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Abstract. Estimating depth from a sequence of posed RGB images is a
fundamental computer vision task, with applications in augmented real-
ity, path planning etc. Prior work typically makes use of previous frames
in a multi view stereo framework, relying on matching textures in a local
neighborhood. In contrast, our model leverages historical predictions by
giving the latest 3D geometry data as an extra input to our network.
This self-generated geometric hint can encode information from areas of
the scene not covered by the keyframes and it is more regularized when
compared to individual predicted depth maps for previous frames. We
introduce a Hint MLP which combines cost volume features with a hint
of the prior geometry, rendered as a depth map from the current camera
location, together with a measure of the confidence in the prior geometry.
We demonstrate that our method, which can run at interactive speeds,
achieves state-of-the-art estimates of depth and 3D scene reconstruction
in both offline and incremental evaluation scenarios.

1 Introduction

High quality depth estimations have been shown to be effective for virtual oc-
clusions [65], path planning [14], object avoidance and a variety of augmented
reality (AR) effects [14]. For all these applications, we need per-frame depths to
be generated at interactive speeds. While the best quality depth maps can be
achieved via offline methods e.g . [27, 73], these are not suitable for interactive
applications. For interactive use, depths are typically estimated via a multi-view
stereo (MVS) approach, where a network takes as input a target frame together
with nearby posed and matchable source frames to build a cost volume [30] and
estimate a depth map as the output of a neural network [5, 7, 52,75,76].

Matchability needs the texture on the visible surfaces to be similar and visible
in both source and target frames, though this is often not possible e.g . due
to occlusions or distance from the surface. We make the case that each time
we estimate depth for a location, it is unlikely that this is the first time we
have seen this place. We might revisit a location in the short term, for example
turning to look at a kitchen appliance we were last looking at a few seconds ago.
Alternatively we may revisit a location after a period of time has passed, for
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Fig. 1: A depth hint and confidence are rendered from a prior estimate of geometry
and given as input to our method. This enables it to correctly predict the depth for
ambiguous parts of the scene.

example entering a room we last visited a week prior. In this work, we argue
that these short and long-term geometric ‘snapshots’ of the scene can be a crucial
source of information which can be used to gain higher quality instantaneous
depths. We introduce a system that maintains a low-cost global representation of
3D geometry as a truncated signed distance function (TSDF). When predicting
depth for a new frame, we render a depth map from the TSDF at the current
camera pose and give that as input to our depth estimator (see Figure 1).

Our experiments show that, surprisingly, just naively passing in a depth ren-
der of a global mesh into a depth estimation network fails to bring performance
gains. Instead, we introduce a carefully-designed architecture to make use of
such prior geometry ‘hints’ as input, and show that the same network can make
use of these hints both from the short and long term. We validate our approach
via extensive experiments and ablations, and show that our method achieves a
new state-of-the-art on depth estimation and reconstruction, as validated on the
challenging ScanNetV2, 7Scenes, and 3RScan datasets. Our contributions are:

1. A system which can use prior estimations of geometry to improve instan-
taneous depth estimates. If a hint isn’t available for a frame, our system
gracefully falls back to the performance of a strong baseline model. We also
extend this to include historical, long-term hints into our framework, en-
abling the use of hints when revisiting a location after a period of time.

2. As geometry is constructed in real-time, certain parts of it may still be
unreliable. We therefore propose an architecture which incorporates this ge-
ometry alongside a measure of its confidence. This combined information is
integrated with multi-view stereo cost volume data using a ‘Hint MLP’.

3. We introduce a new evaluation protocol that pays more careful consideration
to the limitations of the ground-truth mesh, and evaluate ours and several
baselines with this new evaluation.

2 Related Work

Multi-view Stereo. Depth estimation from posed monocular videos is a long-
standing problem in computer vision. Traditional patch-based solutions [17, 53]
have been outpaced by learning strategies [25,72], where a cost volume is built by
warping features from multiple source frames at different depth hypotheses [10].



