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Abstract. Differentiable surface rendering has significantly advanced
3D reconstruction. Existing surface rendering methods assume that the
local surface is planar, and thus employ linear approximation based on
the Singed Distance Field (SDF) values to predict the point on the sur-
face. However, this assumption overlooks the inherently irregular and
non-planar nature of object surfaces in the real world. Consequently, the
approximate points tend to deviate from the zero-level set, affecting the
fidelity of the reconstructed shape. In this paper, we propose a novel
surface rendering method termed CPT-VR, which leverages the Closet
Point Transform (CPT) and View and Reflection direction vectors to
enhance the quality of reconstruction. Specifically, leveraging the phys-
ical property of CPT that accurately projects points near the surface
onto the zero-level set, we correct the deviated points, thus achieving
an accurate geometry representation. Based on our accurate geometry
representation, incorporating the reflection vector into our method can
facilitate the appearance modeling of specular regions. Moreover, to en-
able our method to no longer be dependent on any prior knowledge of
the background, we present a background model to learn the background
appearance. Compared to previous state-of-the-art methods, CPT-VR
achieves better surface reconstruction quality, even for cases with com-
plex structures and specular highlights.

Keywords: Surface Rendering · 3D Reconstruction · Differentiable Ren-
dering · Closest Point Transform

1 Introduction

Differentiable rendering plays a crucial role in 3D content creation, especially
showing greater promise in multi-view 3D reconstruction and text-to-3D gener-
ation. Recent advancements have utilized differentiable rendering for attaining
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Fig. 1: Illustration of the surface point sampling methods and their corresponding
construction results. (a) IDR [34] first employs a sphere tracing method to identify the
sampled point x and then leverages the SDF value as well as the normal vector to obtain
the approximate point x

′
. (b) DMTet [19] detects surfaces through the observation

of sign changes in the SDF at the vertices of a tetrahedron. Then, it employs linear
interpolation to approximate the points x

′
ij on the zero-level set. Compared with them,

our method (c) utilizes CPT to project the interpolated points xij on the zero-level
set, and thus attain the transformed points x

′
ij . The approximate points x

′
of IDR and

x
′
ij of DMTet are deviated from the zero-level set, while x

′
ij obtained from our method

exactly on the object surface. This implies our method is able to obtain a more accurate
geometry representation and gradient backpropagation.

the Singed Distance Field (SDF) and object appearance. These methods can
be divided into two types: volume rendering and surface rendering. In volume
rendering, SDF is first converted into density values that are then rendered via
the NeRF framework [17, 38]. While these methods consistently generate reli-
able geometry reconstruction, the dense points sampling along the ray increases
the rendering time cost. Conversely, surface rendering methods only sample one
point along the ray, markedly optimizing rendering speeds.

Existing surface rendering methods, such as IDR (Implicit Differentiable Ren-
derer) [34] and DMTet (Deep Marching Tetrahedra) [19] achieve computational
efficiency by assuming the object surface can be considered linear or at least can
be approximated as linear within a local scope. Based on this assumption, they
employ linear interpolation to determine the points at specific locations on the
surface. As shown in Fig. 1, IDR employs sphere tracing [7] to identify points
close to the surface along a ray and then relies on the SDF values and the normal
vector to calculate the intersection points between rays and the surface. DMTet
identifies the surfaces by observing changes in the sign of the SDF at the ver-
tices of a tetrahedron and then leverages linear interpolation to approximate the
surface points. However, as demonstrated in Fig. 1, their approximate points al-
ways deviate from the object surface (i.e., zero-level set), since the object surface
is mostly irregular and non-planar. Hence, modeling geometry representations
based on these deviated points would further lead to inaccurate gradient back-
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propagation, resulting in the reconstructed surfaces losing a lot of details, as
illustrated by the reconstruction results in Fig. 1 (a) and (b).

To address the above problem, we introduce a novel surface rendering ap-
proach, termed CPT-VR, which is grounded in the Closet Point Transform
algorithm and augmented with View-Relfection appearance modeling. In a nut-
shell, in the geometry representation modeling process, we conduct the Closet
Point Transform (CPT) for deviated points to enhance the geometry represen-
tation. In the appearance modeling process, we intend to incorporate the View
and Reflection vectors and thus attain better appearance representation for cases
with specular highlights. To the best of our knowledge, we are the first attempt
to correct the deviated points via CPT in the surface rendering task.

