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Abstract. Open-world 3D instance segmentation is a recently intro-
duced problem with diverse applications, notably in continually learning
embodied agents. This task involves segmenting unknown instances and
learning new instances when their labels are introduced. However, prior
research in the open-world domain has traditionally addressed the two
sub-problems, namely continual learning and unknown object identifi-
cation, separately. This approach has resulted in limited performance
on unknown instances and cannot effectively mitigate catastrophic for-
getting. Additionally, these methods bypass the utilization of the infor-
mation stored in the previous version of the continual learning model,
instead relying on a dedicated memory to store historical data sam-
ples, which inevitably leads to an expansion of the memory budget.
In this paper, we argue that continual learning and unknown object
identification are desired to be tackled in conjunction. To this end, we
propose a new exemplar-free approach for 3D continual learning and
unknown object discovery through continual self-distillation. Our ap-
proach, named OpenDistill3D, leverages the pseudo-labels generated by
the model from the preceding task to improve the unknown predic-
tions during training while simultaneously mitigating catastrophic for-
getting. By integrating these pseudo-labels into the continual learning
process, we achieve enhanced performance in handling unknown ob-
jects. We validate the efficacy of the proposed approach via compre-
hensive experiments on various splits of the ScanNet200 dataset, show-
casing superior performance in continual learning and unknown object
retrieval compared to the state-of-the-art. Code and model are available
at github.com/aminebdj/OpenDistill3D.

1 Introduction

While common recognition and detection methods rely on a fixed set of object
labels, this setting does not properly represent real-world scenarios. A better rep-
resentation is achieved in the open-world setting [2,8,11,20,27,29], where object
labels are progressively presented to a given model. In the open-world setting,
the target is twofold: (1) The model is required to recognize both known and
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unknown objects, and (2) the model should maintain knowledge of previously
known objects when a new set of labels is available. This open-world formula-
tion has been recently explored for 3D instance segmentation [3], which predicts
masks for known and unknown 3D object instances, along with their labels.

The open-world performance is measured by the ability of a model to re-
tain knowledge of old classes and effectively recognize unknown objects, which
necessitates a holistic solution that tackles this interconnected nature.

Moreover, the difference between the quality of known labels and pseudo-
labels of unknown objects still poses a challenge in the open-world. This requires
additional measures during training to better distinguish between known and
unknown objects.

A common approach to open-world 3D instance segmentation [3] maintains
the ability to recognize previously encountered classes by finetuning the model
with exemplars. The exemplars are saved samples of previously labeled data,
allowing the model to have access to the previous set of labels. Nevertheless,
exemplars do not fully represent the previous data, which results in models be-
ing prone to forgetting the knowledge related to the old classes after training on
new labels. Moreover, since recognizing unknown objects requires a good under-
standing of objectness and a good differentiation between known and unknown
object classes, a degraded model performance in recognizing old classes affects
its ability to recognize unknown objects. We show a sample scene in Figure 2,
where 3D-OWIS [3] fails to predict previous classes and unknown objects.

In this work, we propose an open-world 3D instance segmentation method
that employs self-distillation to preserve the knowledge of both previously known
and unknown objects, as illustrated in Figure 2. Instead of relying on saved ex-
emplars, our model exploits previously learned representation for known and
unknown object recognition. Moreover, we introduce a specialized loss function
designed to manage data uncertainty in the open world and leverage the object-
ness priors of pseudo-labels to achieve optimal open-world performance for both
known and unknown objects.
Our key contributions are threefold:

– We propose a novel distillation approach for joint 3D continual learning and
discovery of unknown objects.

– We introduce a loss function that emphasizes learning from high-quality
unknown pseudo-labels.

– When compared to previous open-world 3D instance segmentation methods,
our experiments show that our proposed method results in a major im-
provement in segmenting both known and unknown objects. Our approach
achieves an absolute gain of as high as 25.5% in terms of unknown recall
while also enhancing the performance on previous classes by up to 12.1%
in terms of mean average precision (mAP), compared to the best reported
results in literature [3].
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Fig. 1: (Left) The depicted pipeline illustrates the classical approaches employed in
the open-world task 3D-OWIS [3], ORE [11], OW-DETR [8], PROB [29], and SS-
OWformer [16]. These methods entail a dual-phase process: the initial phase focuses
on learning new classes introduced in the current Incremental Task while simultane-
ously learning new objects via Auto-Labeling. Subsequently, the second phase aims
to alleviate catastrophic forgetting by using exemplar replay. (Right) The illustrated
pipeline showcases our novel exemplar free approach for open-world tasks, addressing
both catastrophic forgetting and the identification of unknown objects through self-
distillation from the model of the preceding task.

