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Abstract. 3D keypoint detection plays a pivotal role in 3D shape anal-
ysis. The majority of prevalent methods depend on producing a shared
heatmap. This approach necessitates subsequent post-processing tech-
niques such as clustering or non-maximum suppression (NMS) to pin-
point keypoints within high-confidence regions, resulting in performance
inefficiencies. To address this issue, we introduce KeypointDETR, an
end-to-end 3D keypoint detection framework. KeypointDETR is predom-
inantly trained with a bipartite matching loss, which compels the network
to forecast sets of heatmaps and probabilities for potential keypoints.
Each heatmap highlights one keypoint’s location, and the associated
probability indicates not only the presence of that specific keypoint but
also its semantic consistency. Together with the bipartite matching loss,
we utilize a transformer-based network architecture, which incorporates
both point-wise and query-wise self-attention within the encoder and de-
coder, respectively. The point-wise encoder leverages the self-attention
mechanism on a dynamic graph derived from the local feature space of
each point, resulting in the generation of heatmap features. As a key
part of our framework, the query-wise decoder facilitates inter-query
information exchange. It captures the underlying connections among
keypoints’ heatmaps, positions, and semantic attributes via the cross-
attention mechanism, enabling the prediction of heatmaps and probabili-
ties. Extensive experiments conducted on the KeypointNet dataset reveal
that KeypointDETR outperforms competitive baselines, demonstrating
superior performance in keypoint saliency and correspondence estimation
tasks. (The code will be released at github.com/bibi547/KeypointDETR)
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1 Introduction

The automatic extraction of 3D keypoints presents a significant challenge in the
realms of computer vision and computer graphics. These keypoints are instru-
mental in various geometric processing tasks, such as object detection [20], shape
⋆ This work was done during the author’s internship at Chohotech Co.,Ltd..
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Fig. 1: Illustration of the differences between the existing methods and KeypointDETR
for keypoint saliency and correspondence estimation. Given a 3D model, Keypoint-
DETR can predict its multi-heatmaps and probabilities. Heatmaps provide accurate
inference of keypoints’ positions. Probabilities indicate whether the specific keypoints
exist in the 3D model.

segmentation [13, 21], shape matching [39, 44], point registration [1], and point
cloud completion [36], etc.

Recent breakthroughs in deep learning, especially in 3D shape analysis and
geometric feature extraction [5,11,27,28,40,43], have catalyzed the emergence of
a multitude of learning-based approaches for 3D keypoint detection. A straight-
forward technique [45,47] is point classification on the surface of a 3D shape, but
this method grapples with significant sample imbalances. To mitigate this, many
existing keypoint detection strategies [32,41,42] utilize Gaussian kernel functions
to create a ground truth heatmap. This shared heatmap is generated based on
the distances between points and keypoints, guiding the extraction of keypoints
from areas identified as salient. However, these techniques typically require post-
processing steps such as clustering [29] or non-maximum suppression [22] to sift
out high-confidence points and finalize the keypoint extraction. These processes
often involve computing distance matrices, which can considerably slow down
inference speeds. Additionally, the selection of parameters can profoundly affect
the accuracy of keypoint extraction. Many landmark detection methods for 2D
or 3D images [4] prefer using multi-heatmaps for keypoints, as opposed to rely-
ing on a single shared heatmap. This approach assigns each keypoint its unique
heatmap, facilitating the extraction of the point with the highest value from
each map. Although their strategy eliminates the need for post-processing, it
can limit the algorithm’s generalizability. One significant challenge is ensuring a
consistent number of keypoints across all 3D models within a category.