To be specific, in the geometry representation modeling process, we first
devise a neural SDF network to compute SDF values for the entire 3D space.
Based on the SDF values, we employ the Marching Cubes [14] to attain the
vertices close to the surface of the object. As suggested in Fig. 1 (c), most of
the obtained vertices are deviated from the object’s surface rather than on it.
Hence, we leverage CPT to calculate the closest point on the object surface
for each deviated vertex, thus obtaining accurate and differentiable vertices.
Subsequently, we utilize a feature-based rasterizer to render this triangle mesh
in each view. In this fashion, we obtain the corresponding 3D position, geometry
feature, and normal vector of each pixel in an image.

In the appearance representation modeling process, we focus on improving
the geometry quality for specular highlights. Existing methods such as IDR [34]
and NeuS2 [25] rely solely on the view direction to capture the surface infor-
mation of objects, which cannot handle the object with highlights well. Ref-
NeRF [21] demonstrates that replacing the view direction with the reflection
direction can mitigate the impact of highlights. However, since the reflection
vector calculated based on the deviated points is inaccurate, directly incorpo-
rating these reflection vectors into existing surface rendering methods will lead
to significant backpropagation errors. Consequently, the model will not only be
unable to handle the specular highlights but will also diminish its capability to
reconstruct non-specular areas. In contrast, benefiting from our accurate point
sampling on the zero-level set based on CPT, incorporating view-reflection vec-
tors in our framework can facilitate the appearance modeling of specular regions.

Moreover, we found that existing surface rendering methods [1,22,34] require
prior background knowledge, such as foreground masks, or the background im-
age, to precisely process and render foreground objects, which constrains their
flexibility and applicability in various scenes. To solve this problem, we present a
background model to obtain the background appearance representation. Then we
attain the final appearance modeling by blending the foreground and background
appearance. Extensive experiments conducted on DTU [9] and BlendedMVS [31]
demonstrate that our method achieves state-of-the-art geometry quality and sur-
face rendering. Additionally, we also illustrate that our method is effective and
reliable in cases with complex structures and specular highlights. In summary,
our contributions are three-fold:
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– We present a novel differentiable surface rendering method CPT-VR which
shows superior performance in reconstructing the detailed structure of ob-
jects. With the CPT algorithm, we can address the approximate point devi-
ation issue caused by linear interpolation.

– We incorporate the view and reflection vectors to model the foreground ap-
pearance representation, facilitating our method to be robust against spec-
ular highlights.

– We develop a simple background model to generate the background appear-
ance representation, enabling our method to no longer be dependent on any
prior background knowledge.

2 Related Work

Surface Rendering with SDF. IDR [34] introduces a system that learns sur-
faces in a self-supervised manner. It first identifies points close to the surface via
sphere tracing and then finds approximate intersection points on the surface by
projecting them along the view ray. Although IDR can learn the 3D shape and
appearance from images, it relies heavily on accurate masks. To mitigate this
issue, MVSDF [37] supervises the SDF network with depth maps generated by
Vis-MVSNET [36]. It also uses relaxed masks generated by probability maps to
learn a surface indicator. RegSDF [35] further introduces the Hessian regular-
ization and the minimal surface constraint. Some works [1, 22] use specialized
reparameterization techniques and design weighting functions along a ray based
on SDF values, thus they can propagate gradients to intermediate points from
sphere tracing. These reparameterization-based methods are similar to methods
based on volume rendering, but they still need a given background: either black
or a pre-defined environment map.
Rasterization-based Rendering. Recently, there have been attempts to uti-
lize the differentiable rasterizer for surface rendering. NVDIFFREC [18] and
NVDIFFRECmc [8] adapt DMTet [19] to extract a mesh from an implicit SDF
and then render the mesh by the differentiable rasterizer Nvdiffrast [10]. While
these methods are efficient, their reliance on the linear approximation in DMTet
limits their ability to recover shapes with complex structures. Meanwhile, NIE
[16] propagates neural implicit surfaces according to a flow field from a certain
energy function. ENS [23] combines neural deformation fields with rasterization
rendering, allowing deform an initial shape into a target surface progressively.
Moreover, NDS [29] and FastMESH [39] focus on optimizing a rough mesh de-
rived from priors through differentiable rasterization.
Volume Rendering of SDF. Several methods [2, 20, 24, 32] have been devel-
oped for learning SDF through volume rendering. VolSDF [32] and NeuS [24]
leverage Laplace or Logistic cumulative distribution function of SDF to represent
the volume density and sample dense points along a ray based on SDF values.
Based on these methods, some works [2,3,12,26–28,40,41] aim to further enhance
the geometry details. Among them, Geo-Neus [3] and TUVR [40] improve SDF
accuracy by introducing additional supervision from point clouds. On the train-
ing efficiency front, Voxurf [30] and Vox-Surf [11] speed up the training process
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through voxel-based representations. NeuS2 [25] speeds up NeuS [24] by simpli-
fying the second-order derivatives calculation of the SDF network constructed
based on a multi-resolution hash encoding.
Hybrid Volume-rasterization Rendering. Recently, some rendering meth-
ods have been developed based on a hybrid volume-rasterization way. BakedSDF
[33] first learns the SDF and appearance of a scene based on VolSDF [32] and
transforms the SDF into a mesh. Then the transformed mesh is refined using a
rasterizer pipeline. VMesh [6] takes a comprehensive approach by initially train-
ing a combination of a neural SDF and a density field through volume rendering.
Then the mesh undergoes further refinement by DMTet [19] and a differentiable
rasterizer [10], ensuring accurate surface representation.