2 Related Work

2.1 3D instance segmentation

The challenge of instance segmentation in 3D scenes has been explored in var-
ious studies, with different approaches to address it. Some methods [9, 23] opt
for a top-down strategy, generating proposals from one stream and combining
them with local features from a parallel stream to predict final masks for each
instance. While others [10,17,25,28] follow a bottom-up approach which involves
predicting instances through semantic segmentation followed by instance predic-
tion in the same stream. Unlike other approaches that adopt either a top-down
or bottom-up strategy, SoftGroup [25] introduces a two-stage architecture, which
combines both strategies. The state-of-the-art 3D instance segmentation model
Mask3D [21] uses a hybrid CNN-Transformer architecture to generate a class-
mask prediction for all instances in the scene, generated from refined queries.
Another work [1] builds on top of Mask3D [21] and shows the potential of spatial
supervision in improving the performance of 3D instance segmentation models.

We argue that all previously proposed methods exhibit poor performance
when it comes to distinguishing between background and known classes. For
instance, a trained Mask3D [21] pipeline generates class agnostic masks for all
objects that share some similarity with one of the known classes, which results in
many false positive predictions from the background. In our paper, we demon-
strate that the model’s performance on known instances can be significantly
improved through self-distillation. This involves leveraging the knowledge of un-
known objects from a pre-trained teacher model with an identical architecture,
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Fig. 2: Proposed method for open-world 3D instance segmentation. (Left)
We propose a novel Self-Distillation Module (SDM), which takes the prediction of the
teacher model MTi−1

F from the previous task Ti−1, to generate high-quality pseudo-
labels and distill the knowledge on the previously known ( ) and unknown ( ) classes
to the student model MTi

T being trained in the current Task Ti, the instances in green
( ) represent the currently known classes. (Right) We show a qualitative comparison
between our method and 3D-OWIS [3] Task T2. Our self-distillation approach helps
the model better recognize unknowns ( ) as shown in the scene on top, and also better
preserve the knowledge of the previously seen classes ( ) as demonstrated in the scene
at the bottom.

to supervise negative classes from the background (unknowns), in addition to
the known classes.

2.2 Continual learning

Continual learning or lifelong learning, involves training models in phases that
include various subsets of the label space. Recent approaches to incremental
learning fall into two primary categories: Knowledge Distillation (KD) aims to
preserve knowledge from a previous model version. Some methods rely on logit
alignment, namely [12], while others distill feature-level information [7]. Exem-
plar Replay (ER) is another method that is widely used in continual learn-
ing [8, 11, 13, 26], where a reservoir of samples from earlier training rounds is
stored and replayed in subsequent phases to recall past knowledge.

In the realm of incremental object detection (IOD), the application of incre-
mental learning is particularly challenging. Unlike incremental image classifica-
tion, IOD deals with images containing multiple objects, including both old and
new types, with only the new types annotated in any given training phase. KD
and ER have been previously applied to object detection, with [22] using KD
on the output of Faster R-CNN [18]. Alternatively, ORE [11] suggests storing
a set of exemplars and fine-tuning the model on these exemplars after each in-
cremental step. A recent method [14] makes use of both KD and ER to further
improve the performance. In contrast to 2D continual learning, 3D continual
learning remains mostly unexplored. A recent method for 3D instance segmen-
tation [3] uses a bank of exemplars from the previous iteration to fine-tune the
model in the current iteration, to retain the knowledge of the previously seen
classes. Storing exemplars requires additional memory, thus leading to a limited
number of exemplars that can be stored per class. Fine-tuning a model with a
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Fig. 3: Proposed known-unknown self-distillation pipeline. From left to right,
the input point cloud passes through the frozen model MTi−1

