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Abstract. Multi-object tracking (MOT) endeavors to precisely estimate
the positions and identities of multiple objects over time. The prevailing
approach, tracking-by-detection (TbD), first detects objects and then
links detections, resulting in a simple yet effective method. However,
contemporary detectors may occasionally miss some objects in certain
frames, causing trackers to cease tracking prematurely. To tackle this
issue, we propose BUSCA, meaning ‘to search’, a versatile framework
compatible with any online TbD system, enhancing its ability to persis-
tently track those objects missed by the detector, primarily due to occlu-
sions. Remarkably, this is accomplished without modifying past tracking
results or accessing future frames, i.e., in a fully online manner. BUSCA
generates proposals based on neighboring tracks, motion, and learned
tokens. Utilizing a decision Transformer that integrates multimodal vi-
sual and spatiotemporal information, it addresses the object-proposal
association as a multi-choice question-answering task. BUSCA is trained
independently of the underlying tracker, solely on synthetic data, without
requiring fine-tuning. Through BUSCA, we showcase consistent perfor-
mance enhancements across five different trackers and establish a new
state-of-the-art baseline across three different benchmarks. Code avail-
able at: https://github.com/lorenzovaquero/BUSCA.

Keywords: 2D Tracking · Multi-target tracking · Online

1 Introduction

Multi-object tracking (MOT) entails the process of locating and identifying mul-
tiple objects over time within a scene. It is a crucial task in computer vision with
applications spanning various domains such as robotics [15], autonomous vehi-
cles [18, 62], and video surveillance systems [38]. The prevalent MOT paradigm
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Fig. 1: Due to occlusions, detectors fail to locate many relevant elements on a scene
(e.g., the woman in red). Accordingly, online multi-object trackers may lose track of
some objects. With BUSCA, we propose a fully online framework that can be integrated
into any online TbD tracker to persistently track those objects missed by the detector.
Box colors represent object identities.

is tracking-by-detection (TbD) [8], where object trajectories are obtained by
(i) first detecting objects and (ii) then associating detections. Although alter-
native frameworks have been proposed in the literature [1, 29], TbD has sur-
faced capitalizing on significant progress in object detection. Notably, over the
past few years, center- [61,72] and Transformer-based architectures [48,61] have
emerged. More recently, the MOT performance has been further improved thanks
to the adoption of YOLO-based detectors [17,39] coupled with a straightforward
intersection-over-union (IoU) matching. This simple yet effective approach has
even contributed to the renewed popularity of SORT [6,13,39].

Meanwhile, significant efforts in the community have been also dedicated
to improving identity consistency within a trajectory. This is achieved by de-
vising better association schemes [6, 13, 67, 73] or through re-identification (Re-
ID) [40,45]. However, these methods remain highly dependent on the availability
of detections, which makes them susceptible to trajectory fragmentations.

Current state-of-the-art detectors are not perfect and fail to detect all the
objects in a video. To have an idea, 17% of the detections in MOT17 [30] valida-
tion set are still missed by the YOLOX detector [17], and the extremely occluded
objects (visibility = 0, provided in the ground-truth annotations) contribute
11.0 points to the MOTA score based on the standard MOT evaluation [10,30].
Meanwhile, modern online trackers pause or terminate the tracking process dur-
ing these situations where an object fails to be detected, leading to suboptimal
results. We argue that more care should be taken in this regard, avoiding pre-
mature terminations of objects that genuinely exist. In this work, we introduce
BUSCA (Building Unmatched trajectorieS Capitalizing on Attention), which
helps online TbD systems handle those objects, often highly occluded, overlooked
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by the detector. BUSCA propagates unmatched tracks and, by design, can be
applied to the outcome of any online TbD track assignment process.

Some works in the literature [11,35,44] focus on repairing fragmented tracks
and improving trajectory continuity. However, these have so far been imple-
mented through offline methods, as they alter decisions made on previous time
steps (e.g., interpolating a trajectory after re-detection) and/or leverage future
information. Thus, despite some of them claiming to be online, they should
be considered as offline according to the widely accepted definition of ’online’
in MOTChallenge [10, 30] where “the solution has to be immediately available
with each incoming frame and cannot be changed at any later time”. The of-
fline fashion makes them impractical for certain real-world applications and not
comparable to online methods. Conversely, BUSCA is able to persistently track
undetected objects in a fully online setting5.

As an example illustrated in Fig. 1, some objects are missed due to low vis-
ibility even by a highly performant detector [17], causing the tracker to lose
them. With BUSCA, we can enhance any TbD online tracker to continuously
track those undetected objects without resorting to offline methods. To this end,
BUSCA is built on a multi-choice question-answering Transformer that finds
undetected objects given (i) candidate generated with a motion model (inde-
pendent of the detector), (ii) contextual information derived from neighboring
objects, and (iii) previous observations from the object of interest. These inputs
are composed of visual and spatiotemporal information. The visual component
characterizes object appearances while the spatiotemporal element encapsulates
the size, center location, and timing of the object in a condensed format using
an innovative spatiotemporal encoder.

