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Abstract. Our objective is to discover and localize monotonic temporal
changes in a sequence of images. To achieve this, we exploit a simple
proxy task of ordering a shuffled image sequence, with ‘time’ serving as
a supervisory signal, since only changes that are monotonic with time
can give rise to the correct ordering. We also introduce a transformer-
based model for ordering of image sequences of arbitrary length with
built-in attribution maps. After training, the model successfully discovers
and localizes monotonic changes while ignoring cyclic and stochastic
ones. We demonstrate applications of the model in multiple domains
covering different scene and object types, discovering both object-level
and environmental changes in unseen sequences. We also demonstrate
that the attention-based attribution maps function as effective prompts
for segmenting the changing regions, and that the learned representations
can be used for downstream applications. Finally, we show that the model
achieves the state-of-the-art on standard benchmarks for image ordering.

Keywords: Ordering · Change detection · Self-supervised learning

Fig. 1: Localizing monotonic temporal changes. Top: satellite images (ordered
left to right) taken months apart, containing several changes – some are monotonic (e.g .
urbanization), while others are seasonal/cyclic (e.g . water level). Bottom: Our model’s
attribution map prediction on the sequence is able to localize the regions with monotonic
temporal changes (in green), while being invariant to the seasonal and sporadic changes.
The model is trained with no manual supervision, generalises to unseen sequences (as
here), and the attribution map can also be used as a prompt to obtain segmentation.
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1 Introduction

In the image sequence in Figure 1, there exists numerous changes over time,
though many of these are seasonal, and hence distracting for long-term monitoring
applications. As humans, we not only observe what is changing, but also reason
about which changes are correlated monotonically with time and which ones
are not. In this paper, we introduce a new task of automatically identifying
temporally correlated changes in an image sequence, while being invariant to
other changes. More specifically we wish to discover and localize the image regions
where the change is correlated with time. Our motivation is to go beyond just
detecting changes, but also discovering what changes are relevant over a period
of time, and to explore the potential applications that this task could enable.

To achieve this, we propose a self-supervised proxy task, with time serving as a
supervisory signal: the task is simply to order a shuffled sequence of video frames.
The insight is that frames are only orderable if changes are monotonic,
therefore if a model can order the video frames, it would have learned to identify
relevant (monotonic temporal-correlated) cues while disregarding other changes.
The trained model can then be employed for video analysis applications where
the goal is to identify changes over time, such as developments or deforestation
in satellite imagery (whilst ignoring seasonal variations) (see Figure 1) or aging
signs in medical images. It can also be employed for detecting and tracking
monotonic object motion over time, such as shadows caused by the movement
of the sun or animals moving smoothly across the scene.

It is worth noting that temporal ordering has previously been used as a proxy
task for self-supervised representation learning, with the learnt representations
then finetuned for downstream tasks, such as video action recognition [19,40,47,65]
(though due to the disparity between the proxy and downstream tasks, the
effectiveness of learnt visual representation from temporal ordering has been
unsatisfactory compared to other proxy tasks [15, 25, 28, 29]). In contrast, the
objective in this paper is to use ordering as a proxy task to directly train a model
for discovering and localizing monotonic changes in video sequences, without any
subsequent supervised finetuning. In this sense, we are similar in spirit to previous
works that use self-supervision to directly solve tasks, such as [9, 31,35,67] that
targets tracking and segmentation by training on proxy tasks.

In order to harness the ordering proxy task, we introduce a transformer-based
model that is able (i) to perform ordering on natural images sequences, and, more
importantly, (ii) to provide attribution by localizing the evidence that gives rise
to its prediction. Specifically, we use a DETR-like transformer encoder-decoder
architecture where the queries in the decoder are cast as an ordering index. The
architecture is designed to allow an attribution map to be obtained directly as part
of the proxy training. Once the model has been trained for a particular setting,
such as change detection in satellite image sequences, then it can generalize to
unseen videos in the same setting, requiring only a forward pass to predict the
localization of the monotonic temporal changes from the attribution map.