F to generate mask ( )
and class ( ) proposals with the same number of initial queries (one query generates
one proposal). These proposals are then used to estimate an objectness score following
an objectness estimation function O which outputs a score for every proposal ranging
from 0 to 1. The Known-Unknown Separation component takes the generated proposals
to correct the proposals that are likely to belong to the unknown objects ( ) and
misclassified as one of the previously known classes ( ). Updated proposals are then
concatenated with the labels of the classes known in the current task Ti ( ), to output
the final targets that are used to supervise the mask-class prediction heads in the Mask
Module (MM) in all levels of the Transformer Decoder of the student model MTi

T .

limited number of exemplars results in a lower performance on the previously
known classes. As an alternative, we propose to use the saved model from the
previous task to generate weak labels for the previously known classes. This re-
quires a fixed amount of storage for the model, instead of an increasing memory
requirement at every iteration for exemplars for the previously seen classes.

2.3 Open-world tasks

In the domain of open-world object recognition, the concept was initially in-
troduced in [2]. Shifting gears to open-world object detection, numerous stud-
ies [8, 11, 29] have delved into this field. In ORE [11], a strategy involving the
generation of pseudo-labels for unknowns was implemented, enabling contrastive
clustering during training to enhance the separation between unknown and
known classes. To address incremental learning, exemplar replay was adopted
to prevent catastrophic forgetting of old classes.

Taking a similar approach to ORE [11], OW-DETR [8] employs a transformer-
based model for open-world object detection and introduces an alternative method
for generating pseudo-labels for unknowns. This method involves a novel object-
ness estimation, incorporating a foreground objectness branch to distinguish be-
tween background and foreground. In the realm of outdoor 3D Lidar point cloud
semantic segmentation, [4] puts forward a model predicting old, novel, and un-
known objects through three separate classification heads. In Open-World 3D
instance segmentation, 3D-OWIS [3] proposes an architecture that addresses the
problem of unknown objects instances segmentation through internal unknown
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object pseudo-labels generation, where the model uses the generated class ag-
nostic proposals to provide unknown pseudo-labels, while the continual learning
problem is addressed via exemplar replay with fine-tuning on a small set of
previously seen classes, similar to ORE [11].

A critical limitation observed in preceding studies on the open-world task is
their tendency to exclusively address one of the two sub-tasks associated with
the problem. Previous methods train the model in a specific task while using
the same model for pseudo-label generation; due to catastrophic forgetting, the
quality of pseudo-labels is very low at the early stages of training. Consequently,
this approach restricts the model’s capacity to learn distinctive features for the
unknown object as it forgets the previously seen classes in the process of learning
novel ones.

3 Background

3.1 3D instance segmentation

A typical approach to 3D instance segmentation uses a sparse 3D convolutional
network encoder and a transformer decoder [21]. We employ a similar pipeline,
where the input point cloud is first voxelized, then voxel features are extracted
with a 3D U-Net-shaped CNN. A transformer decoder takes as input a set of
queries and refines them through a series of self-attention and cross-attention
with the voxel features at multiple scales. Each refined query is then used to
generate an object binary mask and a corresponding semantic label.

We define the set of the final refined queries from the transformer decoder as
Q = {qi ∈ Rd | i ∈ (1, 2, ..., nQ)} where d is the dimension of one single query,
and nQ is the total number of queries. A query q is used to generate a mask fmask

and a class prediction fclass after remapping it using an MLP. Let fmask(q) =
Sigmoid (MLPmask(q) · FL) and fclass(q) = Softmax (MLPclass(q)), where N is
the number of input voxels, FL ∈ Rd×N are the per-voxel features extracted
from the high-resolution layer of the CNN backbone, MLPmask : Rd 7→ RdF is
a Multi-Layer Perceptron that maps the query to the dimension of the feature
map, and MLPclass : Rd 7→ RC+1 is a Multi-Layer Perceptron that maps from
the query’s dimension to the total number of classes (knowns + background).

We define an arbitrary objectness function O : (m ∈ RN , p ∈ [0, 1]) 7→ [0, 1],
that maps a certain heatmap prediction m = fmask(q) and a class probability
p = max(fclass(q)) to an objectness score.

3.2 Open-world 3D instance segmentation

Unlike closed-set 3D instance segmentation, open-world 3D instance segmenta-
tion predicts a class unknown for unlabeled classes as well, and incrementally
learns new classes when accessing new label, while preserving the knowledge of
the previously seen classes without using all of their labels.