In summary, the main contributions and novelties of this work are as follows:
– BUSCA is a general framework to persistently track those objects missed by

the detector, in a fully online manner, without (i) modifying past tracking
predictions (ii) or accessing future frames.

– BUSCA entails (i) a novel Decision Transformer inspired by multi-choice
question-answering tasks, (ii) a Proposal Generator that relies on neighbor-
ing tracks, motion, and learned tokens, and (iii) an innovative Spatiotempo-
ral Encoder that captures the size, location, and time of the objects. The
network is trained independently from the underlying tracker and using syn-
thetic data [14], without any fine-tuning on real MOT sequences.

– BUSCA can be seamlessly integrated on top of any online TbD tracker,
as demonstrated in our comprehensive experiments where we systemati-
cally enhance the performance of five distinct trackers on standard bench-
marks [10,30], defining a new state-of-the-art among online trackers.

2 Related Work

End-to-end MOT methods model detection, tracking, and their implicit match-
ing within a unified architecture. The most common approaches tackle this
5 BUSCA strictly respects the ‘online’ definition, thus ‘fully online’.



4 L. Vaquero et al.

through identity embeddings [57], regression [1,53] or the recent use of attention
mechanisms [5,16,29,66,73,74]. Nonetheless, this holistic design can create chal-
lenges during the joint training process [16] and, prevent these methods from
being applicable to other trackers and leveraging leading-edge detectors. Conse-
quently, these models have not yet superseded TbD techniques.
Tracking by detection (TbD) is an effective paradigm that decouples the
MOT task into object detection and data association. This decomposition en-
ables TbD methods [19,45,48,60,61,67,70,72] to benefit from classical [39,41,60],
more advanced [23, 67] or self-constructed [48, 61, 72] detectors, coupled with
diverse association processes such as hierarchical clustering [70], graph neural
networks [19] or geometric cues [67].

In particular, center-based methods like CenterTrack [73] and TransCen-
ter [61] alleviate the ambiguity in bounding boxes by predicting object center
heatmaps in a CNN-based or Transformer-based architecture, respectively. Re-
cently, ByteTrack [67] showcases remarkable results using a meticulously tuned
YOLOX detector [17] paired with a simple IoU-based matching mechanism. This
powerful detector has also revived SORT [3] with a stronger association mecha-
nism in methods such as OC-SORT and StrongSORT [6,13]. Nevertheless, these
TbD trackers remain highly vulnerable to missed detections. This issue moti-
vates us to introduce BUSCA, a framework designed to improve any online TbD
tracker by persistently tracking those objects overlooked by the detector.
Improving trajectory consistency, i.e., maintaining consistent object iden-
tities over time, is one of the main challenges of online multi-object trackers.
Most of these methods rely on frame-by-frame association of detections solved
via Hungarian matching [25]. However, pure motion-based associations [3, 4, 67]
often encounter difficulties in crowded environments or moving-camera scenarios.
As a result, other works turn to appearance-based techniques [24,37,40,46,51,58],
hybrid cues [13,26,45,50], or Transformer solvers [66,73]. Notably, GHOST [45]
redesigns the use of a ReID model and builds a simple yet strong baseline. In
efforts to lessen the impact of occlusions, some methods aim to predict an ob-
ject’s visibility in order to adjust its detections’ confidences [21] or re-weight the
association matrix [69]. On the other hand, some strategies improve associations
by hallucinating object trajectories [49] or by prompting re-detections in areas
where occluders are present [27].

Nonetheless, unlike BUSCA, these more advanced association processes re-
main heavily dependent on the detector as they operate on available detections.
[26] is a rare exception but at the cost of MOT performance drop.
Ensuring trajectory continuity is a non-trivial task that attempts to repair
the trajectory of an object from the instant it is lost until it is re-identified
again. Thus, most current trackers perform an extra offline post-processing step
based on linear [67] or Gaussian-smoothed [13] interpolation. Some more so-
phisticated methods involve implementing a probabilistic model to retroactively
insert missed detections [44], learning an additional Refind Module [35] to bridge
these gaps, or 2D-to-3D lifting and performing motion forecasting in a bird’s eye
view [11]. Nevertheless, these strategies remain offline [10, 30] as they either al-
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ter predictions on past time steps or take into account future frames, limiting
their applicability in certain real-world scenarios. We introduce thus BUSCA, a
framework that can be built on top of any online TbD tracker to enhance its
continuity and consistency in a fully online fashion.

Fig. 2: The bottom-left panel depicts the tracking-by-detection (TbD) paradigm
(Sec. 3), where a track is paused when the detector fails to locate the object. To
address this issue, we integrate BUSCA into the online TbD tracker (Sec. 4) as shown
in the top-left panel. This allows for the extension of trajectories of undetected objects
by pairing them with proposals comprising candidates (B), contextual information (C)
and learned tokens (L) (Sec. 4.2) via an innovative decision Transformer (Sec. 4.1).
Comprehensive details about the components of BUSCA are showcased in the right-
hand panel. The track observations and proposals fed to the decision Transformer are
made up of both appearance features (extracted with a convolutional backbone omit-
ted here for clarity) and spatiotemporal cues for time, size, and distance encoded in a
compact embedding through our novel spatiotemporal encoding (STE, Sec. 4.3).