3 Method

3.1 Preliminaries

Signed Distance Field (SDF) is a mathematical function f that measures
the shortest distance from a point x to an object surface, indicating whether the
point is outside (positive distance) or inside (negative distance) the surface. The
surface is identified by the zero-level set S, where SDF equals to zero, providing
a concise description of the object’s surface:

S = {x ∈ R3|f(x) = 0}. (1)

Neural SDF denotes a neural network that models SDFs for 3D objects. In this
work, we employ SDFnet which leverages the Multilayer Perceptrons (MLPs)
enhanced with a multi-resolution hash encoding to model SDF [25]:

(d, z) = fθ(x, hΩ(x)). (2)

Here, d is the predicted SDF value, z signifies the predicted geometry feature, fθ
denotes an MLP parameterized by weights θ, and hΩ(x) is the multi-resolution
hash encoding of the input point x. Moreover, the normal vector n of x is derived
as the normalized gradient of the implicit surface:

n = ∇xd/∥∇xd∥. (3)

To ensure training stability, our SDFnet employs an optimization schedule that
progressively incorporates the level of detail and the numerical gradients [12].

3.2 Geometry Representation Modeling

Geometry Representation via SDF. As suggested in Fig. 2, we first lever-
age our SDFnet to compute the SDF values for the entire 3D space. Based on
SDF values, we utilize the isosurface algorithm Marching Cubes to extract and
represent the triangle mesh G = (V,F), where V and F indicate the vertices
and faces respectively. However, this method assumes that the surface changes
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Fig. 2: Illustration of our proposed method CPT-VR. In (a), we first extract
the mesh via Marching Cubes, which does not involve gradient propagation. Then we
leverage CPT to project the approximate points on the zero-level set (b). Subsequently,
we render the transformed mesh via a rasterizer in (c). Specifically, we incorporate the
view-reflection vectors into the foreground appearance modeling stage via RGBNet.
Additionally, we employ the Background Model to attain the background information.
Finally, we integrate the foreground and background appearance to generate the ren-
dering results. We adopt four supervisions to optimize these neural networks.

linearly inside the voxel, overlooking the complex convex structure of the object
surface. Hence, the linearly interpolated vertices tend to deviate from the zero-
level set and the triangle mesh may not accurately reflect the complex structure
of the object surface.
Closest Point Transform. To project these deviated vertices onto the zero-
level set, we devise the closet point transform (CPT) to SDF. Specifically, CPT
first utilizes the norm vector n within the signed distance field to identify the
projected direction of a deviated point. It then moves the deviated point along
the opposite direction of n by a distance d equal to its SDF value. Mathemat-
ically, for a vertex x ∈ V, this transformation process is expressed as follows:

x′ = x− dn. (4)

After that, we obtain the transformed mesh G′ = (V ′,F).

