PUJE

Fig. 4: Feature space visualized by t-SNE in (a)-(d): Office-Home; (e)-(h): Syn2Real-O.

in Ar→Pr task and ω from [5, 25] in Cl→Rw task while fixing other parameters
to the default setting. We can draw two observations from Figs. 3a and 3b: the
OS score is relatively stable, and the unknown recognition achieves a reliable
performance when coefficient β is within the interval of [0.02, 0.05]; Generally, a
larger ω, which is set for lower openness, will lead to a better performance on
recognizing unknown data while hurt the accuracy for known classes.

Feature Space Visualization To intuitively visualize the effectiveness of
OUDA approaches, we extracted features from the baseline models (OSBP,
PGL, ANNA) and our proposed model on the Ar→Cl task (Office-Home) and
Syn2Real-O task with the ResNet-50 backbone [13]. The feature distributions
were processed with t-SNE [23] afterward. As shown in Fig. 4, compared with
baselines, our method PUJE achieves a better alignment between source and
target distributions, especially when the domain shift is large. Benefiting from
our joint error-based adversarial alignment mechanism, the extracted feature
space, including the cluster of unknown target data, has a more discriminative
class-wise decision boundary.

6 Conclusion

We have addressed the open-set domain shift problem by introducing a novel
learning theory based on multi-class positive-unlabeled learning that can reduce
the open-set risk and the joint error. Experiments show that our proposed learning
theory performs consistently better on challenging object recognition benchmarks
for open-set adaptation with significant domain gaps and label shifts.
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