3 TbD in a Nutshell

In the tracking by detection (TbD) paradigm, at a given frame a detector
first produces a set D = {𝛿1, ..., 𝛿𝑀 } of 𝑀 detections, with each detection
𝛿𝑖 = {𝑎𝑖 , 𝑐𝑖 , 𝜔𝑖} is defined by its appearance 𝑎𝑖 (i.e., features of the image con-
tained in the coordinates), coordinates 𝑐𝑖 (object size and center location) and
confidence score 𝜔𝑖. These detections are used to propagate the position of a
set T = {𝜏1, ..., 𝜏𝑁 } of 𝑁 active tracks, each represented by a time-ordered set
𝜏𝑗 = (𝑜 𝑗 ,1, . . . , 𝑜 𝑗 ,𝑍 ) of observations 𝑜𝑘 = {𝑎𝑘 , 𝑐𝑘} over the past 𝑍 frames.

D is compared with T , using coordinates and geometric cues [3, 67], ap-
pearance information [58], or both [45], yielding a cost matrix of size 𝑁 × 𝑀

whose optimal assignments are determined through Hungarian matching [25].
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Thus, as shown in the bottom-left part of Fig. 2, correctly matched tracks are
updated with the assigned detections, while those without a matching detection
are paused. Having correct and sufficient detections for all tracks is critical, lead-
ing many trackers to resort to offline interpolation techniques to repair missing
observations. In order to address this issue without resorting to offline interpola-
tion, we present BUSCA, which tracks those undetected objects in a fully online
fashion.

4 BUSCA: Finding Objects without Detections

Current detectors still fail to detect all the objects, especially in low-visibility
situations i.e., heavy occlusions. Modern trackers heavily rely on the detection
quality, thus naively stopping the tracking process whenever the detector fails.
Therefore, BUSCA comes to help by saving those objects missed by the detector
and finding where they are.

In particular, BUSCA is a fully online framework that can be coupled with
any TbD tracker to persistently track those objects missed by the detector. As
can be seen in the upper left part of Fig. 2, BUSCA receives unmatched tracks
T𝑢 and compares them with a set of proposals generated through a proposal
generation process (Sec. 4.2). This comparison is carried out through a novel de-
cision Transformer (Sec. 4.1), which uses an innovative spatiotemporal encoding
(STE, Sec. 4.3) to aggregate information of different nature. This way, BUSCA
can update the coordinates of those unmatched tracks or determine whether
they have really left the scene.

4.1 Decision Transformer: To Be or Not To Be

Deciding whether to pause an undetected track or propagate its identity can
be formulated as a multiple-choice question-answering task [36]. That is, given
a question (the track 𝜏) and a set of possible options (the proposals P =

{𝑝1, ..., 𝑝𝐽 }, where 𝑝𝑖 = {𝑎𝑖 , 𝑐𝑖}), the goal of the network is to find the cor-
rect answer (the decision of which proposal to match to the track) forming the
assignment set A = {𝜏𝑗 ↦→ 𝑝𝑖 |𝜏𝑗 ∈ T , 𝑝𝑖 ∈ P}. Inspired by this formulation, we
propose to maintain undetected objects via a Transformer-based design that in-
puts different proposals and a track, outputting the best match, i.e., the proposal
with the highest probability.

As shown on the right side of Fig. 2, our decision Transformer is imple-
mented through an 𝐿-layer encoder model, which receives an input I = {𝜏,P},
in which the past observations of the track are included. For each of the indi-
vidual elements that make up the input (referred to as tokens), the appearance
information 𝑎 is processed by a convolutional backbone and projected to a lower
dimensional space. This visual information of each token is then fused with its
geometric cues 𝑐 using our innovative spatiotemporal encoding (Sec. 4.3), to al-
low the Transformer to reason complex relationships between motion and visual
features.
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Within the decision Transformer, the input tokens are self-attended with each
other, yielding refined tokens J = {𝜏,P} where the features most closely related
to the track have been enhanced. Then, the elements of P are fed to a shared-
weight multi-layer perceptron (MLP) that generates one logit per token. After
a Softmax operation, we output the probabilities that the track 𝜏 is assigned to
each proposal 𝑝, allowing us to obtain A by finding the maximum probability.
Finally, we update 𝜏 when it is successfully matched with a candidate proposal
(See Sec. 4.2) or pause it otherwise. It should be noted that the MLP is share-
weight, so as not to be restricted to any fixed input size.

4.2 Proposal Generation: Missing Puzzle Pieces

As with textual question-answering problems, the composition of the proposals
P is one of the most critical aspects, and this is no different for our decision
Transformer. P = {B, C,L} is composed of candidates B, contextual proposals
C, and learned proposals L. As shown in the bottom-right of Fig. 2, B and C
are extracted from the frame, while L is learned. BUSCA will keep a track 𝜏

active and update it with the proposal information if it is associated with any
element from B and pause 𝜏 otherwise.