3.3 Feature-based Rasterisation

After obtaining the transformed mesh, we first employ a feature-based differen-
tiable rasterizer Nvdiffrast [10] to render triangle meshes in each view. Specifi-
cally, as suggested in Fig. 2 (c), for a pixel p(x, y), its projected primitive triangle
face within the mesh is represented as (x′

0,x
′
1,x

′
2). The rasterizer computes the

barycentric coordinates u, v, depth Dp, and visible mask Mp for this pixel as
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follows:
(u, v,Dp,Mp) = R(G′, p(x, y),K,R, t), (5)

where R denotes the rasterizer, G′ represents the transformed mesh, and K and
R, t are the camera’s intrinsic and extrinsic parameters, respectively.

Subsequently, each projected vertex x′ from the set V ′ is input into SDFnet.
SDFnet outputs (d′, z′,n′), encapsulating the distance, geometric feature, and
the normal vector associated with each vertex. These outputs are then interpo-
lated for a pixel p(x, y) based on its barycentric coordinates u, v:

xp = ux′
0 + vx′

1 + (1− u− v)x′
2,

zp = uz′0 + vz′1 + (1− u− v)z′2,
np = un′

0 + vn′
1 + (1− u− v)n′

2,
(6)

where (xp, zp,np) denote the interpolated features.

3.4 Appearance Representation Modeling

In this work, we divide the appearance modeling process into two parts:
Foreground Appearance Modeling based on View-Reflection Vectors.
To better capture the appearance of objects with specular highlights, we incor-
porate the view direction and reflection direction into the foreground modeling
process. Specifically, we employ the RGBnet gfγ , a Multilayer Perceptron (MLP)
with weights γ to determine the foreground color. RGBnet takes the interpolated
3D features (xp, zp,np), view direction vp, and reflection direction rp as input,
and outputs the RGB color cfp for the foreground. The process is formulated as:

cfp = gfγ (xp, zp,np, Y (vp), Y (rp)), (7)

where Y (·) denotes Spherical Harmonics encoding. Here, the reflection direction
rp is defined as the mirror vector of the view direction vp relative to the normal
vector np, calculated as:

rp = 2(−vp · np)np + vp. (8)

Spherical harmonics are orthogonal bases on the unit sphere, and their mathe-
matical definition and physical properties make them ideal for encoding direction
frequencies compared to 3D space (xyz) frequencies.
Background Appearance Modeling. To enable the model to reconstruct ob-
jects without any background priors, we present a one-point background model
composed of a Multilayer Perceptron (MLP) gbπ with weights π, alongside an
additional multi-resolution hash encoding hb

Ω . The modeling process of the back-
ground appearance cbp is formulated as:

cbp = gbπ(x
b
p, h

b
Ω(x

b
p), Y (vp)), (9)

where xb
p represents the background sampling point, determined by the cam-

era location xo, the veiw direction vp and the far distance Fp of the sampling
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boundary. xb
p is mathematically expressed as:

xb
p = xo + 2Fpvp. (10)

Following NeuS [24], the foreground is normalized within a unit sphere centered
at 0. As indicated in Fig. 3, the far distance Fp is calculated as:

m = −xo · vp;Fp = m+ 1. (11)

This approach facilitates a more versatile background representation, compen-
sating for the absence of masks.

𝐗𝐨 
Camera 
Position

View Ray

𝒗𝒑

O

𝑚 1

𝐹𝑝

2𝐹𝑝

𝐗𝐏
𝐛

𝑚 = −𝑋0 ∙ 𝑉𝑃; 𝐹𝑝 = 𝑚 + 1; 𝑋𝑃
𝑏 =  𝑋0 + 2𝐹𝑝𝑉𝑝

Sampling 
point

Fig. 3: Illustration of the one-point
background sampling.

Appearance Integration. Finally, we
integrate the background appearance cbp
and foreground appearance cfp to attain
the rendered color, defined as:

cp = Mpc
f
p + (1−Mp)c

b
p. (12)

Overall, our method enables surface ren-
dering of objects without any known back-
ground information, offering greater flex-
ibility and adaptability.