To tackle these challenges, we introduce an innovative end-to-end 3D key-
point detection model named KeypointDETR. This approach not only eliminates
the need for any post-processing steps but also exhibits remarkable generaliza-
tion capabilities. As illustrated in Fig. 1, our framework takes point coordinates
as input and predicts multi-heatmaps along with their associated probabilities,
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providing a consistent paradigm for keypoint saliency and correspondence es-
timation. For keypoint saliency estimation, we can derive binary yes/no labels
from the probabilities, while for keypoint correspondence estimation, semantic
labels can be inferred. Our pipeline utilizes a loss function based on the Hun-
garian algorithm [15], which facilitates the optimal bipartite matching between
the predictions and the ground truth heatmaps. Consistent with this strategy,
we develop a transformer-based encoder-decoder network architecture. The en-
coder employs dynamic graph transformer modules to extract geometric features
from 3D models, specifically focusing on the generation of heatmap features.
We regard the learnable heatmap features as intrinsic geometric features, elim-
inating the need for direct supervision. The dynamic graph transformer mod-
ule aggregates the features from neighboring points within the feature space
and assigns self-attention weights, effectively extending the range of perception
by stacking these modules. In the decoder, we introduce a transformer refine-
ment strategy that utilizes the query-wise self-attention mechanism to facili-
tate information exchange among potential keypoints. Additionally, it incorpo-
rates the cross-attention mechanism to capture the latent connections among
keypoints’ heatmaps, positions, and semantics. The query-wise decoder opti-
mizes the heatmap and query features through the analysis of inter-keypoint and
inter-attribute relationships, thereby enabling the parallel prediction of multi-
heatmaps and probabilities.

We validate our method on the KeypointNet dataset [47], achieving out-
standing results in two essential tasks: keypoint saliency and correspondence
estimation. Furthermore, our approach of assigning a specific heatmap to each
keypoint leads to significantly higher accuracy compared to methods that use a
shared heatmap.

Our main contributions can be summarized as follows:

– We introduce KeypointDETR, an end-to-end 3D keypoint detection frame-
work. It is trained with a loss function based on the optimal bipartite match-
ing derived from the cost matrix of multi-heatmaps and probabilities.

– We construct a novel transformer-based network architecture. The point-wise
encoder harnesses self-attention on the dynamic graph of points’ local feature
space to extract geometric features. The query-wise decoder incorporates
global self-attention to enhance the interaction between queries.

– We conduct a comprehensive evaluation that validates our method and pro-
vides insights into the impact of principal components, such as the bipartite
matching loss and query-wise self-attention.

2 Related Work

2.1 3D Keypoint Detection

In previous studies on 3D keypoint detection [23,33,37], algorithms heavily rely
on a variety of hand-crafted geometric features, such as ISS [30], HKS [34],
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CGF [14], Salient Points [3], and Mesh Saliency [16]. These traditional ap-
proaches primarily focus on local geometric features of 3D shapes, often over-
looking the integration of global and semantic information.

With advancements in deep learning, there has been a notable surge in the
development of data-driven algorithms for keypoint detection [10, 35, 54]. Nu-
merous unsupervised 3D keypoint detection algorithms [1,7,12,18,31,50,53] are
proposed for specific tasks such as point registration and reconstruction. For
example, UKPGAN [46] utilizes a GAN-based module to manage keypoint spar-
sity and reconstructs 3D models by distilling saliency information. Unsupervised
methods tend to focus on identifying keypoints in areas with distinct geometric
features. While some of these methods are capable of attaining semantic consis-
tency, they typically require the predetermination of the number of keypoints.
Furthermore, in many scenarios, it is essential to identify keypoints that may
not have prominent geometric features but possess solid semantic importance.
Methods like SyncSpecCNN [45] and PRA-Net [5] address keypoint detection
by classifying points on 3D shapes. These methods often result in an imbalance
between positive and negative samples, presenting a significant challenge. Con-
sequently, current popular methods employ a heatmap-based approach [32, 41],
where the value assigned to each point indicates its proximity to the nearest
keypoint. Wei et al . [42] proposes a multi-task learning framework that com-
bines point-to-keypoint offsets with a confidence map, facilitating effective 3D
keypoint saliency and correspondence estimation. Heatmap-based methods for
3D shapes predominantly depend on a shared heatmap for all keypoints and
require post-processing. These methods employ post-processing techniques like
non-maximum suppression [22] or clustering [29] to isolate keypoints from re-
gions with high scores during the inference process.