DoubleTake: Geometry Guided Depth Estimation 3

The resulting 4D volume can be regularized by 3D convolutions [72], which are
expensive in terms of memory. To tackle this, pyramidal approaches [20, 71]
compute multiple cost volumes at different resolutions with a narrow set of hy-
potheses, and depths computed at lower scales can provide geometric priors to
following computation [3,77]. SimpleRecon [52] shows that accurate depths can
be achieved only via 2D convolutions, using cost volumes enriched by additional
metadata, while FineRecon [59] further improves the results with a resolution-
agnostic 3D training loss and a depth guidance strategy. These multi-view stereo
(MVS) approaches have several failure cases: (i) unmatched surfaces, e.g . empty
areas in the cost volume where no source frames have a matching view; (ii)
depth planes are sparser at greater depths; (iii) greater depths require wider
baselines and many more keyframes. Our proposed approach helps overcome
these problems by injecting prior information into the network based on previ-
ously computed geometry data.

Use of Input Sequences. For example, [8,36,58] warp previous predictions or
features and use these as input to the current prediction, in some cases together
with a confidence estimate [58]. We also use an estimate of confidence, but our
geometry priors are from a global reconstruction, enabling priors from long be-
fore in time. Instead of regularizing the cost volume, CER-MVS [41] iteratively
updates a disparity field using recurrent units. Recurrent layers [15] and Gaus-
sian Processes [24] have also been used to ingest sequence data. Our work uses
sequences but we do not rely on generic layers to encode the prior information.
Instead, we directly extract prior knowledge from a 3D reconstruction of the
scene to guide the model. An alternative use of sequences is to update predicted
depth maps or network weights at test time by optimizing image reconstruction
losses e.g . [4, 6, 27, 34, 38, 42, 56] . These methods require the entire sequence to
be seen ahead of time, and aren’t suitable for interactive applications.

Priors for Depth Estimation. When available, additional knowledge about
the scene might be injected to boost depth estimation methods. In autonomous
driving [19,43], for instance, LiDAR scans are often completed into a dense depth
map [9,39,40,68]. Similarly, sparse point clouds from Simultaneous Localization
And Mapping (SLAM) algorithms can be used as input to improve depth estima-
tors [69, 70]. However, these priors might be unevenly scattered or unavailable.
To tackle these issues, sparsity-agnostic methods [11, 63] and networks capable
of both predicting and completing depth maps [22] have been proposed. mvg-
MVS [47] uses depth data from a depth sensor to directly modulate values in
the cost volume. In contrast, our approach uses prior geometry generated from
our own estimates as an additional input to an MLP alongside the cost volume.
Khan et al . [32] convert per-frame depth estimates to temporally consistent
depth via a globally fused point cloud which is input into their final depth net-
work. Their focus is primarily temporal consistency; we compare with [32] and
find our approach achieves higher quality depths. Like us, 3DVNet [50] maintain
a global reconstruction to improve depth maps. However, their reconstruction
and depths are iteratively refined, precluding online use. We also employ priors
to improve current depth predictions. Unlike these prior works, we argue that
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previous predictions of the model itself, if properly managed, are strong hints
to improve current estimates for online depth estimation. Furthermore, we also
show that our model is robust even in the absence of such information.
3D Scene Reconstruction. Traditional methods for 3D reconstruction esti-
mate depths (e.g. from MVS), fuse them into a TSDF and extract a mesh via
Marching Cubes [37]. In contrast, feedforward volumetric methods [18,45,61,79]
directly estimate the volume occupancy (usually encoded as a TSDF), often
leveraging expensive 3D CNNs. Implicit representations [35, 46, 74] can gener-
ate high quality reconstructions via test-time optimization. These solutions are
computationally expensive as they typically require a per-scene optimization.
Neural Radiance Fields (NeRF) [44] and Gaussian Splatting [31] enable novel
view synthesis, but their meshes tend to be noisy and additional post-processing
steps [21,48] or a di�erent scene representation [33] might be necessary to gen-
erate consistent 3D representations. Extensions to NeRFs use structure-from-
motion point clouds and depth estimation to improve view synthesis [13,51,64]
or reconstructions [16,74]. These o�ine approaches require the whole video to be
seen ahead of time and are typically slow, making them unsuitable for interactive
applications. Conversely, our method e�ciently estimates depth maps using a 2D
MVS model boosted by its own predictions, unlocking accurate reconstructions
and depth estimates with a low overhead in computation.