3.5 Training Objectives

Color loss. We optimize the CPT-VR model by ensuring the colors it generates
match real image colors as closely as possible. This is done by calculating the
L1 error, which is the average difference between the colors ĉi produced by the
model and the ground-truth colors ci for all pixels P :

LC =
1

P

P∑
i

∥ĉi − ci∥1. (13)

Regularization of SDFnet. A well-defined neural SDF exhibits Lipschitz con-
tinuity [13] and its gradient adheres to the Eikonal equation [4], ensuring smooth-
ness and stability of the generated field. A valid SDF field holds the property
that the normal of a point near the surface and the normal of its projected
point remain consistent. For effective closest point transform, we directly con-
strain our SDFnet based on this normal consistency property [15]. Specifically,
it aligns the normal of a deviated point n with the normal n′ of its projected
point, enhancing stability for surface rendering via the closest point transform
of SDF. Mathematically, it is represented by:

Lnc = 1− n · n′. (14)

Mask Loss. If the mask of the foreground region is available, we can further
refine the rendering effect of CPT-VR by including a mask loss. The mask con-
straint is formulated as:

LM =
1

P

P∑
i

(M̂i −Mi)
2, (15)
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where the M̂i and the Mi represent the predicted mask and the ground truth
mask, respectively.
Depth loss. Inspired by previous works [37] and [35], we utilize depth maps
generated by the pre-trained network CasMVSNet [5] to guide our model. We
minimize the squared difference (MSE) between the rendered depths (D̂i) and
those from the pre-trained network (Di), weighted by the confidence probi from
CasMVSNet, as follows:

LD =
1

P

P∑
i

probi(D̂i −Di)
2, (16)

where the confidence ranges from 0 to 1, and depths considered unreliable are
given a confidence of 0.
Total loss. Our final metric combines all these aspects, adjusting their impor-
tance with specific weights λ:

L = λrgbLrgb + λncLnc + λMLM + λDLD. (17)

Here, λrgb, λnc, λM , and λD are empirically set to 3, 0.01, 1, and 1, respectively.

4 Experiments

4.1 Experimental Settings

Implementation details. For the DTU dataset, we train CPT-VR for 10,000
iterations with a batch size of one image, targeting a Marching Cubes resolu-
tion of 2563. In each training batch, we render one view at a resolution of 800
× 600 pixels. Note that, when we only utilize depth loss and color loss for su-
pervision, we employ a higher Marching Cubes resolution of 5123 and render
images at 1600 × 1200 pixels. For BlendedMVS, CPT-VR is trained for 20,000
iterations with a batch size of one image and a Marching Cubes resolution of
2563, rendering images at 768 × 576 pixels. Moreover, the initial learning rate
of our model is set at 0.005, with a final epoch decay factor of 0.1 for DTU and
0.005 for BlendedMVS. More details about the architecture and the isosurface
configuration are provided in the supplementary material.
Datasets. All experiments are conducted on DTU [9] and BlendedMVS [31].
Objects in DTU are collected in a controlled lab setting, with ground truth data
that includes images, masks, and point clouds. For our training and evaluation,
we leverage 15 objects identified by IDR with challenges such as specular high-
lights, delicate structures, and areas hidden from view. Meanwhile, BlendedMVS
encompasses a diverse range of objects and scenes captured in natural settings.
From this dataset, we select 7 difficult objects as NeuS [24] and the ‘Bull’ (with
specular highlights) to further assess the model performance in reconstructing
objects against complex backgrounds.

4.2 Quantitative Evaluation
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Table 1: Comparison of the average ren-
dering time on DTU. The rendered image
resolution of all methods is 1600 × 1200,
and the resolution of Marching Cubes is
5123. The rendering time of our method is
significantly lower than that of others.

Method Rendering Time (s)

IDR 27.233

NeuS2 (w /M) 1.979

Ours (w/ M) 0.057
Ours (w/ BG1) 0.104

Analysis on DTU. We benchmark
our method against the state-of-the-
art methods on the DTU dataset.
DTU dataset contains 128 scans cap-
tured in the laboratory. In this work,
we evaluate the surface mesh using the
same set of scans as in [34, 37]. As de-
noted in Tab. 2, our method consis-
tently outperforms other surface ren-
dering methods on most scans. Note
that, our method achieves the lowest
value in mean Chamfer Distance (0.59), which is 16.9% lower than the second-
best surface rendering method RegSDF (0.71). Since SDFnet in our method has a
similar structure to it in NeuS2, we also compare NeuS2 and rencent volume ren-
dering methods [26,41] with CPT-VR. As demonstrated in Tab. 2, whether the
two methods incorporate background information from the object mask (w/ M)
or use our proposed one-point background model (w/ BG1) to attain background
information, our method surpasses NeuS2 on the vast majority of ScanIDs.