To summarize, in this paper, we make the following four contributions: (i) we
introduce a new task of discovering and localizing monotonic temporal changes
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in image sequences, and establish the link that temporal ordering can be used as
a self-supervised proxy task for training; (ii) we introduce a flexible transformer-
based architecture for ordering that can also automatically localize monotonic
changes; (iii) once trained on a setting (such as satellite images), the model is
able to discover the changes correlating monotonically with time in unseen image
sequences in the same setting, and we demonstrate several situations where this
can be applied. Finally, (iv) we demonstrate that the trained model is able to
order novel image sequences surpassing the performance of previous approaches
for ordering on standard benchmarks.

2 Related Work

Video self-supervised learning has become increasingly popular in computer
vision. Most research in this area focuses on representation learning, with an em-
phasis on downstream performance after supervised fine-tuning or linear probing.
In contrast, there is a less explored direction that goes beyond representation
learning to directly learning a useful task under the self-supervised learning
setting, such as depth [23,71], optical flow [42,46], correspondence [64] and sound
localization [2, 3, 14,41]. Our work in this paper builds upon such paradigm, that
enables to deploy the model to downstream tasks without the need for labels.
Self-supervised learning from time. This work involves using temporal
ordering as a supervisory signal. Alternative sources of supervision is to leverage
other cues, such as speed [7], uniformity [68], and the arrow of time [65]. The closest
kin to our work involves using temporal sequencing as supervision [19, 20, 40, 47],
though their primary focus is on representation learning. In this work, we focus
on advocating temporal ordering as a useful task on its own, showing that
localization can emerge by using time as supervisory signal. We highlight the
differences between our work and others in the Supplementary Material.
Ordering has been a longstanding task in computer science, dating back to
sorting algorithms. In machine learning, it is a relevant task in both language [16,
17] and vision [5, 47, 59, 72]. For images, ordering has also been treated as a
pretext for self-supervised pretraining, such as jigsaw puzzles [50], or as a task of
interest, for example, image sequencing [5,6,32,58,69]. There is also some interest
in the literature that focuses on differentiable sorting algorithms [13,18,26,52,53],
though they mostly focus on algorithmic developments, such as differentiable
loss function and black-box combinatorial optimisation. While in this paper, we
make contributions towards the architecture by introducing a transformer-based
ordering model, which allows ordering of arbitrary-length image sequences, with
built-in visualisation via attribution maps.
Attribution localization, specifically in the case where explicit supervision is
not given, has been of interest in the vision community. In ConvNets, attribution
methods attempt to look into the network to find out where it is seeing [22,70]. In
transformers, several methods have been proposed to look into the attention on
the [CLS] tokens [1]. Instead of these implicit localization, several methods have
also carefully designed the architecture so that localization emerges explicitly
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Fig. 2: Network architecture. For an unordered sequence of F frames each with N
patches, the transformer encoder takes in all FN patches as input, and outputs FN
features. The transformer decoder takes in Q learnable queries, each corresponding to
an ordinal position, and the encoder output for cross-attention, resulting in Q features
for output. A FN × Q cosine similarity matrix is constructed between all pairs of
features from the encoder and decoder outputs, and the spatial max-pooling over this
matrix reveals the F ×Q order predictions. The ordering can simply then be obtained
by taking an argmax along each query axis. In the example sequence, the hour hand is
correlated monotonically with time, and appears in the attribution map.

despite not being trained on, such as in sound localization [2,3,14,41]. This work
follows the latter paradigm, while using the self-supervision from ordering.
Change detection has also been studied in computer vision. Many works look
at changes in the image domain [54,56], and across different applications from
construction monitoring [60], satellite imaging [45], to medical imaging [51]. Other
works associate short-term changes with motion, and use motion as a cue to
discover moving objects [10,11,36,37,66,67]. We differ from these lines of work
in that we are mostly concerned with temporally coherent changes at different
timescales, which may go beyond object level and not associated with motion.

3 Method

3.1 Problem Formulation

Our goal is to train a vision model to localize the changes in an image sequence
that correlate monotonically with time. As a subsidiary goal, the model should
also be able to order the image sequence.