3 Method

Our method takes as input a live online sequence of RGB images along with
their poses and intrinsics. The goal of our method is to predict a depth map for
the current frame given all frames that have come before it. To train our method
we assume we have access to a ground truth depth map for each training image.

Similar to previous MVS methods e.g. [52, 72], we rely on features matched
between the current frame and a few recent source frames to build a feature-based
cost volume. Our key contribution is to show how a 3D representation of the
scene, constructed from previous depth estimates, can be used as additional input
to our network to improve depth predictions for each new frame. In particular,
this geometric `hint' complements the likelihood depth estimated via multi-view-
stereo on the current and source frames. We incorporate this extra source of
information by combining it with the information provided by the cost volume
using a �Hint MLP.� An overview of our method can be seen in Fig. 2.

3.1 MVS background

Our method builds on SimpleRecon [52], a state-of-the-art depth estimation
method from posed images. Similar to other MVS methodse.g. [10,30,72], Sim-
pleRecon constructs a cost volume using multiple viewpoints of the same scene.
To compute the cost volume, SimpleRecon starts by extracting feature maps for
the current image as well as associated source frames. Extracted source-frame
features are then warped to the current camera at each hypothesis depth plane
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Fig. 2: Method overview. Like other MVS methods, we take as input a sequence
of RGB frames. Optionally, our network can additionally ingest a depth map rendered
from the 3D representation of the scene built up so far, encoded in a TSDF volume.
Alongside the rendered depth map, we include an estimate of how con�dent the global
geometry is at each point, visualized as vertex colors (purple is higher con�dence) on
the incremental mesh here. The depth predicted by our model is fused back into the
TSDF to update the 3D geometry incrementally. When no such rendered depth map
is available, our network gracefully falls back to our baseline model's performance.

and compared against features for the current frame. This comparison, together
with additional metadata, produces aC� D � H � W , feature volume with depth
likelihood estimates at each location, whereC is the channel dimension,D the
number of depth planes andH � W the dimensions of the feature maps. Amatch-
ing MLP is applied to each aggregated feature vector in parallel to obtain the
�nal cost volume with dimensions D � H � W . The advantage of this reduction
step is that the cost volume can then be processed using 2D convolutions, in con-
trast to methods that bypass this step and require expensive 3D convolutions.
A follow-up monocular prior head regularizes the volume using 2D CNNs and a
depth decoder �nally produces the output depth map.

3.2 Hint MLP

In addition to using source and target frames, our method allows the input of
a rendered depthand a con�dence map from a prior geometric representation of
the scene. Note that this geometry could be from the distant past, but it could
also be from the recent paste.g. as constructed incrementally from previous
frames we have recently seen. The rendered depth map is a 2D image of depth
values, where each pixel represents the rendered depth from the current camera
position to our prior estimate of geometry along that camera ray. The con�dence
map is a 2D image where each pixel gives an estimate of how certain we are that
the prior depth estimate is correct at that pixel, where values of1:0 indicate that
we have extremely high con�dence in the prior depth at this pixel and values of
0:0 mean a very low con�dence in the rendered geometry at this pixel.
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Fig. 3: Method detail. Our feature volume is reduced to a cost volume via a matching
MLP . Our Hint MLP then combines the multi-view-stereo cost volume with an estimate
of previously predicted geometry. For every location in the cost volume, the Hint MLP
takes as input (i) the visual matching score, (ii) the geometry hint, formed as the
absolute di�erence between the rendered depth hint and the depth plane at that cost
volume position, and (iii) an estimate of the con�dence of the hint at that pixel.

Following [52] we create a feature volume and apply amatching MLP to
each combined feature vector individually to give a matching score, creating a
cost volume with dimensionsD � H � W . Inspired by this, we use an additional
Hint MLP to combine the information from the cost volume with the rendered
depth and con�dence images. Like the matching MLP, the Hint MLP is applied
in parallel at each spatial location and depth plane in the feature volume. Our
Hint MLP takes as input a vector with three elements: (i) the matching score
from the cost volume, (ii) the geometry hint, de�ned as the absolute di�erence
between the TSDF rendered depth and the current depth plane and (iii) the
con�dence value at that pixel. For pixels where there isn't a rendered depth
value, for example because they haven't been seen before, we set the con�dence
to 0 and the geometry hint to � 1. This is done both at training and test time.