One of the major limitations in previous works in the task of open-world
object detection/segmentation is the uni-tasking of the open-world problems.



OpenDistill3D 7

For instance, OW-DETR [8], ORE [11], PROB [29], SS-OWformer [16], and 3D-
OWIS [3] target the sub-task of unknown identification without relying on the
continual learning sub-task. In our work, we construct a framework that jointly
solves the two sub-tasks of the open-world, continual learning and unknown
identification, which performs remarkably better than the approaches in the
literature. We also propose a novel reduction technique for cross-entropy using
the objectness of samples as weights, to achieve an improved known-unknown
performance trade-off. In this work, we exploit the weights of the model from
the previous task, without any exemplars, to achieve competitive performance
in alleviating catastrophic forgetting and improving unknown object instance
segmentation.

4 Methodology

Given a 3D point cloud, with each point represented by a 3D coordinate and RGB
colors, the target is to segment the point cloud into K binary masks along with
their corresponding semantic labels. Our proposed method starts by adapting
a closed-set 3D instance segmentation method into the open-world setting. We
then propose a self-distillation approach to improve the open-world performance.
Additionally, we propose a cross-entropy loss tailored for the open-world task.
Our pipeline is shown in Figure 3.

4.1 Self-Distillation Module (SDM)

The model trained in task Ti−1 is capable of predicting pseudo-labels for both
the previously known and unknown objects. However, with the introduction
of new labels in the current task, Ti, the unknowns change, resulting in an
overlap between the previous task’s model predictions for unknowns with the
current task’s known classes. This problem is addressed in the literature by se-
lecting class-agnostic mask predictions with low intersection over union with the
class-agnostic mask of currently known instances. However, we conjecture that
these techniques exhibit sub-optimal performance on unknowns in intermediate
tasks due to the inadequate distinction between unknowns and previously known
classes.

Sperating previously known from the unknown objects: Since 3D-
OWIS relies on IoU between ground truth classes and predictions to generate
pseudo labels, it results in wrong proposals of previously known classes to be
labeled as unknown since the labels of the previously known classes are not avail-
able in the training set at a given incremental task. We propose an unknown-
known pseudo-labels separation technique that uses overlap between predictions
of the teacher model and confidence for separation (more detail in Suppl. Mate-
rial).

Our adopted instance segmentation architecture Mask3D [21] refines a set
of queries in the transformer block to predict instance masks and classes. The
frozen model from the previous task MTi−1

F refines nQF
to generate nQF

labels
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and masks for objects in the input scene, where the final refined queries from the
frozen teacher model are denoted QF = QL

F (see Figure 3) and L is the number
of transformer blocks. Even though some of these predictions are for unknown
objects, additional pseudo-labels are required to achieve better performance on
the unknowns when training the model MTi

T in task Ti. We also highlight that
these nQF

predictions contain many unknown objects that were misclassified
as one of the previously known classes and require a separation technique to
effectively detect and differentiate them from the real previously known classes.
The Unknown-Known Separation (UKS) component takes the predictions from
the model from the previous Task Ti−1, and target masks of the known classes
in Task Ti to generate better pseudo-labels for the previously known classes and
unknown objects. The pseudo-labels for the unknown, denoted U , are selected
as all predictions from MTi−1

F that do not overlap with the currently known
instances and with the highly confident pseudo-labels for the previously known
classes from MTi−1

F , while the pseudo-labels for the previously known classes,
denoted P, are all the remaining predictions from the model MTi−1

F from the
previous Task Ti−1 (more detail in Suppl. Material).

Training targets: We define the targets T̃Ti
= (M̃, Ỹ , S̃) that are used to

train MTi

T as

T̃Ti
= ({m}, {y}, {s} | ∀(m, y, s) ∈ P ⊕ U ⊕ GTTi

)

Where M̃ is the set of masks, Ỹ is the set of labels, and S̃ is the set of objectness
scores predicted by the teacher model. GTTi are the ground truth labels for the
currently known classes from the incremental Task Ti.