2.2 Transformer in Vision

Transformer [38] was initially introduced in the realm of natural language pro-
cessing. Recent advancements in visual research [6, 19] have explored various
models centered around self-attention [38], achieving unprecedented performance.
DETR [2] pioneers an innovative end-to-end object detection approach. It formu-
lates a loss matching rule employing the Hungarian algorithm [15], facilitating
bipartite matching between predictions and ground truth. This method serves as
the cornerstone for a series of object detection methods [4,17,55] based on set pre-
diction. Li et al . [17] develop a facial landmark detection method using cascaded
transformer decoders. They devise parallel decoders utilizing deformable self-
attention [55] to optimize facial landmark coordinates through offset predictions.
Chen et al . [4] leverage self-attention to create a structure-aware LSTM frame-
work tailored for predicting 3D heatmaps in CBCT. Keypoint transformer [9] effi-
ciently extracts all potential keypoints within the image from a shared heatmap,
subsequently employing the DETR decoder to predict 3D hand poses. Given
the transformer’s inherent capacity to handle input element permutations in
sequences, it is exceptionally well-suited for point cloud processing [8, 24, 26].
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Fig. 2: Pipeline of KeypointDETR for keypoint saliency and correspondence estima-
tion. Our framework takes point coordinates as input. The point-wise encoder first ex-
tracts geometric features from the point cloud by stacking dynamic graph transformer
modules (DGT). Then, the query-wise decoder accepts heatmap features, which are
transformed into heatmap and query features to generate multi-heatmaps and proba-
bilities. These predictions enable the direct inference of both keypoints positions and
semantic labels.

Nonetheless, applying global self-attention to 3D point cloud models incurs sub-
stantial computational costs. Consequently, existing research [48, 52] frequently
adopts local self-attention mechanisms, expanding receptive fields through sam-
pling and grouping strategies. In contrast, our point-wise encoder integrates local
self-attention within the dynamic graph of the point feature space, thereby elim-
inating the necessity for sampling and grouping operations. Distinct from most
existing DETR style works, our query-wise decoder is meticulously engineered
to predict multi-heatmaps and probabilities, enabling efficient end-to-end 3D
keypoint detection.

3 Method

In this section, we delve into the specifics of our end-to-end 3D keypoint detector,
KeypointDETR, which consists of two essential components: a network archi-
tecture based on the transformer and a loss function formulated using bipartite
matching. As illustrated in Fig. 2, our approach is applied to tasks involving
keypoint saliency and correspondence estimation. Upon receiving a 3D point
cloud as input, our point-wise encoder utilizes the dynamic graph transformer
modules to extract heatmap features, which can be considered intrinsic geo-
metric features. We then deploy a query-wise transformer decoder designed to
enhance information exchange between queries and capture the latent relation-
ships between attributes through cross-attention, thereby optimizing heatmap
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(b) The structure of the transformer re-
finement module.

Fig. 3: The structure of the dynamic graph transformer module (DGT) and trans-
former refinement module.

and query features. This network yields heatmaps and probabilities as its out-
puts. The prediction sets are aligned with ground truth heatmaps through a
cost matrix, leading to the computation of the final loss based on optimal bi-
partite matching. During the inference stage, we select heatmaps corresponding
to keypoints, as indicated by the predicted probabilities, and extract keypoints
exhibiting the highest heat values from these maps.

3.1 Data Preparation

To tackle the issue of imbalanced samples concerning keypoints on the surface of
3D models, heatmap-based 3D keypoint detection methods establish the ground
truth heat value for each point based on its distances to the keypoints. Specif-
ically, the heatmap is generated by applying a Gaussian kernel in conjunction
with the geodesic distance matrix:

hi,j = exp−
1

2σ2 d(pi,kj) . (1)

Given a 3D point cloud with Np points P = {pi}
Np

i=1 and Nk keypoints K =

{kj}Nk
j=1, our process begins with the computation of the geodesic distance ma-

trix from each point to the keypoints. Then, we derive the heatmap matrix
H = {hi,j} ∈ RNp×Nk using the Gaussian kernel function. Contrasting with
methods that use a shared heatmap, where the maximum value for each point
is considered, our approach distinctively employs multi-heatmaps, each corre-
sponding to specific keypoints, as the ground truth.