See Fig. 3 for an illustration of how the Hint MLP is incorporated into the
network architecture. We validate our choice of how to combine the di�erent
sources of information in our ablations in Section 4.3.

3.3 Maintaining persistent 3D geometry

In our work, we encode our persistent geometry as a truncated signed distance
function (TSDF). A TSDF is a volumetric representation of the scene that stores
at each voxel the distance (truncated and signed) from the voxel to the nearest
estimated 3D surface, together with a scalar con�dence value. Our TSDF is built
up using fused depth maps produced using our method at previous keyframes.
Rendered depth and rendered con�dence. For each new frame, given the
corresponding intrinsics and extrinsics, we render a depth map and a con�dence
map from the TSDF from the point of view of the camera. This is achieved using
marching cubes [37] to obtain a mesh, followed by a mesh rendering step. We
render the mesh using PyTorch3D [49], which runs on the GPU. The marching
cubes step takes 9.4ms and the mesh rendering step takes 9.2ms on average (see
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Section 4.2 for more timings). We obtain the con�dence map by sampling the
voxel con�dence channel in the TSDF with coordinates from the backprojected
rendered depth; this takes less than 1ms.
Updating the persistent 3D geometry. Once we have estimated a depth
map for a new frame we aggregate it into the current geometry estimate. Our
fusion follows In�niTAM [28, 29]. When updating the TSDF values we also
update the con�dence measures. The con�dence for a pixel with depthd is
c = 0 :025� max((1 � d̂)2; 0:25), whered̂ = ( d� depthmin )=(depthmax � depthmin )
is the depth value normalized to [0; 1]. This gives pixels with higher depths a
lower con�dence values, while the clamp to a minimum value of 0.25 ensures
that even distant predictions have some con�dence assigned.
Motivating our representations. We use TSDFs and meshes for our per-
sistent geometry as they are ubiquitous, lightweight in terms of memory and
runtime, and easy and quick to update and extract geometry from. This is un-
like other geometry representationse.g. NeRFs or other implicit methods, where
the geometry is more `baked-in' and harder to update and extract.

3.4 Sources of prior geometry

Our prior geometry can come from di�erent sources.

� When we see an environment for the very �rst time, i.e. we haven't previously
scanned this environment, the TSDF is built up incrementally as the camera
moves in the new environment. When the camera views a completely unseen
part of the environment, the network doesn't have access to a geometry hint
and must rely only on the cost volume. Over time, more and more of the
environment will be present in the geometry hints.

� Alternatively, when we revisit a location we have previously seen, we can
load previously generated geometry to use for geometry hints. In this sce-
nario, we assume the current camera position is in the same coordinate
system as the loaded geometry. However, we may �nd that some items have
moved since the original geometry was created. Our experiments, with the
3RScan dataset [66], evaluate precisely this scenario.

� Finally, if we want the best possible reconstruction from our feedforward
model we can runo�ine . Here, we use atwo-pass approach: We �rst run
the full RGB sequence through our systemwithout using hints to build an
initial TSDF. We then run the full sequence a second time, where the TSDF
generated on the �rst pass is used as the hint for every frame.

3.5 Training data generation

At test time, our Hint MLP is likely to encounter a range of scenarios: at the
start of sequences, for example, there may not be a geometry hint available.
At the other extreme, after a whole sequence has been observed, subsequent
predictions may have access to a hint for almost every input pixel. To ensure
our network is robust to di�erent test-time scenarios, we train with di�erent
randomly selected types of hints.
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For 50% of the training items we don't provide a geometry hint, instead
feeding � 1 as the rendered depth and0 as the con�dence; in this scenario, the
network must learn to rely only on the matching cost. For the other 50% of
the training items the network has access both to the matching cost and to
the rendered depth and rendered con�dence. We generate a dataset of geometry
hints by fusing depths from [52] into a training-time TSDF. 50% of the time that
we give a training-time hint it is rendered from the full and complete TSDF,
assuming the entire scene has been previously fused, and 50% a partial TSDF
fusing only frames up to the current training frame.