4.2 Open world cross-entropy loss

Existing methods designed for open-world tasks, such as [3,8,11], involve train-
ing models with pseudo-labels for unknown objects, assuming an equivalence in
quality between these pseudo-labels and ground-truth labels. We contend that
this simplistic approach is ill-suited for the complexities of an open-world setting,
given that the per-class count of pseudo-labels for the previously seen classes is
higher than that of the unknown objects, and some pseudo-labels are of lower
quality (lower objectness score). In response to the challenges posed by the open-
world scenario, we introduce a novel loss function that prioritizes pseudo-labels
characterized by high confidence and low frequency over those with low confi-
dence and high frequency.

Weight adjustment with score prior We start by defining the final re-
fined queries QT = QL

T generated by the last transformer block L − 1 of the
trainable student model (see Figure 3). Given a set of target pseudo-labels
T̃Ti = (M̃, Ỹ , S̃) generated by the Self-Distillation Module 4.1. We define the
class predictions from the set of queries QT , extracted from the trainable model
MTi+1

T as ŶT = {y = fclass(q) | ∀q ∈ QT }, and the mask predictions as M̂T =
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{m = fmask(q) | ∀q ∈ QT }. Afterwards we perform Hungarian matching between
(M̂T , ŶT ) and (M̃T , ỸT ) to obtain two permutation matrices πp and πt to match
prediction pairs to target pairs, where t stands for target and p for prediction.
After the matching, we obtain a triplet of label-prediction-score sets denoted
(Y

Ti

t , Y
Ti+1

p , S
Ti

t ), where Y
Ti

t = Ỹ [πt], Y
Ti+1

p = ŶT [πp], and S
Ti

t = S̃[πt]. Finally,
we train the model MTi+1

T for the task Ti+1 by optimizing the following objective
loss function.

Lowce =
1

η

∑
(yp,yt,st)∈(Y

Ti+1
p ,Y

Ti
t ,S

Ti
t )

WI(st, yt) · l(yp, yt)

WI(st, yt) =


1− 0.5e−α(st−0.5), st > 0.5, yt = 0
st, st > 0.5, yt ̸= 0
0, Otherwise

where l(yp, yt) is the cross-entropy loss between the prediction and the label, 0
is the label for the unknown object, and α is set to 15 for all experiments. η is
a normalization factor defined as follows

η =
∑

(yt,st)∈(Y
Ti
t ,S

Ti
t )

WI(st, yt)

Due to the small number of pseudo-labels for the unknown object, com-
pared to the ones from the previously seen classes, we upscale the weight for the
unknown pseudo-labels before computing the loss. This showed improvement in
the performance of the known classes, as the model can better differentiate them
from the unknowns.

5 Experiments

We evaluate our method on the ScanNet200 dataset [5, 19] which contains re-
constructed point clouds of indoor scenes with labels for 200 object classes. We
experiment with the three open-world splits proposed in [3]. For the evaluation
metrics, we report the mean average precision (mAP) for previously known and
current classes, unknown recall (U-Recall), wilderness impact (WI) [6], and ab-
solute open set error (A-OSE) [15]. Furthermore, to test the generalizability of
our model to new geometries, we train it on ScanNet200 and use it with Open-
Mask3D [24] as a 3D proposal network and report the mAP on the Replica
Dataset compared to the original proposal network Mask3D.

5.1 Implementation details

Open-World training: In Task T1, we initialize the teacher model MT0

F with
a closed-set model trained for 300 epochs on the known classes only.
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Table 1: State-of-the-art comparison. We show the performance of our method
compared to 3D-OWIS. Our model outperforms 3D-OWIS in all cases on the previously
known classes and unknown classes as reflected by the higher mAP and U-Recall.

Task IDs (→) Task T1 Task T2 Task T3

WI A-OSE U-Recall mAP (↑) WI A-OSE U-Recall mAP (↑) mAP (↑)

(↓) (↓) (↑) Current
known All (↓) (↓) (↑) Previously

known
Current
known All Previously

known
Current
known All

Split A

Upper Bound 0.057 290 62.82 39.51 39.38 0.000 60 42.51 39.02 20.91 31.53 29.31 17.69 25.88
Mask3D [21] - - - 39.12 39.12 - - - 38.30 20.57 29.15 28.61 18.33 25.58

3D-OWIS [3] 0.397 607 34.75 40.20 39.70 0.007 126 27.03 29.40 16.40 22.70 20.20 15.20 18.70
OURS 0.841 564 41.27 39.29 38.81 0.352 199 48.82 36.21 15.61 25.65 22.84 14.91 20.50