Generating the sets of proposals B and C is nontrivial given that none of the
detections in D can be associated with 𝜏. Given its reasonable performance [3,
13, 67], we opt for a simple yet effective Kalman filter [22] to predict a new
observation of 𝜏 at the current frame. To this end, it is possible to obtain B =

{Kalman(𝜏)} without adding extra complexity to BUSCA, all while effectively
managing complex motion scenarios, as evidenced in the supplementary material.
Regarding the contextual proposals C, their goal is to provide BUSCA with
more information about the scene. C is composed of the 𝑄 closest observations
within the neighborhood of 𝜏, 𝑉 (𝜏). Details for the computation of the maximum
neighborhood distance for 𝜏 are given in the supplementary material.

The input proposals P of BUSCA also comprise a set L = {[Halluc.], [Miss.]}
of learned tokens that allow the Transformer to make complex decisions about
the tracking process and pause 𝜏 if necessary. Specifically, [Halluc.] is learned
to capture whether any observation 𝑜 is corrupted (i.e., belonging to a different
object) whereas [Miss.] handles if 𝜏 has left the scene or none of the elements
of {B, C} are suitable enough to be matched. Additionally, a separator token
[SEP] borrowed from textual Transformers [36] is also learned to delimit each
of the elements of P.

4.3 Spatiotemporal Encoding (STE): Merging Modalities

Along with appearance features, spatiotemporal information is also crucial for
making correct assignments. This information is however more complex to be
encoded due to its multi-dimensionality (i.e., time-stamp 𝑡 at which observations
are recorded, the size 𝑠 of the bounding box, and their distance 𝑑 in the 2D co-
ordinate space). To this end, we propose the spatiotemporal encoding (STE)
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depicted on the top-right part of Fig. 2, which models these relationships be-
tween observations and allows its fusion with visual features so BUSCA can
effectively learn complex relationships. Our spatiotemporal encoding supersedes
the conventional positional encoding often implemented in Transformer mod-
els [52]. This encoding is generated through a two-step process comprising the
interplay mapping and subsequent the embedding projection.

Interplay mapping. The encodings employed in visual Transformers rely
on absolute values, which limit the network’s overall adaptability and make them
rely on interpolation techniques to handle diverse frame sizes [7,12,31]. Moreover,
this method has consequential downsides for tracking tasks, as identical inter-
actions might be represented differently depending on their specific occurrence
(e.g. proximity between a track and an observation will be encoded differently
depending on their absolute position within the frame or video).

To address this, our STE relies on a novel interplay mapping that models
interactions relative to an anchor 𝜅. In our specific use case, 𝜅 = {𝑥𝜅 , 𝑦𝜅 , 𝑤𝜅 , ℎ𝜅 , 𝑡𝜅 }
corresponds to the coordinates (i.e., object center, width, and height) and time-
stamp of the last known observation of the track 𝑜 ∈ 𝜏. To this end, we can
compute a spatiotemporal embedding {𝐸 𝑡 , 𝐸 𝑠 , 𝐸𝑑} comprising time, size, and
distance, respectively, for each token 𝜄 ∈ I as:

𝐸 𝑡 = 𝜎𝑡 (𝑡 𝜄 − 𝑡𝜅 ) (1)

𝐸 𝑠 = 𝜎𝑠

(
log

(
𝑤 𝜄

𝑤𝜅

)
+ log

(
ℎ 𝜄

ℎ𝜅

))
(2)

𝐸𝑑 = 𝜎𝑑 log

√︄(
𝑥 𝜄 − 𝑥𝜅

𝑤𝜅

)2
+
(
𝑦 𝜄 − 𝑦𝜅

ℎ𝜅

)2
(3)

where 𝜎𝑡 , 𝜎𝑠 , 𝜎𝑑 are scaling factors. This relative representation boosts the gen-
eralization capacity of BUSCA and improves convergence during training.

Embedding Projection. After computing the interplay mapping between
input tokens and 𝜏, it is essential to make this representation compatible with
both the transformer and the visual features. However, adding multiple inde-
pendent sinusoidal functions could lead to potentially ambiguous information,
according to [56]. To this end, it is necessary to establish a joint spatiotemporal
encoding by expanding the function used in [52] to a 3-dimensional space. Given
the Transformer’s internal dimension of 𝐷Tr channels, we equally distribute it
among the three components of our spatiotemporal embedding 𝐷 = 𝐷Tr/3.
Therefore, for a given dimension 𝐸Δ where Δ ∈ {𝑡, 𝑠, 𝑑} we can compute its
projected embedding 𝑃𝐸Δ:

𝑃𝐸Δ
2𝑖 = sin

(
𝐸Δ

100002𝑖/𝐷

)
𝑃𝐸Δ

2𝑖+1 = cos
(

𝐸Δ

100002𝑖/𝐷

)
(4)

where 0 ≤ 𝑖 < 𝐷/2. And subsequently concatenate the components of the
different dimensions to create our compact spatiotemporal encoding 𝑆𝑇𝐸 =(
𝑃𝐸 𝑡 , 𝑃𝐸 𝑠 , 𝑃𝐸𝑑