3.6 Implementation details

We train our model (and all our ablations) with a batch size of 16 on each of two
Nvidia A100 GPUs. We use a learning rate of1e� 4 that we drop by a factor of 10
at 70000and 80000steps. We train with an input dimension of 512� 384, and an
output dimension of 256� 192. During training, we color augment RGB images.
Our network follows that of [52], with the addition of our `Hint MLP' as described
above. This network uses an E�cientNetV2 S [62] encoder for the monocular
image prior and the �rst two blocks of a ResNet18 [23] encoder for generating
matching features for the cost volume. The decoder follows UNet++ [78]. Our
Hint MLP is small with two hidden layers, each comprising 12 neurons; this adds
2ms to our runtime. Full architecture details are given in the supplementary ma-
terial. Our training losses directly follow [52] and their all applied at the �nal
network output. Our Hint MLP does not require any intermediate supervision.
We select source frames for the cost volume with the strategy and hyperpa-
rameters from [15]. For evaluation of online methods, all source frames come
from the past in a sequence. For evaluation of o�ine methods, source frames
may come from anywhere in a sequence. For both `ours', SimpleRecon [52] and
DeepVideoMVS [15] we use the same TSDF fusion method. We fuse depth maps
to a maximum depth of 3:5m into a TSDF volume of 2cm resolution. For the
FineRecon [59] baseline we use a1cm voxel resolution.

4 Evaluation

We evaluate with three challenging 3D datasets, all acquired with a handheld
RGBD sensor. We train and evaluate onScanNetV2 [12] , which comprises
1,201 training scans, 312 validation scans, and 100 testing scans of indoor scenes.
We additionally evaluate our ScanNetV2 models on7-Scenes [55] without �ne-
tuning, following e.g. [52] and with the test split from [15]. We also evaluate on
3RScan [66] . This dataset captures the same environment in multiple separate
scans, between which objects' positions have changed. This tests our ability to
use scans captured in the past as `hints' for instantaneous depth estimates.
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Fig. 4: We introduce a more accurate mesh evaluation. (a) shows the ground
truth mesh, which contains many holes. (b) shows an example predicted mesh, here
from [59]. This is punished for being too complete, as [2]'s visibility mask (c) extends
beyond the ground truth, giving high Acc error on their prediction (d). Our new mask-
ing (e) is tighter to the ground truth mesh, giving a more meaningful error (f).

ScanNetV2 7Scenes

Abs Di� # Abs Rel# Sq Rel# � < 1:05" � < 1:25" Abs Di� # Abs Rel# Sq Rel# � < 1:05" � < 1:25"

DPSNet [26] .1552 .0795 .0299 49.36 93.27 .1966 .1147 .0550 38.81 87.07
MVDepthNet [67] .1648 .0848 .0343 46.71 92.77 .2009 .1161 .0623 38.81 87.70
DELTAS [57] .1497 .0786 .0276 48.64 93.78 .1915 .1140 .0490 36.36 88.13
GPMVS [24] .1494 .0757 .0292 51.04 93.96 .1739 .1003 .0462 42.71 90.32
DeepVideoMVS, fusion [15]* .1186 .0583 .0190 60.20 96.76 .1448 .0828 .0335 47.96 93.79
SimpleRecon [52] .0873 .0430 .0128 74.12 98.05 .1045 .0575 .0156 60.12 97.33
Ours (incremental) .0767 .0369 .0112 79.94 98.35 .0985 .0534 .0156 64.76 97.01

Ours (no hint) .0870 .0428 .0128 74.35 98.02 .1082 .0593 .0171 59.44 96.97
Ours (o�ine) .0627 .0306 .0092 86.46 98.62 .0858 .0466 .0133 71.74 97.61

Table 1: Depth evaluation on ScanNetV2 and 7Scenes. Unless stated otherwise,
predictions are computed incrementally, without access to future frames or frames from
previous scans of the scene. We highlight the best , second-best and third-best
methods per metric. Previous scores are from [15,52]. * [15] was boosted by computing
depths using three inference frames instead of two; they also use a custom 90/10 split.