+6.52 +21.79 +6.81 +2.64

Split B

Upper Bound 1.000 791 72.08 29.00 29.19 0.400 400 73.16 24.60 23.86 24.48 25.44 29.19 26.83
Mask3D [21] - - - 23.48 23.48 - - - 21.81 18.91 20.37 24.20 29.22 26.06

3D-OWIS [3] 3.684 1780 24.79 23.60 23.30 0.755 581 24.21 18.70 17.30 17.90 18.70 24.60 20.90
OURS 0.873 1243 30.11 26.03 25.71 0.781 758 33.78 24.64 17.85 21.53 19.89 26.00 22.16

+5.32 +9.57 +5.94 +1.19

Split C

Upper Bound 0.583 853 70.80 25.90 26.10 0.500 469 71.61 25.20 26.45 25.91 28.01 27.37 27.80
Mask3D [21] - - - 20.82 21.15 - - - 22.67 26.67 24.13 25.41 25.21 25.35

3D-OWIS [3] 0.419 1294 14.34 18.00 17.60 0.152 303 15.80 13.90 22.20 17.80 17.80 17.70 17.80
OURS 0.876 1403 29.31 25.22 24.90 1.371 849 41.31 26.02 22.66 24.24 23.14 20.49 22.28

+14.97 +25.51 +12.12 +5.34

Table 2: Per class results on Replica dataset. We report classes with zero mAP50
by one of the models. We show that OpenMask3D with our model generalizes to new
classes. We trained OpenDistill3D on ScanNet200 labels for the same number of epochs
as Mask3D, in addition to pseudo labels for unknown classes generated by the SDM. As
a teacher model, we used a pre-trained Mask3D on ScanNet200.These results demon-
strate that training models with unknown-known self-distillation can enhance the abil-
ity of OpenVocabulary models to adapt to new geometries.

class clock tissue-paper tablet basket blanket pillar sculpture Mean

OpenMask3d (w/ Mask3D) 0.00 0.00 0.00 0.00 0.00 15.0 27.3 15.90
OpenMask3D (w/ OpenDistill3D) 31.2 27.2 26.4 25.9 07.5 00.0 0.00 18.40

Table 3: Generalizability test in an
Open-Vocabulary setting of Open-
Mask3D on Replica dataset with
three proposal methods

Training Proposal mAP mAP50 mAP25
classes method (%)↑ (%)↑ (%)↑

Scannet200
Mask3D 09.50 15.90 22.90

3D-OWIS 09.70 15.60 24.10
Ours 11.00 18.40 23.30

The student model MT1

T is trained
for a total number of 600 epochs, on
the labels for the known classes and
the pseudo-labels generated by the
self-distillation module. In the sub-
sequent task, the teacher and the
student models are initialized with
thebest checkpoint from the model of
the previous Task MT1

T . We further
train the student model for 400 epochs
on novel classes from Task T2, and
pseudo-labels for the previously known and unknown objects, generated from
the self-distillation module. The training scheme continues similarly to Task T2
for all subsequent Tasks.
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Table 4: Ablation results. We show in the table below the effect of progressively
adding our contributions. In task T1, we use the same checkpoint for the model with
and without Unknown-Known Separation (UKS) in rows one and two, since there
are no previously known classes. In Task T2 we show that UKS improves over the
naive distillation on both unknowns and knowns. In the third row, we showcase the
effectiveness of using WI in achieving a good balance in performance between the
knowns and unknowns reflected by the higher mAP.

Split C

Row ID (↓) Task IDs (→) Task T1 Task T2

WI A-OSE U-Recall mAP (↑) WI A-OSE U-Recall mAP (↑)

UKS WI (↓) (↓) (↑) Current
known All (↓) (↓) (↑) Previously

known
Current
known All

1 × × 1.015 1391 29 23.12 22.83 1.853 778 36.57 22.47 21.46 21.83
2 ✓ × 1.015 1391 29 23.12 22.83 2.211 875 39.53 24.04 22.26 23.30
3 ✓ ✓ 0.876 1403 29.31 25.22 24.90 1.371 849 41.31 26.02 22.66 24.24

Novel geometry aware class agnostic model for open vocabulary task
We initialize the teacher model with a pre-trained model on the ScanNet200
dataset for 600 epochs. The student model is randomly initialized and trained for
600 epochs by optimizing the class loss 4.2 and the mask loss of [21]. The training
targets are the set of labels and pseudo-labels generated by SDM. The trained
model is used as class agnostic mask proposal network for Open-Vocabulary 3D
instance segmentation models.