3.2 Network Architecture

As shown in Fig. 2, our transformer-based encoder-decoder network architecture
primarily comprises a point-wise encoder and a query-wise decoder.

Point-wise Encoder The main objective of the encoder is to extract geometric
features from the 3D point cloud. Drawing inspiration from DGCNN [40] and
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the Point Transformer [52], we devise a point-wise encoder constructed using
dynamic graph transformer modules (DGT).

As depicted in Fig. 3 (a), we employ local self-attention within the dynamic
graph transformer module to operate on the feature space. To be specific, for
the feature map F at each layer, we extract a k-nearest neighbors feature set
Fi = {fj}kj=1 for fi. Thereafter, we assign self-attention weights to these k-nn
features and aggregate them using the following equation:

f ′i =
∑
fj∈Fi

ρ(θ(ϕ(fi)− φ(fj) + δ))⊙ (ψ(fj) + δ). (2)

Here, θ is implemented as an MLP, while ϕ, φ, ψ are realized using Conv1d. ρ
represents the softmax operation applied to self-attention weights, and ⊙ denotes
the element-wise product operation. The term δ represents the position encoding,
which is generated from the point coordinates Pi = {pj}kj=1 corresponding to
the neighborhood features, as expressed in the following:

δ = MLP(pi − pj). (3)

Finally, we concatenate the features extracted from each dynamic graph trans-
former module to obtain point-wise features, which are decoded into heatmap
features through MLPs.

Query-wise Decoder The decoder’s output comprises a predefined number of
predictions, referred to as keypoint queries, with the query count M set signifi-
cantly higher than the number of keypoints within a 3D model. Each prediction
query consists of both a heatmap and a probability. Heatmaps serve to indicate
the position of keypoints within the 3D model. Probabilities reflect the semantic
consistency of potential keypoints. In keypoint saliency estimation, they deter-
mine the presence or absence of specific keypoints. In keypoint correspondence
estimation, such probabilities are correlated with their respective semantic la-
bels.

Guided by these objectives, we develop a query-wise decoder that adheres
to the proven DETR-style architecture [2], as illustrated in Fig. 3 (b). Initially,
we take the heatmap features Fheat ∈ RN×M from the encoder. Considering
the inherent relationship between the heatmaps and semantics of keypoints,
the heatmap features are directly transposed and then decoded into query fea-
tures Fprob ∈ RM×128 through an MLP. Following this, both the heatmap Fheat

and query Fprob features are fed into the transformer decoder. To facilitate the
exchange of information among queries, a multi-head self-attention module is
applied to Fprob. For the position encoding, we extract the coordinates of the
reference points corresponding to the peaks of heat values in Fheat, which are
subsequently processed through an MLP to produce the position encoding. The
transposed Fheat and Fprob serve as inputs to the cross-attention module, en-
hancing the interplay of information between probability and heatmap features.
Ultimately, through the application of Feed-Forward Network modules (FFN),
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the refined Fheat and Fprob are decoded into multi-heatmaps Mh and probabil-
ities Mp, respectively.

The decoder utilizes a query-wise self-attention mechanism across the queries,
leading to M distinct predictions. This mechanism operates as a global self-
attention centered around potential keypoints. Such a globally parallel decod-
ing approach efficiently captures the interactions among the predicted queries,
thereby optimizing heat values and reducing redundancy in the identification of
keypoints. Additionally, considering the potential relationship between keypoint
heatmaps and semantics, cross-attention is employed to facilitate the interaction
between heatmap and query features.

3.3 Loss Function

Inspired by DETR [2], we integrate the bipartite matching loss into 3D key-
point detection to enable end-to-end inference, eliminating the need for post-
processing. During the bipartite matching phase, we calculate the pairwise match-
ing costs by assessing the discrepancies between the predicted queries and ground
truth. We utilize this cost matrix to consolidate the prediction sets, distinguish-
ing between “background” queries and keypoint queries, in order to compute the
final loss.