Table 2: Quantitative results on DTU dataset. Here, we evaluate all methods
on Chamfer Distance (CD). The lower the CD value, the better the performance.
For a fair comparison, we also present the results of the volume rendering method
NeuS2 since our SDFnet has a similar structure to it. “w/ M” means providing the
prior background knowledge by masks, while “w/ BG1” means employing our one-
point background model without any prior background knowledge. The best and
second-best results are highlighted by different colors. The results illustrated that
CPT-VR attains better performance among most ScanIDs.

ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

DMTet [19] 1.84 1.73 1.05 0.61 1.66 1.37 0.68 1.28 3.82 1.07 0.91 1.15 0.37 0.54 0.55 1.24
IDR [34] 1.63 1.87 0.63 0.48 1.04 0.79 0.77 1.33 1.16 0.76 0.67 0.90 0.42 0.51 0.53 0.90
MVSDF [37] 0.83 1.76 0.88 0.44 1.11 0.90 0.75 1.26 1.02 1.35 0.87 0.84 0.34 0.47 0.46 0.89
FastMESH [39] 0.65 1.48 0.57 0.40 1.48 0.77 0.56 0.86 0.84 0.94 0.72 0.81 0.52 0.49 0.54 0.77
RegSDF [35] 0.59 1.41 0.63 0.42 1.34 0.62 0.59 0.89 0.91 1.02 0.60 0.59 0.29 0.40 0.38 0.71

HF-NeuS [26] (w/ M) 1.11 1.28 0.61 0.47 0.97 0.68 0.62 1.34 0.91 0.73 0.53 1.82 0.38 0.54 0.51 0.83
LOD-NeuS [41] (w/ M) 0.65 0.91 0.37 0.48 1.05 0.87 0.82 1.22 0.95 0.69 0.56 1.30 0.42 0.58 0.57 0.76
NeuS2 [25] (w/ M) 0.56 0.76 0.49 0.37 0.92 0.71 0.76 1.22 1.08 0.63 0.59 0.89 0.40 0.48 0.55 0.70
NeuS2 [25] (w/ BG1) 0.69 0.86 0.83 0.34 1.05 0.68 0.65 1.05 1.12 0.67 0.58 1.41 0.37 0.50 0.52 0.75

Ours (w/ M) 0.55 0.72 0.35 0.38 0.85 0.59 0.54 0.81 0.83 0.67 0.53 0.59 0.32 0.38 0.37 0.56
Ours (w/ BG1) 0.43 0.73 0.36 0.32 0.93 0.61 0.61 0.89 1.02 0.68 0.48 0.73 0.32 0.37 0.37 0.59

Moreover, we also measure the rendered results with PSNR to the ground
truths. As indicated in Tab. 3, with the introduction of background information
(BG1: ✗), our method achieves the highest PSNR values on most ScanIDs. Ad-
ditionally, it can be observed that when using the one-point background model,
both NeuS2 and CPT-VR are able to achieve similar or better performance
compared to leveraging background information from masks (BG1: ✓).
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Table 3: Quantitative comparison of 2D view synthesis on DTU dataset.
We measure all methods based on the metric PSNR. A higher PSNR indicates better
synthesis quality. Here, B1 represents whether to introduce extra background knowl-
edge into the method. ✗ means to leverage the background information from masks,
while ✓ indicates utilizing our one-point background model without introducing any
background information. We color code the best and second-best results. Compared
to NeuS2, our method achieves much better appearance reconstruction results.

ScanID BG1 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

NeuS2 ✗ 28.4427.1429.7029.6731.7527.8324.8431.2426.8630.5726.0528.9328.9827.8232.48 28.82
NeuS2 ✓ 27.7124.9927.5128.8920.5530.1429.0127.7026.1631.0933.1030.6930.4832.7734.10 28.99
Ours ✗ 28.1527.3128.5429.5234.0429.8329.0035.9229.3233.0829.4531.1630.7730.5038.38 31.00
Ours ✓ 27.3025.5926.8827.7730.9130.0629.2828.0526.6828.9232.0330.1829.0234.0234.02 29.38

Table 4: Quantitative comparison on BlendedMVS dataset. We measure the
method on the metric Chamfer Distance (CD). The lower CD values indicate better
performance. For a fair comparison, we adopt our one-point background model to
NeuS2. Compared to NeuS2, CPT-VR attains better geometry reconstruction results
among most of the categories.