5.2 Results

Fig. 4: Effect of catastrophic forget-
ting on unknown pseudo labels gen-
eration. The graph above illustrates the
number of pseudo labels with a confi-
dence threshold exceeding 0.8, generated
via two distinct methods: self-distillation
(OpenDistill) and two-phase training (3D-
OWIS). We highlight the catastrophic for-
getting area in red.

Open-world results: We show in
Table 1 that using self-distillation
from a teacher model improves the
performance of the student model on
the unknown objects, compared to
training with pseudo-labels of the un-
knowns generated through autolabel-
ing by the student model itself in a
two-stage approach. Our findings il-
lustrated through Figure 4 indicate
a significant decline in pseudo-label
generation when employing a two-
stage solution like 3D-OWIS, which
stems from the reliance on the model’s
inherent sense of objectness for gener-
ating proposals of unknown objects.
As the model rapidly forgets previ-
ously known classes (As illustrated in
the highlighted area in Figure 4), its
capacity to generate proposals dimin-
ishes accordingly. The boost in open-world performance in our approach is a
result of high-quality and consistent unknown pseudo-labels generated by the
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student model from the early stages of the model until the end of the training,
as shown in Figure 4. Furthermore, since our self-distillation method relies on a
pre-trained frozen model from the previous tasks, it generates a relatively higher
number of pseudo-labels compared to 3D-OWIS, which occasionally results in
performance degradation in terms of WI and A-OSE as shown in Table 1.

Table 5: Similarity between knowns
and unknowns in the CLIP space.

Top k unknowns Split A Split B Split C

1 36.63 22.68 35.24
2 54.69 31.51 43.94
3 64.06 45.21 50.00

Incremental learning results: Our
exemplar-free self-distillation method
shows better performance on the pre-
viously known classes for all tasks
compared to 3D-OWIS, as shown
in Table 1. This performance im-
provement is due to the high num-
ber of pseudo-labels generated by the
teacher model from the preceding
Task. Which preserves a similar per-
formance to the teacher model on the previously seen classes. Exemplar replay
relies on a small number of samples per class for fine-tuning the model, once
trained on the novel classes, this restriction on the number of exemplars results
in a lower performance than our self-distillation method, which uses the previ-
ous model as a teacher to generate several pseudo-labels larger than the stored
number of exemplars by 3D-OWIS.

Table 6: Closed-set 3D instance seg-
mentation results. We show the per-
formance of the models used as a class-
agnostic mask proposal in OpenMask3D in
a closed setting.

mAP(↑) mAP50(↑) mAP25 (↑)
CSC - 25.24 -
LGround - 26.09 -
Mask3D(w/o DBSCAN) 25.73 34.09 38.87
Ours(w/o DBSCAN) 27.37 35.98 41.44
Mask3D(w/ DBSCAN) 27.40 37.00 42.30
Ours(w/ DBSCAN) 28.00 37.20 43.40

Closed-set results: In Table 1,
our results highlight that training a
model on unknowns (Upper Bound
of our model), in comparison to
Mask3D, which is trained exclu-
sively on presently known classes, en-
hances the model’s performance on
the known classes. Due to the po-
tential high similarity among known
objects, the model may mistakenly
predict various unknowns as knowns,
leading to a decline in performance
on the known classes. To give clear
empirical proof of how some known
classes might be highly similar to some of the unknown objects, we provide
a measure of the similarity of the class names in the CLIP embedding spaces
(see Table 5), where we provide Top k unknowns that their sum of similarity is
higher than 0.9 e.g. a chair (known) is considered similar to armchair (unknown)
and folded chair (unknown) for top 2 unknowns (details in Suppl. Material). We
show that closed-set model performance might be improved with unknown object
self-distillation.
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The results demonstrate that self-distillation of unknowns can improve the
model’s performance on known classes, as evident in Tables 6 and 1. In Table
1, our Upper Bound model, trained on unknowns in a closed-set, outperforms
Mask3D, which is trained solely on presently known classes, in Task T1 on cur-
rently known classes. Additionally, Table 6 illustrates that providing explicit su-
pervision on unknowns through self-distillation enhances Mask3D’s performance
on the 200 classes of the ScanNet200 validation set.