Given a 3D model with Nk ground truth keypoints, KeypointDETR gener-
ates a set of M predictions, where M is preconfigured to be significantly larger
than Nk. The ground truth can be represented as {yi}Nk

i=1 = {hi, pi}Nk
i=1, where hi

signifies the ground truth heatmap and pi denotes the ground truth probability.
The predicted queries are denoted as {ŷj}Mj=1 = {ĥj , p̂j}Mj=1, with ĥj represent-
ing the predicted heatmap, and p̂j corresponding to the predicted probabilities
associated with keypoints categories {ci}Nk

i=1. In the task of keypoint saliency
estimation, pi remains fixed at 1, while p̂j(ci) signifies the probability of being
predicted as a keypoint. However, in the task of keypoint correspondence estima-
tion, p̂j(ci) is defined as the probability of ci, where ci denotes the semantic label
corresponding to the ground truth keypoint ki. Expanding upon these notations,
in order to achieve the optimal bipartite matching between ground truth and
predictions, it is imperative to establish a matching cost matrix Mc ∈ RNk×M .
This cost matrix takes into account both the heatmaps and probabilities. Pre-
cisely, each element Mc(i, j) of the cost matrix can be calculated as follows:

Mc(i, j) = Wh ·
∑

| hi − ĥj | +Wp · (1− log p̂j(ci)), (4)

where Wh represents the weight assigned to heatmaps, and Wp is the weight
attributed to probabilities.

∑
| hi − ĥj | signifies the dissimilarity between the

ground truth hi and predicted ĥj heatmaps.
Following the application of the Hungarian algorithm [15], we obtain the

optimal matching and categorize the predicted queries into two groups: positive
queries and negative queries. Positive queries are those that align with the ground
truth. For a positive query ŷi, we determine the matched ground truth category
as gi and the corresponding heatmap as hi. Then, we compute the probability
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loss using the Focal Loss (FL) and the heatmap loss employing the Mean Squared
Error Loss (MSE). For a negative query, only the probability loss is considered.
The associated ground truth gi is designated as 0, signifying nonexistence. Thus,
the overall loss can be calculated as follows:

L =

M∑
i=1

(λpFL(gi, p̂i) + λh1{gi ̸=0}MSE(hi, ĥi)). (5)

4 Experiments

In this section, we conduct a series of comprehensive experiments to validate
the superior performance of our approach in both keypoint saliency and corre-
spondence estimation tasks. We provide comparisons with other state-of-the-art
methods to demonstrate our method’s efficacy.

4.1 Implementation Details

KeypointDETR takes 3D point coordinates as input. In the point-wise encoder,
we utilize 5 dynamic graph transformer modules, each with point features of 64
dimensions, the k value of k-nearest neighbors set to 20, and a global embedding
dimension of 1024. In the query-wise decoder, we set the number of queries M to
50. The decoder’s output comprises two branches: the heatmap head generates
multi-heatmaps Mh ∈ RM×Np , and the classification head provides probabilities
Mp ∈ RM×C . For keypoint saliency estimation, C is held constant at 2. However,
for keypoint correspondence estimation, C is configured as (Nc + 1), where Nc

signifies the number of keypoint categories. More details can be found in the
supplementary material.

4.2 Dataset

Our experiments are conducted on the KeypointNet dataset [47], which is de-
signed for both keypoint saliency and correspondence estimation tasks. We focus
on four classical categories: airplane, chair, guitar, and table. These models are
divided into training, validation, and test sets, with a distribution ratio of 7:1:2
for each category. We use 2,048 sampled points from each 3D model as input
data. The results of other categories and applications of KeypointDETR can be
found in the supplementary material.