)
for each one of the tokens 𝜄 ∈ I.
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5 Experimental Results

In Sec. 5.1, we clarify the experimental settings along with the used datasets and
metrics. In Sec. 5.2, we validate the necessity of BUSCA compared to the naive
solutions and show that it can systematically extend tracks’ lifespan, improving
trajectory continuity without losing consistency. Subsequently, we empirically
demonstrate the effectiveness of each component of BUSCA and justify its design
choices. Once validated, we show in Sec. 5.3 that BUSCA is a plug-and-play
component that consistently improves various trackers, setting new state-of-the-
art performance in all tested benchmarks compared to other online methods.
Finally, some successful and failure cases are qualitatively shown in Sec. 5.4.

5.1 Experimental Settings
We conduct our experiments on the widely-used MOT16 [30], MOT17 [30]
and the crowded MOT20 [10] datasets. In contrast to other methods, we train
BUSCA using solely synthetic data from MOTSynth [14], which consists of 764
full-HD videos recorded at 20 fps. For each training sample, we construct a track
of length 𝑍 = 11 and randomly select 5 objects near 𝜏 to form a proposal set
(current observation of 𝜏 is the positive candidate while objects with an overlap
smaller than 0.5 are negatives. Additionally, we set a 15% probability of not
sampling any positives ([Miss.] will be considered the correct option) and a
1% chance of altering observations within 𝜏 ([Halluc.] will be the correct op-
tion). Our training process focuses only on bounding box annotations and does
not require any fine-tuning towards particular datasets or tracking systems. The
computational cost of BUSCA is relatively small, with only 8.7M parameters and
a runtime of 45ms per frame on a single NVIDIA RTX GPU (when integrated
with [67], the whole system runs at roughly 13fps).

For the ablation, we focus on MOT17 with the widely-adopted split [45, 67,
72] that evenly divides each video sequence into training and validation sets.
Unless otherwise stated, we employ ByteTrack [67] as our baseline tracker due
to its state-of-the-art performance, but we remove its offline interpolation and its
per-sequence curated thresholds. For the comparison with the state-of-the-art,
we submit our test set results to the MOTChallenge servers and compare our
approach with current online methods as defined in the challenge [10,30].

For evaluation, we report the standard metrics adopted by the MOTChal-
lenge [9]. These include MOTA [2] reflecting the overall performance of a pre-
dicted trajectory; the recently introduced HOTA [28] that balances object cover-
age and identity preservation; IDF1 [43] focusing on association quality; IDentity
SWitches (IDSW) to reflect identity consistency; and False Positives (FP) as well
as False Negatives (FN) to assess detection performance. Additional experiments
and implementation details can be found in the supplementary material.

5.2 Model Validation and Ablation
Naive approaches are not enough. Persistently tracking objects overlooked
by the detector is not a trivial task and cannot be achieved with simpler naive ap-
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Table 1: Comparison to different simpler solutions on MOT17 [30] val set. The differ-
ence with the baseline is depicted next to each metric. ByteTrack [67] is used as base
tracker removing its offline interpolation and per-sequence thresholds, noted with ★.

MOTA ↑ HOTA ↑ FN ↓ FP ↓

ByteTrack★ 76.5 67.4 9120 3410
+ LD 75.3 (−1.2) 65.6 (−1.8) 8854 (−266) 4196 (+786)
+ IoU 75.4 (−1.1) 67.0 (−0.4) 7588 (−1532) 5493 (+2083)
+ Mixed 76.6 (+0.1) 67.6 (+0.2) 8393 (−727) 4063 (+653)
+ BUSCA (ours) 77.1 (+0.6) 67.6 (+0.2) 8326 (−794) 3889 (+479)
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BUSCA over TransCenter
BUSCA over CenterTrack

(a) Extra successfully rescued objects. (b) Impact of BUSCA on track length.

Fig. 3: (a) Analysis of the additional objects that BUSCA successfully locates when
integrated with different trackers. The objects are grouped by their visibility [30]. (b)
Analysis of the impact of BUSCA on the resulting track length in different trackers.
Additional implementation details can be found in the supplementary material.

proaches. Specifically, ByteTrack [67] demonstrates that with a reliable detector,
some low-score detections can be leveraged in a second-round association. One
would then expect that Lowering the Detection (LD) threshold 𝜖 = 0.01 would
provide further benefits during the tracks-detections matching. Another direct
approach similar to BUSCA consists of using a motion model (e.g., Kalman
filter) to estimate the track future coordinates and perform an extra round of
associations based on motion and geometry cues like IoU. Alternatively, we
also propose an extra recovery round based on Mixed cues (i.e. both IoU and
appearance), as shown important for more robust associations [58].