Method Bear Clock Dog Durian Man Sculpture Bull Stone Mean

NeuS2 0.38 0.47 0.95 0.47 0.46 0.40 0.65 0.38 0.52
Ours 0.35 0.45 0.68 0.48 0.46 0.39 0.45 0.38 0.45

Analysis on BlendedMVS. As illustrated in Tab. 4, we compare our method
with NeuS2 on the eight selected categories with complex backgrounds. Since the
scales are unknown in BlendedMVS, we scale the bounding box of each object
to 100 units to measure their performance on Chamfer Distance (CD). CPT-VR
achieves the best performance in the categories of ‘Bear’, ‘Clock’, ‘Dog’, ‘Sculp-
ture’, and ‘Bull’, with the CD value for ‘Man’ and ‘Stone’ being on par with
NeuS2, and only 0.01 behind NeuS2 for ‘Durian’. Moreover, CPT-VR outper-
forms NeuS2 by 14.8%. These results demonstrate the advantage of our method
in reconstructing objects within complex environments.
Analysis of Method Efficiency. We evaluate the rendering time of IDR,
NeuS2, and CPT-VR on DTU. The results in Tab. 1 suggest the rendering time
of IDR (24.233s) and NeuS2 (1.97s) is lengthy. Compared with them, our method
achieves real-time rendering under the cases without introducing background
priors being about 19 times faster than NeuS2. This is primarily because NeuS2
utilizes the dense sampling method in the volume rendering process.

4.3 Qualitative Evaluation

Impact of Specular Highlights. Fig. 4 illustrates the qualitative results on
the DTU dataset. We compare our CPT-VR(w/M) model with IDR [34], DMTet
[19], MVSDF [37], and NeuS2 [25]. As shown by the close-up regions in Fig. 4,
the specular regions constructed by other methods exhibit obvious indentations,
while our method can construct these regions with high quality.
Impact of Complex Backgrounds. Fig. 5 demonstrates the visual results of
reconstructing objects with complex backgrounds. Since existing surface render-
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ing methods cannot handle the cases without any background prior, we specif-
ically evaluate NeuS2 and our method on BlendedMVS. As the elliptical area
demonstrated, our method can effectively model the geometry of foreground ob-
jects without introducing background information, particularly the details on
the surface of objects. Moreover, the rendering results of our method closely
resemble the input image.
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5

IDRRGB Image CPT-VR (M)DMTet MVSDF NeuS2

Fig. 4: Qualitative comparisons on objects in DTU with specular highlights.
The close-ups in yellow highlight the specific regions for comparison. The geometry re-
construction results demonstrate that our method is robust against specular highlights.

GroundTruth NeuS2 (w/BG1) CPT-VR (w/BG1)Input Image CPT-VR  Render

Fig. 5: Qualitative results of objects with complex background on Blend-
edMVS. We outline the close-up regions for detailed comparison. It is evident that
without the mask guidance, our method also exhibits strong capabilities in modeling
foreground objects, especially for the finer-grained surface structures.

Impact of the Sampling Point Amount. Tab. 5 suggests the impact of
varying the number of sampling points and their distances. The optimal result
is achieved when sampling one point at 2Fp, and the CD is 0.66. Conversely,
sampling either too closely (at Fp) or too distantly (at 1000Fp) causes the sam-
pled points to stray outside the desired background range, leading to suboptimal
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results with CD values of 0.68 and 0.73, respectively. Additionally, increasing the
number of sampling points in our approach tends to accentuate background de-
tails, thereby negatively impacting the accuracy of foreground object modeling.
More background points would render the model to prioritize background fitting
over the foreground, thus generating inferior results.

4.4 Ablation Study

Table 5: Impact of the Number of
Background Points. Here, Num. indi-
cates the sampling amount of points. Pos.
is the sampling positions of points along
the ray direction. Fp is defined in Sec. 3.4.
All settings are evaluated on Chamfer Dis-
tance (CD). Sampling one point at 2Fp at-
tains the best performance.