Formally, given set of images, the model should output an attribution map
Satt ∈ RF×H×W and an ordering yorder ∈ ZF : yorder,i ∈ {0, 1, 2, ..., F − 1} as:

yorder,Satt = Φ(I0, I1, ..., IF−1)

where I ∈ RC×H×W represents the input images. We show that we can train
the model Φ via self-supervised learning on a proxy task, namely, ordering an
arbitrary sequence of F images shuffled from a temporal sequence.
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3.2 Ordering architecture

To address this problem, we propose a simple yet novel transformer-based ar-
chitecture, as shown in Figure 2. The architecture comprises a transformer
encoder (Φenc) that encodes the image patches, and a transformer decoder (Φdec)
that encodes the ordering. To obtain an attribution map, we simply compute the
pairwise cosine similarity between features from the encoder and queries from
the decoder. We can then perform a max pooling operation across patches of the
same image to get the ordering prediction.
Transformer Encoder (Φenc). To process an unordered sequence of F images,
i.e., X = {I0, I1, ..., IF−1}, we start by dividing each frame I ∈ RC×H×W into
2D patches of size (P, P ), resulting in N = HW/P 2 patches per frame and FN
patches in total. Following the vision transformer approach, we flatten each
patch using a learnable projection layer to D dimensions and add 3D positional
encoding (spatial and frame) to each patch.

It is important to note that the frame positional encoding does not contain
absolute temporal information since the frames are unordered, but it allows
the patches to identify whether they belong to the same frame. As a result,
after patchifying the input sequence, it ends up with a tensor of x ∈ RF×N×D,
which is then fed into a transformer encoder. The key difference to the standard
vision transformer is that we output all the features, i.e., xenc ∈ RF×N×D

instead of using a [CLS] token. In summary, we can express this procedure as
xenc = Φenc(I0, I1, ..., IF−1).
Transformer Decoder (Φdec). The transformer decoder is composed of Q
learnable queries q ∈ RQ×D, with each corresponding to an ordering position
(0, 1, ..., Q− 1). The task for the transformer decoder is to align the query vector
with the encoder feature that demonstrates the correct temporal order. These
queries iteratively attend the visual outputs from the encoder with cross-attention
in the standard transformer decoder. We denote the output of the decoder as,
xdec ∈ RQ×D = Φdec(q,xenc). In practice, Q = F .
Cosine similarity matrix (S). Recall that we now possess two sets of fea-
tures: encoder features xenc ∈ RF×N×D and decoder features xdec ∈ RQ×D.
We then compute the pairwise cosine similarity matrix S ∈ RF×N×Q : [S]i,j =
cos(xenc,i,xdec,j) ∈ [−1, 1] between each i of the F ×N features in xenc and each
j of the Q features in xdec, where cos(·, ·) denotes the cosine similarity function.

Given the similarity matrix, we want to obtain (i) the ordering of the frames
and (ii) the attribution map that indicates the spatial evidence within each
frame that gives rise to ordering. The matrix S ∈ RF×N×Q consists of F × Q
different spatial maps of size N , each indicating the attention between each pair
of queries (j ∈ Q) and images (i ∈ F ).
Order prediction. To obtain the order predictions, we perform spatial max-
pooling over the patches of each frame (along the N dimension), to obtain
ŷ ∈ RF×Q = maxi∈N Si. This max-pooling is designed to create an information
bottleneck – the query has to attend to the correct token(s) within the correct
image in order to predict the order correctly. The resulting matrix serves as a
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predictor for the position of each query in the ordering. We then apply a softmax
along the query axis of the matrix to get the probability scores for each query.
Attribution map. Among the F×Q different spatial maps, we are only interested
in the ones that correspond to the correct ordering. For each query j ∈ Q, we
select one map i ∈ F that has the maximum activation, i.e. i = argmax ŷj
resulting in Q maps. We then rearrange and resize each map of N patches back
to the original resolution, resulting in Satt ∈ RQ×H×W . Notably, this localization
can be achieved without the need for additional fine-tuning, supervision, or
post-hoc attribution methods [1, 22].