5.3 Discussion and analysis

Table 7: The choice of score rescaling
function WI . We show the importance of
rescaling the weights for a sample with a
certain objectness score in the following ta-
ble. The second row is when using the scores
themselves as weights, while the third row
is our choice of weighting function.
Task ID Task 1

Weight Function WI A-OSE U-Recall mAP (↑)

(↓) (↓) (↑) Current
known All

Split A

None 0.543 559 43.47 38.11 37.66
s 0.719 480 40.83 39.59 39.09
WI(s) 0.841 564 41.27 39.29 38.81

Split B

None 0.619 1179 30.35 24.68 24.39
s 0.347 1104 31.24 23.13 22.86
WI(s) 0.873 1243 30.11 26.03 25.71

Split C

None 1.015 1391 29.00 23.12 22.83
s 0.838 1356 28.19 22.36 22.08
WI(s) 0.876 1403 29.31 25.22 24.90

Ablation study: We show in Ta-
ble 4 that using the weight function
WI with the loss improves the per-
formance on the unknowns and the
known classes in row 2 compared to
row 1, as it offers a good balance
between good and bad pseudo-labels.
Also, the Unknown-Known separation
improves the performance of the stu-
dent model on the previously known
classes and the unknown objects,
compared to the naive self-distillation
(when distilling the output of the
teacher model) in row 1 in the table.

Choice of the loss weight func-
tion: In Table 7, we show that us-
ing the objectness itself as a weight
function improves the performance in
Split A, but it negatively affects the
performance in Split B and Split C.
We hypothesize that this drop in per-
formance in splits B and C is due to
the low Unknown Pseudo-Labels to
True labels Ratio (demonstrated in the suppl. material) for both splits, as the
loss does not receive enough good pseudo-labels to allow the model to differenti-
ate between known and unknown objects. We also show that choosing a weight
function that scales up the score helps the model differentiate between unknowns
and knowns, improving the known classes’ performance on the three splits.

Open-Vocabulary results: Table 3 demonstrates that employing OpenDis-
till3D for 3D mask proposal generation enhances generalizability when eval-
uated on new datasets, surpassing Autolabeling utilized in 3D-OWIS or closed
set training in Mask3D. Additionally, Table 2 illustrates that OpenDistill adapts
well to new classes with varying geometries in the Replica dataset.
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3D-OWIS OpenDistill3D(Ours) Ground Truth

Fig. 5: Qualitative results. Our model exhibits qualitatively better results on the
known classes ( ) and unknown objects ( ), compared to 3D-OWIS [3]. In the first
scene, our model generates fewer false positives from the unknown classes, as it correctly
classified the stool chair (unknown). In the second one, our model is capable of correctly
segmenting background objects as unknowns. In the last one, we show that our model
correctly segments the bottom-right chair (known) in the scene.

Qualitative results: We qualitatively show the superiority of our method in
maintaining knowledge of the previously known classes in Figure 2, and improv-
ing the unknown object segmentation in Figure 5 compared to State Of The Art
3D-OWIS. In Figure 5, the background and unknown objects are correctly seg-
mented due to the high-quality unknown object pseudo-labels used for training.

Limitations Our model is tested for indoor environments only and may exhibit
sub-optimal performance in extremely sparse outdoor point cloud scenes since
the performance of the student model depends on the quality of pseudo-labels
generated by a teacher model. Additionally, our analysis of the pseudo-labels
created by the SDM indicates that different pseudo-labels for unknown objects
are generated when using augmented versions of the same scene. This observation
suggests that incorporating various augmentations could enhance performance
on the unknown objects.

6 Conclusion

We address the challenges of open-world 3D instance segmentation by intro-
ducing a novel approach with self-distillation that handles both continual learn-
ing and unknown object identification. Traditional methods treating these sub-
problems separately have shown limitations in handling unknown instances and
mitigating catastrophic forgetting. The proposed method leverages self-distillation,
utilizing pseudo-labels from the preceding task to enhance the model’s perfor-
mance in recognizing unknown objects during training while mitigating catas-
trophic forgetting.
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