4.3 Metrics

We evaluate our method alongside comparison methods on the keypoint saliency
estimation using mIoU and Chamfer Distance (CD) while utilizing mIoU and
Dual Alignment Score (DAS) [31] for keypoint correspondence estimation. The
IoU is calculated as follows:

IoU =
TP

TP + FP + FN
, (6)
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where TP stands for true positives, FP represents false positives, and FN cor-
responds to false negatives. Given the ground truth and predicted keypoints sets
G and K, CD can be computed as:

CD =
1

| G |
∑
p∈G

min
q∈K

||p− q||22 +
1

| K |
∑
p∈K

min
q∈G

||p− q||22. (7)

The settings for clustering and NMS parameters profoundly affect the re-
peatability and omission rates of predicted keypoints. However, the mIoU metric
used in prior methods fails to effectively capture these erroneous cases. To ensure
a comprehensive comparison, we design a mIoU metric based on the Hungarian
algorithm [15]. For the keypoint saliency estimation, we begin by calculating
the Euclidean distance matrix between the ground truth and the predicted key-
points. Subsequently, the Hungarian algorithm is employed to determine their
optimal bipartite matching. Each matched distance falling below the predefined
threshold ϵ is considered a true positive. For keypoint correspondence estima-
tion, a ground truth keypoint is considered a true positive if there is a predicted
keypoint with the same semantic label whose distance to it is less than the thresh-
old ϵ. Additionally, we further measure whether the closest keypoints between
predictions and ground truth have the same semantic labels using DAS [31].

4.4 Comparison on Keypoint Saliency Estimation

We conduct a comparative analysis of our method against six advanced algo-
rithms, including two unsupervised keypoint detection methods (Skeleton Merger [31]
and UKPGAN [46]) and three point cloud geometric feature extraction algo-
rithms (PointNet++ [28], PRA-Net [5], and DGCNN [40]), and a fully-supervised
keypoint detection method (Wei et al . [42]). For the three point cloud geomet-
ric feature extraction algorithms on saliency analysis, the network’s output is
a shared heatmap, wherein each point is assigned the maximum value of the
multi-heatmaps.

The quantitative results for mIoU and Chamfer Distance (CD) are presented
in Tab. 1, where we compare our KeypointDETR with other algorithms using a
threshold ϵ of 0.1. Fig. 6 (a) depicts the mIoU curves for various methods as ϵ
varies from 0 to 0.1. It is evident that KeypointDETR consistently outperforms
other methods in the Hungarian mIoU evaluation across all categories. This sig-
nificant advantage stems from our method’s capacity to bypass post-processing
techniques like NMS or clustering algorithms, leading to direct ‘one-to-one’ pre-
dictions that effectively tackle redundancy and omissions in 3D keypoint de-
tection. In contrast, methods reliant on a shared heatmap face challenges with
parameter selection of post-processing, which predominantly depends on prior
knowledge factors such as the expected number of keypoints and the 3D model’s
scale. Unfortunately, even optimal parameter settings for NMS (radius=0.1) in
these methods do not entirely resolve issues of omissions and redundant predic-
tions, as further illustrated in Fig. 4.
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Table 1: Quantitative results of keypoint saliency estimation using Hungarian mIoU
(%) and CD.

Airplane Chair Guitar Table Average
mIoU CD mIoU CD mIoU CD mIoU CD mIoU CD

SkeletonMerger [31] 60.73 0.107 42.74 0.189 47.71 0.132 27.84 0.302 44.75 0.182
UKPGAN [46] 62.63 0.118 25.16 0.168 54.25 0.131 17.78 0.240 39.95 0.164
PRA-Net [5] 82.88 0.049 70.44 0.060 73.71 0.053 69.69 0.053 74.18 0.053

PointNet++ [28] 82.31 0.050 57.50 0.077 72.34 0.060 60.01 0.062 68.04 0.062
DGCNN [40] 78.49 0.058 59.49 0.076 63.88 0.072 59.92 0.066 65.44 0.068
Wei et al . [42] 79.86 0.048 86.28 0.055 78.08 0.066 86.61 0.039 82.70 0.052

Ours 91.37 0.045 91.89 0.055 93.96 0.045 98.05 0.027 93.81 0.043

Ground Truth Skeleton Merger DGCNN Wei et al. Ours

Guitar

UKPGAN PointNet++

Airplane

Chair

Fig. 4: Visualization examples of keypoint saliency estimation.