3.3 Training and inference

Temporal loss. Given the ground-truth order y ∈ ZQ : yi ∈ {0, 1, ..., F − 1},
the model can be trained via binary cross-entropy loss. Specifically, we convert
the ground-truth order into a binary permutation matrix. With some notation
abuse, we still call this matrix y ∈ ZF×Q. The forward loss is then simply
the elementwise binary cross-entropy between the two matrices: Lf (y, ŷ) =
1

FQ

∑
i∈F

∑
j∈Q cross-entropy(ŷij , yij).

In practice, we find that allowing reversibility in the loss aids with training,
as many changes are reversible in nature without prior knowledge of the arrow
of time [65] (the sequence could equally be ordered from first to last, or last to
first). To allow this, we calculate the loss as the minimum of the loss for both
forward and backward sequences, i.e. Lr = min(Lf (y, ŷ),Lf (reverse(y), ŷ)). This
loss is zero when the model predicts the order correctly in either direction.
Inference. At inference time, we simply take the argmax along each query axis
as the order prediction, that is, yorder ∈ ZQ : yorder,j = argmaxi∈F ŷi,j In other
words, each query picks the image that contains the maximum activation for its
query, as illustrated in the bottom-right corner of Figure 2.

3.4 Discussion

Generalization to different sequence lengths. Our architecture is designed
to handle sequences of arbitrary, possibly unequal length during training and
inference, without the need to re-design or train separate models for each sequence
length. At training time, we assume there is a maximum number of images, thus
initialize a total of Fmax learnable queries in the transformer, i.e., q ∈ RFmax×D.
While the model handles a sequence of F images, with F ≤ Fmax, it only uses the
first F queries as input to the decoder, ignoring the rest. This approach enables
each query to represent its positioning (0, 1, ..., F − 1), making it generalizable to
different lengths during both training and testing. However, the model will not
generalize to lengths above Fmax.
Avoiding trivial solutions. There are two factors that we need to account for:
camera motion and video compression artifacts. Camera motion can be smooth
or uniform over a short time gap, which can result in an uninteresting cue. To
address this, we apply a small random cropping on each frame in settings where
the time gap between frames is small (i.e. < 1s). This slight jittering helps to
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Fig. 3: Sequence datasets. From left to right: dynamic Random Dot Stereograms
(RDS) (moving dots colored only for illustration), moving camouflaged animals (MoCA),
timelapse clocks (cropped/full), timelapse scenes, MUDS, CalFire, OASIS-3.

prevent the model from learning trivial solutions. We note that this does not
degrade the performance even if camera motion is absent. Another factor that
can give rise to trivial solutions is inter-frame video compression artifacts. To
address this, we follow conventional wisdom [30,65] and use H.264 formatting for
all videos, thus minimizing compression artifacts and preventing trivial solutions.
From localization to segmentation. While the attribution map is useful, some
applications may benefit from going beyond just localization. Here, we propose
three solutions. (i) We can directly obtain segmentation at patch-level granularity
by thresholding the attribution map, together with minimal post-processing
namely averaging across frames and removing small contours. (ii) We replace the
linear projection layer on image patches with a pretrained DINOv2 to enhance
the feature quality. (iii) Alternatively, we can use the highest activation points
(i.e. centre pixels of patches) as prompt for the pretrined Segment Anything
model (SAM) [34], to obtain pixel-level segmentation masks.