As shown in Tab. 1, lower-score detections are not reliable and +LD in-
creases FP (+786) with a slight decrease in FN (-266), leading to a MOTA
(-1.2) and HOTA (-1.8) drop. This demonstrates that the leftover detections
in [67] are not reliable and insufficient for finding lost objects and it is therefore
necessary to leverage a motion model providing better candidates. However, not
every candidate is reliable, and relying solely on +IoU associations does not im-
prove MOT performance (-1.1/-0.4 in MOTA/HOTA). Adding visual cues with
our +Mixed approach brings improvements, but the limited increase in MOTA
(+0.1) evidences that this simple method still struggles to make correct assign-
ments. Differently, BUSCA considers visual and spatiotemporal information
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Table 2: Ablation on MOT17 [30] val set of the different components that
comprise BUSCA. HLC=[Halluc.] learned token, MSS=[Miss.] learned token,
STE=spatiotemporal encoding, CTX=contextual proposals. The difference with the
baseline is depicted next to each metric. ByteTrack [67] is used as base tracker remov-
ing its offline interpolation and per-sequence thresholds.

Line HLC MSS STE CTX MOTA ↑ HOTA ↑ FN ↓ FP ↓

1 76.5 67.4 9120 3410
2 ✓ 75.0 (−1.5) 66.3 (−1.1) 8395 (−725) 4911 (+1501)
3 ✓ 76.4 (−0.1) 67.3 (−0.1) 8064 (−1056) 4513 (+1103)
4 ✓ ✓ 76.5 ( 0.0 ) 67.1 (−0.3) 8656 (−464) 3853 (+443)
5 ✓ ✓ ✓ 76.7 (+0.2) 67.4 ( 0.0 ) 8528 (−592) 3851 (+441)
6 ✓ ✓ ✓ 76.9 (+0.4) 67.6 (+0.2) 8387 (−733) 3884 (+474)
7 ✓ ✓ ✓ ✓ 77.1 (+0.6) 67.6 (+0.2) 8326 (−794) 3889 (+479)

from the track, the candidate, and the context in a Transformer-based design,
providing better decisions to prevent undetected tracks from being paused.
Longer trajectories with BUSCA. As illustrated in Fig. 3a, the efficacy of
BUSCA is evident in its ability to successfully keep alive an extensive array of
missing objects under different baselines. We observe that most of those saved
objects have low visibility (i.e., under heavy occlusions), proving that BUSCA is
particularly good at mitigating instances where the detector exhibits a proclivity
for failure. Accordingly, BUSCA correctly extends the resulting track trajectories
in every tested tracker, as demonstrated in Fig. 3b.
BUSCA component ablation. BUSCA relies on different components that
ensure its proper operation and allow it to associate proposals and tracks accu-
rately. In Table 2, we analyze the impact of the learned [Miss.] and [Halluc.]
tokens, the spatiotemporal encoding, and the use of contextual information.

BUSCA may decide to pause a track either because it is a hallucinated
track ([Halluc.] token), or because none of the candidates is suitable enough
([Miss.] token). Relying solely on the [Halluc.] token (Line 2) yields negative
results, resulting in an additional +1501 false positives compared to the baseline.
Conversely, if track termination is guided solely by the [Miss.] token (Line 3),
the output remains marginally below the baseline with a decrease of −0.1 points
in MOTA. The integration of these two learned tokens leads to improved per-
formance (Line 4) because taking into account both conditions for whether to
associate a track more accurately represents real-world situations.

By adding our spatiotemporal encoding 𝑆𝑇𝐸 (Line 5), the MOTA score is
further increased by +0.2 points. Nonetheless, a high number of false negatives
persist due to duplicated tracks occasionally kept alive. These tracks negatively
impact the system when kept active, and so far BUSCA has had no way of
identifying them. To address this issue, we integrate contextual proposals from
nearby observations (Line 6), successfully reducing false negatives by −733 and
resulting in a MOTA increase of +0.4 points. The best results are achieved when
all components are integrated into BUSCA (Line 7).
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Fig. 4: Study of track length and number of contextual proposals used as input in our
decision Transformer w.r.t. HOTA and MOTA performance.

Track length, contextual proposal size. Adhering to the definition of an
online method, BUSCA considers the past observations of a track and its in-
teraction with neighboring objects, learning deep relationships between motion
and appearance. On Fig. 4a, we study the optimal amount of observations fed
as input to BUSCA. The HOTA curve contains noisier observations, whereas
MOTA displays an upward trend that starts to converge at 𝑍 = 11 where HOTA
also achieves the best score. Regarding the maximum number of contextual pro-
posals, from Fig. 4b, we observe that both curves have a positive slope which
decays when 𝑄 > 4. We hypothesize this is due to the additional contextual
proposals being too distant and uninformative on the track’s environment.

5.3 State-of-the-Art Comparisons

By design, BUSCA can be seamlessly incorporated into any existing online
TbD tracker. To illustrate its performance, we extensively integrate BUSCA
into five diverse state-of-the-art trackers and compare them against the cur-
rent state-of-the-art in online MOT. Our base trackers include the center-based
CenterTrack [71] (CNN network) and TransCenter [61] (Transformer network);
as well as the YOLOX-based ByteTrack [67] (IoU matching), StrongSORT [13]
(appearance-enhanced association), and GHOST [45] (attentive Re-ID scheme).
Evaluations were conducted on the test sets of MOT16 [30], MOT17 [30], and
MOT20 [10]. As shown in Tab. 3, BUSCA consistently improves the performance
of all trackers in every benchmark for nearly all metrics, without requiring train-
ing on any real MOT data nor necessitating to be fine-tuned for any tracker.