4.5 Comparison on Keypoint Correspondence Estimation

Keypoint correspondence estimation represents a more significant challenge com-
pared to keypoint saliency estimation, as it not only involves locating keypoints
but also predicting their semantic labels. Additionally, 3D models within the
same category may not have identical semantic keypoints. Prior approaches [35,
45,47] typically involve direct classification of points within a point cloud, which
does not effectively address the issue of imbalanced positive and negative sam-
ples in keypoint detection. Some methods [42, 54] attempt to add a semantic
branch to keypoint saliency estimation, aiming to assign labels to keypoints in
a two-stage process.

As depicted in Tab. 2, we conduct a comparison of our method with five meth-
ods using a threshold ϵ of 0.1: PointConv [43], PointNet++ [28], DGCNN [40],
PRA-Net [5], and Wei et al . [42]. Additionally, we present the mIoU curves for
various methods, with the ϵ ranging from 0 to 0.1, in Fig. 6 (b). Fig. 5 showcases
visualization results of different methods alongside the ground truth. Notably,
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Table 2: Quantitative results of keypoint correspondence estimation using Hungarian
mIoU (%) and DAS [31] (%).

Airplane Chair Guitar Table Average
mIoU DAS mIoU DAS mIoU DAS mIoU DAS mIoU DAS

DGCNN [40] 77.77 82.69 63.16 79.56 61.13 78.59 57.99 78.83 65.01 79.91
PointNet++ [28] 79.10 84.74 58.24 78.19 67.69 81.92 62.97 81.59 67.00 81.61
PointConv [43] 81.54 85.74 64.92 82.15 76.39 88.91 66.20 83.73 72.26 85.13
PRA-Net [5] 81.10 85.80 68.35 83.62 72.07 85.15 70.16 84.89 72.92 84.86

Wei et al . [42] 78.54 88.34 79.77 90.44 75.64 93.69 86.56 97.31 80.12 92.44
Ours 85.71 91.74 79.33 89.53 90.93 93.89 92.40 97.79 87.09 93.23

Table

DGCNN PointConvPointNet++ PRA-NetGround Truth Wei et al. Ours

Guitar

Airplane

Fig. 5: Visualization examples of keypoint correspondence estimation.

our method generates no redundant points with the same label in close proxim-
ity to predicted keypoints. This demonstrates that our method adeptly accom-
plishes semantic correspondence for keypoints, with KeypointDETR showcasing
superior performance in both the heatmap and probability branch.

4.6 Ablation Study

We conduct a series of ablation experiments to validate the performance of Key-
pointDETR and deeply explore the impact of each component. Throughout these
experiments, we consistently use four representative categories from the Key-
pointNet dataset for keypoint saliency estimation. The evaluation adopts mIoU
with a threshold ϵ of 0.1.

Effects of point-wise encoder. Our point-wise encoder primarily consists of
dynamic graph transformer modules that extract geometric features from the
point cloud. To validate the effectiveness of our point-wise encoder, we compare
KeypointDETR with its variants, which utilize different backbones for geomet-
ric feature extraction, namely DGCNN [40], PointNet++ [28], and Point Trans-
former [52]. The DGCNN [40] backbone (DG.Enc.) is implemented as a five-layer
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(a) Hungarian mIoU curves for keypoint
saliency estimation.

(b) Hungarian mIoU curves for keypoint cor-
respondence estimation.

Fig. 6: Hungarian mIoU curves for keypoint saliency and correspondence estimation
under various distance thresholds (0-0.1).

Table 3: Quantitative results of various variations in the ablation study using Hun-
garian mIoU (%) and CD.