Method Num. Pos. CD ↓

CPT-VR 2 2Fp, 1000Fp 0.74
CPT-VR 2 Fp, 2Fp 0.67
CPT-VR 1 1000Fp 0.73
CPT-VR 1 Fp 0.68
CPT-VR 1 2Fp 0.66

As shown in Tab. 6, we set five set-
tings to demonstrate the superiority of
our method design. From the results
of CPT-V-M, CPT-R-M, and CPT-
VR-M, it is evident that introducing
view-ray directions brings greater ben-
efits to geometry reconstruction than
introducing the two vectors alone.
Meanwhile, the comparable CD val-
ues of CPT-VR-M and CPT-VR-BG1
demonstrate that the one-point back-
ground model can largely eliminate
the negative impact of complex back-
grounds in images on rendering the
target object, enabling the model to
no longer be dependent on any background knowledge. Moreover, the results of
CPT-VR-BG1 and CPT-VR-BG1-D also verify that introducing depth supervi-
sion can further boost the reconstruction quality of our method.

(b) CPT-V-M (0.78)(a) CPT-R-M (1.58) (c) CPT-VR-M (0.76)

(e) CPT-VR-BG1 (0.91) (f) CPT-VR-BG1-D (0.73)(d) CPT-VR-M-D (0.72)

Fig. 6: Qualitative results of ablation studies on DTU. The close-ups in red
highlight the specific regions for comparison. The content in the bracket is the Cham-
fer Distance, indicating the reconstruction quality. Incorporating the reflection vector
enhances the ability of the model to simulate the appearance representation on specu-
lar regions. In addition, when utilizing the background model to attain the background
information, introducing depth supervision greatly improves the reconstruction quality.
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Table 6: Ablation study of our design choices. We evaluate all designs on Chamfer
Distance (CD). Results demonstrate the effectiveness of all our design choices and the
importance of using accurate geometry representation when adding the reflection vector
for appearance modeling.

Settings
Design Choices

CD↓
View Vector Reflection Vector Background Model LC LM LD

CPT-V-M ✓ ✓ ✓ 0.72
CPT-R-M ✓ ✓ ✓ 0.83
CPT-VR-M ✓ ✓ ✓ ✓ 0.65
CPT-VR-BG1 ✓ ✓ ✓ ✓ 0.66
CPT-VR-BG1-D ✓ ✓ ✓ ✓ ✓ 0.59

As illustrated in Sec. 1, we argue that only when the surface sampling points
are accurate can the introduction of the reflection vector achieve better appear-
ance modeling of specular regions. To further demonstrate that, we incorporate
the reflection vector into the surface rendering method DMTet [19] and IDR [34].
Tab. 7 indicates that introducing the reflection vector reduces the geometry re-
construction ability of DMTet (CD rises from 1.24 to 1.63) and IDR (CD rises
from 0.90 to 1.68) Conversely, the sampling surface points of our method with
CPT are more accurate. The accurate points facilitate the modeling of the reflec-
tion vector, avoiding a greater backpropagation error. Thus, incorporating the
reflection vector into our method enables our model more robust against specular
highlights. Fig. 6 also demonstrates the superiority of our design choices.

Table 7: Impact of view-reflection vectors. All methods are evaluated with masks
on Chamfer Distance (CD). With the reflection vector, the performance of our method
has significantly improved, while DMTet and IDR become worse.

Method IDR IDR DMTet DMTet Ours Ours Ours

View Vector (V) ✓ ✓ ✓ ✓ ✓ ✓
Reflection Vector (R) ✓ ✓ ✓ ✓

CD↓ 0.90 1.68 1.24 1.63 0.72 0.83 0.65

5 Conclusions

In this paper, we present a novel surface rendering method CPT-VR. Based on
the CPT algorithm, we correct the deviated points approximated by linear in-
terpolation, enhancing the geometric accuracy. Meanwhile, benefiting from the
accurate geometry representation, we incorporate view-reflection vectors into
the appearance molding process, which enables our method against the spec-
ular highlights. Moreover, we devise a background model to enable our model
to handle cases with complex backgrounds without any background knowledge.
Experiments on the popular 3D reconstruction datasets demonstrate the supe-
riority of our method in surface rendering, especially for cases with complex
structures and specular highlights. We hope that our designs can provide some
insights for future works.
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