Remarkably, BUSCA drastically enhances both CenterTrack and TransCen-
ter without the necessity for a recent state-of-the-art detector. For instance, in
CenterTrack, we achieve a boost of +12 HOTA and +21 IDF1 in MOT20. Sim-
ilarly, TransCenter also gets significantly improved due to a marked reduction
in IDSW, thereby bolstering HOTA (e.g., +5.1/+8.6 in MOT17/20) and IDF1
(e.g., +8.6/+15 in MOT17/20). When paired with high-performing trackers such
as ByteTrack and StrongSORT that rely on a potent YOLOX detector [17],
BUSCA sets a new state-of-the-art for online multi-object tracking. Further-
more, BUSCA can also join efforts with identity-preserving methods like the
advanced Re-ID mechanism in GHOST [45] to further enhance its performance.
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Table 3: State-of-the-art comparison on MOT16, MOT17, and MOT20 test sets. ★

means that the offline interpolation and the per-sequence thresholds in ByteTrack [67]
and OC-SORT [6] are removed for fair comparison. † and ‡ indicate reproduced results
for GHOST [45] and StrongSORT [13] on MOT16 and for CenterTrack [72] on MOT20,
respectively, due to their unavailability in the original works. Private detections are
used. BUSCA consistently improves all baseline trackers in almost every metric, as
shown in bold. Best results are highlighted in blue.

MOT16 MOT17 MOT20
MOTA↑ HOTA↑ IDF1↑ IDSW↓ MOTA↑ HOTA↑ IDF1↑ IDSW↓ MOTA↑ HOTA↑ IDF1↑ IDSW↓

TubeTK [32] 66.9 50.8 62.2 1236 63.0 48.0 58.6 5727 – – – –
CTracker [34] 67.6 48.8 57.2 1897 66.6 49.0 57.4 5529 – – – –
QDTrack [33] 69.8 54.5 67.1 1097 68.7 53.9 66.3 3378 – – – –
TraDeS [59] 70.1 53.2 64.7 1144 69.1 52.7 63.9 3555 – – – –
MTrack [65] 72.9 – 74.3 642 72.1 – 73.5 2028 63.5 – 69.2 6031
MeMOT [5] 72.6 57.4 69.7 845 72.5 56.9 69.0 2724 63.7 54.1 66.1 1938
MeMOTR [16] – – – – 72.8 58.8 71.5 1902 – – – –
GSDT [55] 74.5 56.6 68.1 1229 73.2 55.2 66.5 3891 67.1 53.6 67.5 3230
Decode-MOT [26] 74.7 60.2 73.0 1094 73.2 59.6 72.0 3363 67.2 54.5 69.0 2805
MOTR [66] – – – – 73.4 57.8 68.6 2439 – – – –
OUTrack [27] 74.2 59.2 71.1 1328 73.5 58.7 70.2 4122 68.6 56.2 69.4 2223
FairMOT [68] 75.7 61.6 75.3 621 73.7 59.3 72.3 3303 61.8 54.6 67.3 5243
TrackFormer [29] – – – – 74.1 57.3 68.0 2829 68.6 54.7 65.7 1532
TransTrack [48] – – – – 74.5 - 63.9 3663 64.5 – 59.2 3565
AOH [21] – – – – 75.1 59.6 72.6 3312 67.9 55.1 70.0 2698
GTR [73] – – – – 75.3 59.1 71.5 2859 – – – –
CrowdTrack [47] – – – – 75.6 60.3 73.6 2544 70.7 55.0 68.2 3198
OC-SORT★ [6] – – – – 76.0 61.7 76.2 2199 73.1 60.5 74.4 1307
SGT [20] 76.8 61.2 73.5 1276 76.3 60.6 72.4 4578 72.8 56.9 70.5 2649
CorrTracker [54] 76.6 61.0 74.3 1709 76.5 60.7 73.6 3369 65.2 – 69.1 5183
ReMOT [64] 76.9 60.1 73.2 742 77.0 59.7 72.0 2853 – – – –
Unicorn [63] – – – – 77.2 61.7 75.5 5379 – – – –
MTracker [69] – – – – 77.3 – 75.9 3255 66.3 – 67.7 2715
MO3TR-YOLOX [74] – – – – 77.6 60.3 72.9 2847 72.3 57.3 69.0 2200
CountingMOT [42] 77.6 62.0 75.2 1087 78.0 61.7 74.8 3453 70.2 57.0 72.4 2795

CenterTrack‡ [72] 69.6 – 60.7 2124 67.8 52.2 64.7 3039 45.8 31.8 36.6 6296
+ BUSCA (ours) 70.4