4.1 Mesh evaluation metrics

We follow existing works [2,45] and report reconstruction metrics based on point
to point distances on sampled point clouds. ScanNetV2 ground truth meshes are
not complete, as the scan sequences don't have full coverage. This means meth-
ods which overpredict geometry not in the ground truth get unfairly punished.
TransformerFusion [2] use a visibility mask to trim predictions when computing
prediction to ground-truth distances. However, these masks are over-sized, and
include large areas of geometry which aren't present in the ground truth mesh.
We propose new visibility volumes using rendered depth maps of the ground-
truth meshes, which much tighter �t the ground truth meshes. Figure 4 shows
the di�erence between masks from [2] and our new proposed masks. More are
shown in the supplementary. We show results on both sets of masks in Tables 4
and 2, and we will release our updated masks for reproducibility.

4.2 Depth and reconstruction performance

Depth estimation. Table 1 shows our depth estimation performance on Scan-
NetV2 and 7Scenes in both incremental and o�ine modes (see Section 3.4 for de-
tails of these modes). Our incremental method outperforms all baseline methods
across most scores. Our o�ine approach outperforms all competitors including
our incremental method.
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Volumetric Acc # Comp# Chamfer# Prec" Recall " F-Score "

O
nl

in
e

DeepVideoMVS [15] No 6.49 6.97 6.73 .568 .595 .579
NeuralRecon [61] Yes 7.31 10.81 9.06 .453 .592 .511
SimpleRecon [52] (online) No 5.56 5.02 5.29 .631 .712 .668
Ours (incremental) No 4.92 5.49 5.20 .685 .701 .692

ATLAS [45] Yes 5.59 7.52 6.55 .671 .610 .637

O
�in

e

TransformerFusion [2] Yes 4.68 8.27 6.48 .698 .600 .644
VoRTX [60] Yes 4.38 7.23 5.80 .726 .651 .685
SimpleRecon [52] (o�ine) y No 5.25 4.86 5.05 .654 .725 .687
FineRecon [59] Yes 4.92 5.06 4.99 .687 .737 .710
Ours (o�ine) No 4.15 4.85 4.50 .743 .734 .738

Table 2: Mesh Evaluation on ScanNetV2 with new visibility masks . We
evaluate methods using the evaluation from [2] using our visibility masks that more
accurately represent the ground-truth mesh (Sec. 4.1). The `Volumetric' category in-
dicates whether a technique involves volumetric 3D reconstruction. Following [52], for
other Multi-View Stereo (MVS) methods that generate solely depth maps, we applied
conventional TSDF fusion for reconstruction. Chamfer distance is the mean of accu-
racy and completion and F-Score is the harmonic mean of precision and recall. y Like
Ours (o�ine), SimpleRecon [52] (o�ine) uses source frames from both past and future.

Reconstruction. For meshing results we separate all methods into `online'
and `o�ine': `Online' methods can produce meshes instantaneously, while `of-
�ine' methods are designed with the assumption that all frames are available at
once. Tables 4 and 2 show reconstruction performance both `online' and `o�ine'.
Our incremental model sets a new state-of-the-art for online reconstruction per-
formance, validating our approach to depth and reconstruction. See Figures 5
and 7 for qualitative comparisons with previous state-of-the-art. Ours (o�ine)
obtains even better results; we present these in the second section of the table,
where we compare against other o�ine reconstruction approachese.g. [2,59,60].
Our approach is �rst or second best in most metrics. Figure 8 shows the bene�t
running ours o�ine can bring.

Long-term hints on 3RScan. Our system can use long-term hintse.g. where
we revisit an environment we have �rst observed at some time in the past. We
use the 3RScan dataset [66] for this scenario, as this includes multiple scans
of the same location at di�erent times. We use the TSDF generated from a
previous visit as the hint for the current, online depth estimates. See Table 5
for our results, where we see the bene�t of using long-term hints vs baselines
which don't have access to hints, or an incremental version of our method. The
table also includes �gures showing how our method can gracefully cope with the
situation where the scene has changed since the hint TSDF was generated.