4 Experiments

4.1 Video datasets

To leverage the inherent temporal information in videos, we sample a sequence
from a video, shuffle the frames, then train the model with the original ordering
as groundtruth. This enables the attribution map to identify monotonic changes
that contribute to the ordering while disregarding other changes. Our study
explores sequences across multiple domains, each with distinct cues of interest,
which we summarize in Table 1 and illustrate sample sequences in Figure 3.
Dynamic random dot stereograms are a type of image sequence that fea-
tures a box of random dots moving smoothly over a background of random
dots, originally used as a pair to demonstrate stereoscopic motion [48]. While
the individual images may appear random, the box is visible when viewed in
sequence. We generate a synthetic dataset of controllable dynamic random dot
stereograms (Dynamic RDS) to test the model’s ability to detect subtle relative
cues. Since this a synthetic dataset, we know the ground-truth of the box’s
motion, so can compare this with the predictions.
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Moving camouflaged animals (MoCA) [37] was constructed from videos of
camouflaged animals. We use this dataset to investigate the use of short-term
object locomotion as a cue, particularly where it is challenging to distinguish
the object from the background. To accomplish this, we follow [67] and focus
on the subset of 88 videos in which the animals are in motion. To evaluate on
localisation, we assume that the change is object-level due to animal motion, and
use the annotated object bounding box as the ground-truth for localization.
Timelapse analog clocks. Our study examines real-world scenes that feature
both absolute cues (time on clocks) and relative cues (scene changes). To accom-
plish this, we utilize the Timelapse dataset [68] in two ways. Firstly, we use the
entire dataset of 2,511 videos that features cropped clocks. Secondly, we create
a subset consisting of 260 outdoor scenes with static cameras where the clock
occupies only a small area of the scene.
Timelapse scenes. We gathered outdoor timelapse videos from WebVid-10M
dataset [4] with ‘timelapse’ as the search query. The dataset comprises 180 static
videos, and our aim is to investigate the cues that the model can extract from
the scene to learn its order, as there are no specific absolute cues present.

4.2 Temporal image sequences

We also show effectiveness of our approach for image sequences that are collected
over a period of time, including satellite images and longitudinal medical data.
Multi-temporal urban development dataset (MUDS) [62] is a dataset that
contains 80 aerial satellite image sequences captured monthly over a two-year
period. We aim to identify geographical changes that occur over time, including
deforestation and urbanization, while ignoring other changes. As there are no
existing datasets and benchmarks for this task, we hand-label 60 sub-sequences
on the test set for segmentation masks where changes are monotonic, and call
this evaluation set Monotonic MUDS. Samples are shown in Figure 4a. We
use this dataset to evaluate localization and segmentation performance of the
model trained on the MUDS dataset.
CalFire [44] is a satellite dataset tracking wildfires in California. It also contains
other events, such as snowfall, new construction, changes in water level, that we
aim to discover. We pre-process by removing scenes with significant cloud cover.
OASIS-3 [38] contains longitudinal MRI scans taking 1-4 years apart to study
how brains age. We select sequences with 3 or more scans, resulting in 134
sequences. Following [32], we perform affine registration and use the centre slice.

4.3 Image ordering datasets

In addition, we showcase our general ordering capability by evaluating our method
on standard benchmarks. We compare our ordering performance with related
works [18, 26, 52, 53] on the task of sorting images of numbers in ascending order,
as shown in Figure 4b. What the model has to learn here is different from the
previous datasets, as the ordering is absolute, and not understanding changes.
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dataset ∆t cue seq (trn/test) EM EW

Dynamic RDS <1s motion ∞ 99.8 99.9
MoCA <1s motion 75/13 82.0 90.6
Clocks (cropped) ∼1m clock 2011/500 62.5 73.0
Clocks (full) ∼1h clock/scene 210/20 55.0 74.3
Timelapse scenes ∼1h scene 130/50 61.8 79.4
MUDS 1mo landscape 60/20 56.4 69.6
CalFire 1mo landscape 800/276 76.6 87.5
OASIS-3 1y brain 100/34 84.3 89.1

Table 1: Dataset attributes and ordering results. This table shows different
datasets and their attributes, as well as the ordering results on the test (unseen)
sequences on exact match (EM) and elementwise (EW) metrics.

(a) Monotonic MUDS benchmark. (b) Image ordering datasets.

Fig. 4: (a) To evaluate localization and segmentation performance, we manually anno-
tate the monotonically changing regions (shown in yellow) on the MUDS test set. Each
sequence contains four frames, and the monotonic changes between the first and last
frames are annotated. (b) 4-digit MNIST [39] (left) and SVHN [49] (right). The task is
to order the images by the numbers they contain in increasing order (top to bottom).