(+0.8)
55.7

(−)
69.7
(+9.0)

927
(-1197)

68.9
(+1.1)

55.1
(+2.9)

68.8
(+4.1)

2817
(-222)

49.5
(+3.7)

44.2
(+12)

58.0
(+21)

1370
(-4926)

TransCenter [61] 75.7 56.9 65.9 1717 76.2 56.6 65.5 5427 72.9 50.2 57.7 2625
+ BUSCA (ours) 75.7

(+0.0)
61.9
(+5.0)

74.5
(+8.6)

1038
(-679)

76.2
(+0.0)

61.7
(+5.1)

74.1
(+8.6)

3282
(-2145)

73.9
(+1.0)

58.8
(+8.6)

72.4
(+15)

1756
(-869)

GHOST† [45] 78.3 63.0 77.4 709 78.7 62.8 77.1 2325 73.7 61.2 75.2 1264
+ BUSCA (ours) 78.5

(+0.2)
63.2
(+0.2)

77.5
(+0.1)

707
(-2)

79.0
(+0.3)

62.9
(+0.1)

77.0
(-0.1)

2295
(-30)

74.2
(+0.5)

61.3
(+0.1)

75.1
(-0.1)

1251
(-13)

StrongSORT† [13] 78.3 63.8 78.9 437 78.3 63.5 78.5 1446 72.2 61.5 75.9 1066
+ BUSCA (ours) 78.4

(+0.1)
64.2
(+0.4)

79.5
(+0.6)

434
(-3)

78.6
(+0.3)

63.9
(+0.4)

79.2
(+0.7)

1428
(-18)

72.7
(+0.5)

61.8
(+0.3)

76.3
(+0.4)

1006
(-60)

ByteTrack★ [67] 78.2 62.8 77.2 892 78.9 62.8 77.1 2363 74.2 60.4 74.5 925
+ BUSCA (ours) 78.5

(+0.3)
63.3
(+0.5)

77.9
(+0.7)

743
(-145)

79.3
(+0.4)

63.1
(+0.3)

77.7
(+0.6)

2358
(-5)

74.5
(+0.3)

60.5
(+0.1)

74.4
(-0.1)

920
(-5)

Lastly, recent tracking-by-attention methods [16,29,66,73,74] strive to create
a fully end-to-end architecture that performs both object detection and track-
detection matching within a single network. However, this streamlined process
hinders their ability to easily incorporate new elements, such as a more powerful
detector. This is illustrated by MOT3TR-YOLOX [74], a recent model that, de-
spite adopting a more powerful YOLOX detection backbone, still underperforms
TransCenter+BUSCA by −1.4 HOTA, −1.2 IDF1 in MOT17 and by −1.5 HOTA
−3.4 IDF1 in MOT20. This underscores the superior performance of TbD meth-
ods and the opportunities that BUSCA brings, offering a plug-and-play module
that systematically enhances state-of-the-art TbD trackers in a fully online man-
ner without the need for retraining.
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Fig. 5: Qualitative examples of BUSCA integrated into ByteTrack [67] for MOT17-
val [9]. a, b, and c depict correct predictions while d shows a scenario where BUSCA
incorrectly labels the pedestrian wearing a gray shirt as ‘missing’, even though the
individual’s left foot (highlighted with a red circle) remains visible. The values indicate
the assignment confidence.

5.4 Qualitative Results

Fig. 5 showcases a series of qualitative visualizations. In Fig. 5a, the YOLOX
detector [17] fails to detect the person obscured by the street lamp and flowers
due to substantial occlusion. However, with BUSCA, we can successfully preserve
his identity. A similar scenario unfolds in Fig. 5b, where the pedestrian in the
background is accurately identified by BUSCA despite his minimal size and
the scarce visibility of only his head. Fig. 5c illustrates a clearly spurious track
created by ByteTrack [67] that does not correlate to any specific person. BUSCA
correctly identifies it as a hallucination and deactivates it, effectively preventing
any further false positives. Lastly, in Fig. 5d, due to the noisy track and the
almost total occlusion, the pedestrian wearing a gray shirt is incorrectly labeled
as missing, even though his left foot can still be spotted behind the man in red.
Additional videos are provided in the supplementary material.

6 Conclusion

In this work, we present BUSCA, an innovative and plug-and-play framework
that can enhance any online tracking-by-detection system to persistently track
undetected objects in a fully online fashion. This implies that BUSCA does not
alter the outputs of previous time steps or access future frames. To achieve this,
our novel Decision Transformer associates tracks with proposals having both
visual and spatiotemporal information, maintaining the identity of tracks in a
lightweight manner and without any need for fine-tuning.

We extensively validate our proposed method with five distinct trackers,
bringing systematic performance improvements and setting new state-of-the-
art results across different benchmarks. For future work, we aim to factor in
extreme motions via nonlinear multi-candidate proposals, incorporate 3D mul-
timodal cues, and explore the use of BUSCA to override previous tracking de-
cisions and fix incorrect associations. We hope that BUSCA can inspire future
research towards fully online trackers without overly relying on the detectors.
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