Airplane Chair Guitar Table Average
mIoU CD mIoU CD mIoU CD mIoU CD mIoU CD

DG.Enc. [40] 86.75 0.048 82.12 0.062 92.76 0.052 97.62 0.037 89.81 0.049
PN2.Enc. [28] 76.30 0.071 68.31 0.101 72.09 0.099 76.42 0.099 73.28 0.092
PT.Enc. [52] 82.55 0.059 73.04 0.085 68.92 0.091 97.32 0.032 80.45 0.066

Point-BERT Enc. [49] 91.11 0.034 93.57 0.034 93.51 0.032 93.71 0.033 92.88 0.033
I2P-MAE Enc. [51] 79.06 0.050 80.40 0.067 88.79 0.048 86.05 0.048 83.57 0.053

Point-MAE Enc. [25] 89.82 0.039 93.98 0.055 83.79 0.043 95.95 0.043 90.88 0.045

w/o Trans.Dec. 87.96 0.044 88.23 0.058 92.74 0.045 97.77 0.029 91.67 0.044

w/o PE. 88.05 0.042 91.43 0.054 92.44 0.047 97.97 0.028 92.47 0.042

Coord-based 66.72 0.108 44.55 0.190 37.99 0.164 50.08 0.187 49.83 0.162
Coord+offsets 68.40 0.094 63.62 0.136 42.45 0.151 60.77 0.159 58.81 0.135

Ours 91.37 0.045 91.89 0.055 93.96 0.045 98.05 0.027 93.81 0.043

stack of EdgeConv. PointNet++ [28] (PN2.Enc.) and Point Transformer [52]
(PT.Enc.) employ eight layers due to their U-net structures. Furthermore, we
explore replacing our encoder with pre-trained models, including Point-BERT,
Point-MAE, and I2P-MAE, and achieve favorable results. The overall quantita-
tive comparison results are presented in the first sub-table of Tab. 3.

Effects of query-wise decoder. In the decoder phase, we develop a query-
wise decoder utilizing self-attention to facilitate enhanced information exchange
among queries. This decoder is tasked with decoding the heatmap and probabil-
ity feature maps, resulting in the generation of multi-heatmaps and probabilities.
A straightforward approach involves employing MLPs to decode these feature
maps separately. However, to demonstrate the efficacy and reasoning behind our
query-wise decoder design, we conduct an experiment where we replace our self-
attention decoder (Trans.Dec.) with MLPs. The comparison results, as shown in
the second sub-table of Tab. 3, indicate that the comprehensive performance of
our KeypointDETR significantly surpasses that of its MLPs decoder variant.
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Effects of position encoding in decoder. Position encoding holds a pivotal
role in the self-attention mechanism and is a key factor that makes the trans-
former architecture suitable for 3D point cloud models, as previously validated
in the Point Transformer [52]. In our investigation, we further explore the role of
position encoding in our query-wise decoder, which is generated from heatmap
features and point coordinates. We compare the results with and without posi-
tion encoding (PE.) in the third sub-table of Tab. 3.

Coordinate-based or Heatmap-based. We further explore a coordinate-
based architecture within our KeypointDETR approach. In this variant, Key-
pointDETR predicts the coordinates and probabilities of keypoints, and we sub-
sequently select the closest matching points from the point cloud as the final
keypoints. To enhance the accuracy of these coordinates, we incorporate a cas-
cade module designed to predict offsets. Comparative analysis of the heatmap-
based KeypointDETR and its coordinate-based variant, as shown in the fourth
sub-table of Tab. 3, reveals that while the addition of offsets improves the re-
sults of the coordinate-based model, there remains a notable performance gap
when compared to our primary heatmap-based KeypointDETR. This discrep-
ancy arises because our geometric feature extraction backbone is better suited
for processing 3D shapes rather than 3D spatial coordinates. Furthermore, it
validates that the heatmap-based approach can achieve better performance on
keypoints detection.

5 Conclusion

In this paper, we introduce KeypointDETR, an end-to-end 3D keypoint de-
tector that obviates the need for post-processing steps, such as clustering and
NMS, commonly required in heatmap-based keypoint detection methods. The
training strategy of KeypointDETR involves computing a cost matrix between
the predictions and ground truth, deriving an optimal bipartite matching loss.
This innovative approach enables KeypointDETR to accurately predict multi-
heatmaps and probabilities, which can provide the positions and semantic con-
sistency of potential keypoints, respectively. Complementing this framework is
a transformer-based network architecture. Extensive quantitative experiments
and analyses substantiate the effectiveness and rationality of KeypointDETR,
underlining its potential as a state-of-the-art solution in keypoint detection.
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