Multi-digit MNIST [39] dataset is a modified version of the MNIST dataset
in which four digits are concatenated to form a four-digit number. The goal is
to order the image sequences in increasing order. To construct this dataset, we
synthetically combine examples from the corresponding train and test sets of the
MNIST dataset, resulting in a total of 50,000 training and 10,000 testing images.
Street view house numbers (SVHN) [49], was collected from Google Street
View and includes images of house numbers. Similarly, the task is to order these
numbers in increasing order. The dataset consists of 33,402 images for training
and 13,068 for testing. To ensure consistency with previous studies, we followed
the data preprocessing and augmentation methods described in [24].

4.4 Evaluation metrics

Localization. We use a pointing-game evaluation method, this is to follow the
convention of the localization literature in other domains, including audio-visual
localization [2,3] and saliency methods [21,22], that is, if the pixel with maximum
activation in the attribution map contains the change of interest, then it is
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positive (1), otherwise it is negative (0). As our method only outputs patch-level
attribution, we simply select the centre pixel of the patch as the highest activation.
The overall accuracy is then calculated as the average over all sequences.
Segmentation. We use the standard metric for segmentation, i.e., mean inter-
section over union (mIoU), where the mean is the average across all sequences.
Ordering. We use the evaluation metrics for sorting as outlined in [52, 53].
These metrics include exact match (EM) and elementwise (EW) accuracy. EM is
considered correct if the entire sequence is ordered correctly, while EW considers
the order accuracy per element. Following previous benchmarks we evaluate these
at sequence lengths 5, 9 and 16. To test the generalization to different sequence
lengths, we also evaluate the exact match accuracy at a fixed sequence length of
5 at test-time (EM5), regardless of the training sequence length.

4.5 Implementation details

We split each dataset into disjoint training and testing subsets, and then randomly
sample frames from each video. We keep the time gap between sampled frames
constant within each video, but vary this across videos to train a robust model.
For image sequences (MUDS, CalFire, OASIS-3) where data collection is less
regular, we relax these constraints and simply randomly sample between all
frames within the sequence. We train each model separately for each dataset.
Architecture. For the encoder, we use a smaller version of TimeSFormer [8]
with a divided space-time attention architecture, consisting of 256 dimensions, 4
heads, 6 layers, and 512 MLP dimensions. For the decoder, we use a standard
transformer decoder with the same parameters, except for 64 dimensions and 3
layers. As a result, the model is lightweight, with only 4M parameters. We use
Adam optimizer [33] with learning rate 1e-4 in all experiments, and batch size
32 sequences with 4 frames per sequence for all video datasets, except 3 frames
for OASIS-3 as this is the minimum MRI scan sessions per subject. For image
ordering, we use batch size 100 with varying numbers of frames. All experiments
are run on a single GPU. The code, datasets, and models will be released.

5 Results

5.1 Results on ordering video frames or image sequence

Video ordering results. The results for ordering as well as the main signals that
the model can pick up, are shown by EM and EW in Table 1, with qualitative
results in Figure 5. The model is able to successfully order sequences across
different datasets, particularly in cases where changes are significant. It is expected
that the scores are not perfect, as sampled data from videos is not guaranteed to
contain ordering cues, as illustrated in the Supplementary.
Temporal image sequence ordering results. For satellite image sequences,
the model is able to discover cues that are relevant to ordering, including road
building and forest fires. This illustrates our model’s application on remote
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Fig. 5: Ordering and Localization results across various datasets, where the model
is able to discover and localize various cues across different domains, including object
motion, clocks, scenery, landscape and biological aging. The left column shows the
input (unordered) images. Each column of the similarity matrix represents the model’s
prediction of each individual order (0, 1, 2, 3), where the image in the red box is chosen,
and the attention heat map within the box localizes the change.

(a) SAM Prompting. (b) Failure cases.