Timings. Our online, incremental system takes just 76.6ms to compute depth
for a single frame, as measured on an Nvidia A100. The majority of this time
(52.8ms) is running the forward pass of the depth network, while the remainder
is generating the hint and updating the TSDF. A version of our model with
smaller networks than [52] runs at 50.4ms per frame, see J in Table 3. This
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Abs Di� # Abs Rel# Sq Rel# RMSE# � < 1:05" � < 1:25"

A Ours without Hint MLP (as in SimpleRecon [52]) .0873 .0430 .0128 .1483 74.12 98.05
B Ours w/ online hint, without con�dence .0863 .0392 .0129 .1529 77.81 98.02
C Ours w/ hint & con�dence to cost volume encoder .0890 .0438 .0130 .1506 73.39 97.95
D Ours w/ warped depth as hint .0889 .0436 .0130 .1492 73.26 98.06
E Ours w/ hint-based variable depth planes [70] .0821 .0405 .0121 .1432 76.67 98.19
F SimpleRecon [52] w/ TOCD [32] .0880 .0437 .0134 .1505 74.19 97.83
G Ours w/ hint cost volume modulation [47] .0773 .0372 .0112 .1381 79.52 98.34
H Ours w/ single MLP for matching and hints .0773 .0371 .0112 .1381 79.56 98.35
I Ours (no hint) .0870 .0428 .0128 .1477 74.35 98.02
J Ours (incremental, fast) .0826 .0400 .0125 .1473 77.14 98.05
K Ours (incremental) .0767 .0369 .0112 .1377 79.94 98.35
L Ours o�ine w/ hint cost volume modulation [47] .0651 .0320 .0094 .1242 84.92 98.61
M Ours (o�ine) .0627 0306 .0092 .1225 86.46 98.62

Table 3: Incremental ablation evaluation. Scores are depth metrics on ScanNetV2.
See the text for descriptions of these variants, and the supplementary for full metrics.

Volumetric Acc # Comp# Chamfer # Prec" Recall" F-Score "

O
nl

in
e

DPSNet [26] No 11.94 7.58 9.77 .474 .519 .492
DELTAS [57] No 11.95 7.46 9.71 .478 .533 .501
DeepVideoMVS [15] No 5.84 6.97 6.41 .639 .595 .615
NeuralRecon [61] Yes 5.09 9.13 7.11 .630 .612 .619
SimpleRecon [52] (online) No 5.72 5.02 5.37 .682 .712 .696
Ours (incremental) No 4.70 5.49 5.09 .730 .701 .714
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COLMAP [53,54] No 10.22 11.88 11.05 .509 .474 .489
ATLAS [45] Yes 7.11 7.52 7.31 .679 .610 .640
3DVNet [50] Yes 6.73 7.72 7.22 .655 .596 .621
TransformerFusion [2] Yes 5.52 8.27 6.89 .729 .600 .655
VoRTX [60] Yes 4.31 7.23 5.77 .767 .651 .703
SimpleRecon [52] (o�ine) y No 5.37 4.86 5.12 .702 .725 .712
FineRecon [59] Yes 5.25 5.06 5.16 .779 .737 .756
Ours (o�ine) No 4.96 4.85 4.90 .752 .734 .742

Table 4: Mesh Evaluation on ScanNetV2 . Here we use the evaluation and visibility
masks from [2]. Note that VoRTX wins on accuracy, but its very sparse predictions
give a poor completion score.

compares toe.g. 58ms per frame update of [52] or 90ms of [61]. O�ine, we are
faster than close competitor FineRecon [59], taking on average 13.8s per scene
vs. [59]'s 48.1s. See Supplementary Material for a full breakdown of timings.

4.3 Ablations and variants

Table 3 shows ablations and variants of our approach in incremental mode. Row
A doesn't use a geometry hint or a Hint MLP at all in training or evaluation,
so it is functionally equivalent to [52]. Ablations C and H replace our Hint
MLP with alternatives methods; both of these score worse thanours (K). Our
use of a separate Hint MLP has an additional advantage that we can cache
the cost volume output for the second pass of o�ine mode. In B the network
has no access to con�dences, so it may incorrectly rely on under-construction
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