Fig. 6: (a) The attribution map is used to prompt SAM to obtain segmentation masks.
(b) Unorderable sequences, one being too static and the other being too stochastic.

sensing imagery. In MRI scans, we explore the cues for age changes. Our results
show that there are cues in the posterior part of the brain. This is consistent
with the literature [12] that suggest that ventricular enlargement is a prominent
feature, and causes the posterior horn to inflate in response to tissue loss. There
are also some cues along the outline. This is in line with the literature [57,61],
which suggest that brain volume also decreases with old age.
Failure cases. A limitation of our model is that we do not force a one-to-one
matching between queries and images, and this may result in some images being
claimed by multiple different queries or by none at all, as seen in Figure 6b.
This problem can easily be resolved by allowing each image to be predicted once.
However, not being able to order also provides valuable information as not all
real sequences can be ordered – for example, sequences where everything is static
for a period, or very stochastic. Therefore, we treat invalid orderings as a means
to provide information on whether particular frames can be ordered or not. We
report further experimental analyses on the failure cases in the Supplementary.

5.2 Comparison with change detection methods

We compare against three previous approaches for the ability to detect monotonic
temporal changes on Monotonic MUDS dataset, namely, a supervised Siamese
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Fig. 7: Segmentation comparison with other methods: Siamese networks [27] and
CVA [43]. Supervised methods ignore changes other than building, and pixel-based
methods over-segments non-monotonic regions.

Mono-MUDS RDS MoCA
Method loc (acc) ↑ seg (mIoU) ↑ seg (mIoU) ↑ loc (acc) ↑

Siamese [27] 73.3 11.1 – –
CVA [43] 71.7 34.6 22.3 69.6
DCVA [55] 70.0 35.5 – –
Ours 83.3 37.9 34.2 75.0
Ours + DINOv2 80.0 41.3 – –
Ours + SAM 83.3 45.1 – –

Table 2: Localization and segmentation results via the pointing game accuracy
for localization, and mIoU for segmentation. The methods for segmentation (patch and
SAM) are described in Section 3.4.

Networks [27] trained on MUDS dataset for the task of urban development tracking,
by highlighting the differences between buildings; Change Vector Analysis [43],
which is a baseline for the task of change detection, highlighting all changes in
an image pair without knowledge their nature, and Deep CVA [55], a learned
version of CVA that has been trained specifically on images.

The performance comparison is given in Table 2, and illustrated in Figure 7.
As can be seen, the urban development tracking method [27] under-segments
changes that are correlated with urbanisation, as it is only trained to look
at buildings. The change detection methods of [43, 55] over-segments changes
that are non-monotonic as it has no concept of time. Both prior methods have
shortcomings in detecting urban development: the former method misses changes
like road building and deforestation, and the latter includes many erroneous
regions such as the seasonal changes in vegetation and water level. Our model
is able to highlight correctly the monotonic changes while being invariant to
other changes. We further note that our model discovers such changes without
any prior information on what to look for. Additionally, replacing the patch
projection with DINOv2 and using the localization to prompt SAM both improve
the results. We also evaluate on two other datasets: RDS and MoCA, where we
have ground-truth for the moving objects in the video; and show that we obtain
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methods loc (acc) ↑ seg (mIoU) ↑ finetuning (F1) ↑

scratch — — 18.2
S&L [47] 23.3 20.9 15.8
OPN [40] 25.0 24.1 17.1
Ours (AoT proxy) 63.3 26.9 25.5
Ours 83.3 45.1 30.2

Table 3: Comparison with self-supervised methods on localization and segmen-
tation on Mono-MUDS and on fine-tuning for building change detection on MUDS.

favourable results. Note that Siamese and DCVA are only trained on satellite
images, hence do not generalize to other domains.

Quantitatively, in Table 2, we find that (i) our pointing-game localization
and patch-level segmentation results outperform other methods despite operating
only on patch-level (7× 7) and not pixel-level granularity, and (ii) segmentation
via SAM prompting further improves the results.

Qualitatively, the results of our localization experiments on various video
datasets are presented in Figure 5. The model is capable of accurately identifying
monotonic changes while remaining invariant to unrelated cues. Notably, these
results were achieved on sequences unseen during training. We additionally show
that our localization map works as a good prompt for the Segment Anything
(SAM) model to obtain object-level changes, as in Figure 6a.

5.3 Comparison on self-supervised proxy tasks

Here, we compare to other self-supervised methods based on time. We include a
discussion in the Supplementary on the subtle differences between the proxy tasks.
We include results for training baselines from scratch on MUDS, and testing on
Mono-MUDS in localizing and segmenting monotonic changes. The results are
shown in Table 3, where we conduct three sets of experiments, as detailed below.

First, we observe that previous methods are extremely crude in localization;
this is expected, as they are all based on conv5 feature (even AoT, via CAM).
Given a 224p input, conv5 has a 13× 13 feature map with 195p receptive field.
Our architecture handles localization by design, and is hence more capable
than other methods that use post-hoc attribution methods on top of standard
backbones. We also note that AoT does not train, which is also expected as it
ingests optical flow as input (and in satellite images using flow does not make
sense (change̸=motion)), our method is more flexible in this regard.

Second, we ask if our method is still superior if the architectural gap is closed.
To achieve this, we also compare the proxy task in AoT (time direction) with ours
(ordering) under a fairer comparison (using our architecture and RGB input),
and show this in the table under “Ours (AoT proxy)”. We conclude that both
our architecture and proxy task leads to significant improvements.

Third, we investigate fine-tuning on a target task that requires both time
and localization: change detection of buildings (like [27]). For each method, we
pre-train the encoder on MUDS, freeze it, then train a lightweight head (3×
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dataset MNIST SVHN

frames 5 9 16 5 9 16

DSort [52] 83.4|92.6 56.3|86.7 30.5|80.7|86.6 64.1|82.1 24.2|69.6 3.9|59.6|66.8
DSv2 [53] 84.9|93.2 63.8|89.1 31.1|82.2|—– 68.5|84.1 39.9|75.8 12.2|65.6|—–
Ptr-Net [63] 91.9|95.6 87.7|95.0 68.9|90.0|1.1 76.3|87.6 48.7|79.4 9.8|63.2|0.1
Ours 93.9|96.7 87.9|95.2 72.2|91.2|92.9 77.3|88.2 53.9|81.0 19.4|67.9|67.6

Table 4: Ordering on image datasets on two standard benchmarks (MNIST and
SVHN) where the task is to order images of numbers in increasing order. Metrics are
(EM|EW|EM5). EM and EW are evaluated at the sequence length the model has been
trained on (5/9/16), whereas EM5 tests generalisation to test length 5.

deconvolutions) on top of the same dataset, and test on unseen sequences. To keep
this fair, we keep the number of parameters roughly the same across methods. The
results (Table 3, right column) show that our method learns good representations
as compared to previous self-supervised methods in localization tasks.

5.4 Comparison with image ordering methods

We compare to two previous methods on image ordering benchmarks where the
task is to arrange the images in increasing order. Differentiable sorting networks
such as DiffSort [52] and its successor DSortv2 [53] employ a parameter-free
sorting network to rank scalars. Pointer Networks [63] ranks features by using a
recurrent encoder-decoder network with attention. We note that Ptr-Net is not
initially designed for such a task, but for arranging a set of coordinates. We simply
extend pointer networks by adding an image encoder and task the model to rank
the image features from small to large. We then jointly train this encoder and
the pointer network. For fair comparison, we use the same transformer encoder
as our model, and use the pointer network as the decoder with similar size to
our transformer decoder.

The quantitative results are presented in Table 4. Our results demonstrate
that (i) we compare favourably in ordering performance – on both MNIST and
SVHN, our method has the best performance of the four (ii) Ptr-Net does not
automatically generalise to testing with different sequence lengths, while our
method does (as reflected by the poor EM5 accuracy), and (iii) our method also
has the added benefit of having an attribution map.

6 Conclusion

In this paper, we explore using time as a proxy loss for self-supervised training of
models to discover and localize monotonic temporal changes in image sequences.
Possible extensions include discovering more complex temporal changes (sea-
sonal/periodic), or object state and attribute changes. It would also be interesting
to investigate how the model scales with larger datasets and compute, and what
new applications this task can enable. Overall, we hope this paper presents a
valuable starting point for future research and applications in this area.
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