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Abstract. In this supplementary material, we provide additional infor-
mation relevant to reproducibility, experimental settings, and experimen-
tal results. This document is presented as follows:
– Reproducibility and Code – links to our code project and vari-

ous model weights used in our research, as well as additional details
regarding the implementation of MONTRAGE in our evaluation pro-
cedure.

– Complementary Experiments and Explanations – Experiments
justifying MONTRAGE’s architecture and hyper-parameters in the
monitoring and attribution model components and additional com-
parisons to state-of-the-art methods.

– Experimental Results Additional Information – An extended
analysis of the main experimental results from the main manuscript.

A Reproducibility and Code

To ensure reproducibility, we provide all hyper parameters as well as our code.
Code. The implementation of MONTRAGE, as well as example model weights
and data, is available at the following link:
Link to the implementation of MONTRAGE.
Hardware and Programs. All of the experiments were conducted on the
Ubuntu 20.04 Linux operating system, equipped with a Standard NC48ads A100
v4 configuration, featuring 4 virtual GPUs and 440 GB of memory. The exper-
imental code base was developed in Python 3.8.2, utilizing PyTorch 2.1.2 and
the NumPy 1.26.3 package for computational tasks.
Monitoring Prompts. The prompts used for monitoring were image caption
templates that can take any concept or style from the datasets (CustomCon-
cept101, and Artchive respectively), ensuring a unified case. The versatility of
the generations was taken into account while maintaining the prominence of the
concepts and conciseness of the prompts. We instructed ChatGPT for all of the
above, resulting in the following. For CustomConept101:

1. Enchanted {concept} in a dream forest.
2. {concept} essence in abstract art.
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3. Sci-fi {concept} cityscape.
4. {concept} harmony in serene landscape.
5. Epic {concept} in graphic novel.
6. Retro {concept} in vintage poster.
7. Scale-play of {concept} in conceptual art.
8. Playful {concept} in children’s illustration.
9. {concept} silhouette in modern minimalism.

10. {concept} vibes in impressionist city.

For Artchive:

1. Whimsical landscape in the style of {concept}.
2. Abstract emotions in the style of {concept}.
3. Modern life tableau in the style of {concept}.
4. Dreamy still life in the style of {concept}.
5. Historic portrait in the style of {concept}.
6. Mythical creatures in the style of {concept}.
7. City’s heartbeat in the style of {concept}.
8. Rustic tranquility in the style of {concept}.
9. Futuristic utopia in the style of {concept}.

10. Surreal moments in the style of {concept}.

Additionally, as basic prompts for unmixed and mixed concepts, we used:

– An image of {concept}.
– {concept1} and {concept2} together.

Customization Parameters. For the customization, we followed [1]’s code
example. It was done on Stable Diffusion [3] (v1-4, Diffusers library), using the
simple squared loss function (Equation (3) in the main manuscript), No. of in-
ference steps T = 25, image size 512 (training images are resized), random crop
+ translation data augmentation, and Adam optimizer with learning rate 10−5

and β1 = 0.9, β2 = 0.99.
Unlike [1]’s example code, we did not employ the optional additional "prior

images" for customization (e.g . images of "general cats" alongside the specific
"customization cat" images). We used 100 epochs with batches of 1, unless stated
otherwise.
Table Construction Implementation and Evaluation Details (LDS Sin-
gle Within-Concept).

LDS is evaluated on customized generated images xgen, conditioned on the
monitoring prompts above, where 5 images were generated per prompt. For
the CustomConcept101 dataset, our 10 prompts and 5 generations per-prompt
amount to 5050 generated xgens. Similarly, for Artichive we created 2500 xgens.
LDS involves subset re-training and testing the loss performance of the re-trained
model. For a specific re-trained model and generated xgen, we sample 100 evenly-
spaced values of t ∈ [0, T ], producing 100 degrees of image noise. Let us describe
the subset division of the customization data used in Section4.3. The Original
LDS evaluation involves sampling randomly the NS subsets {Sm}NS

m=1. To enable
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NS = 2, which is fitting for our customization case (see main manuscript), while
keeping varied attributions, we divide D into "ordered subsets" as follows: After
sorting D by its attributions, subsets are formed as sequential pieces from the
sorted data. Formally - Let τm = {τ(xgen, D)i}i∈Sm denote the attributions for
subset Sm, then the ordered subset is s.t. maxτm ≤ minτn, ∀1 ≤ m < n ≤ NS .
Attribution Model Implementation and Evaluation Details (between-
concept). All attribution models were trained over 10 epochs, with a batch
size of 128 samples and an initial learning rate of 0.001 that was reduced au-
tomatically (on a plateau). The attribution models’ training was performed on
over 80% of the basic prompts (and their corresponding customized generations)
and evaluation was conducted on the remaining 20%. The network embedder,
a pre-trained CLIP model [2], was sourced from its official GitHub repository.5
Overall. for the evaluation, we trained 180 attribution models, across various
configurations. Specifically, we employed four different seeds (4, 16, 23, and 42)
to train models on two distinct datasets: CustomConcept101 and Artchive. For
the CustomConcept101 dataset, we trained 20 models on the five concept tables
and 10 models on the ten concept tables. Conversely, for the Artchive dataset,
we trained 10 models on five concept tables and 5 models for ten concept tables.

B Complementary Experiments and Explanations

In the paper, we detail the conceptual framework and implementation of MON-
TRAGE, demonstrating its superiority over competing approaches. This section
provides additional experiments and results as well as validation of the effi-
cacy and logic of our implementation. The section is divided into three parts:
i) Experiments on MONTRAGE monitoring during the customization process
(attribution table construction); ii) Experiments on the design of the attribution
model; and iii) Additional complementary experiments comparing MONTRAGE
to state-of-the-art methods in various configurations.

B.1 Table Construction

Multi-Concept LDS Evaluation. In the main manuscript, we perform within-
concept LDS evaluations on single-concept customizations and between-concept
Recall-Precision evaluations on multi-concept customizations. While this is a
natural distinction, we bridge this gap by performing LDS evaluations on multi-
concept customizations on the Artchive dataset. The results are available in
Figure 1, showing consistency with the within-concept experiments (Figure 5
in the main manuscript). Remark: Single-concept is irrelevant for the between-
concept experiments, and Multi-Concept LDS is not purely within-concept, as
the attributions might be affected by the distinction between concepts.
Scale within the Value Matrix. As mentioned in the main manuscript, a
common practice in text-to-image models, namely Stable Diffusion, is the use

5 https://github.com/openai/CLIP
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Fig. 1: LDS evaluation for 5-concept customizations, comparison to [5]. MONTRAGE
has higher frequency in obtaining high accuracy, but is out-performed on lower accuracy
thresholds. This is consistent with the single concept (within-concept) evaluations.
MONTRAGE is also better in the The Area Under the Curve criterion for accuracies
above the baseline 0.5, which is consistent as well.

of cross-attention layers as a bridge between textual and visual representations.
Reminder: These layers utilize Query (Q), Key (K), and Value (V) matrices to
navigate this complex mapping. The Query matrix encapsulates visual features,
the Key matrix aligns with textual features, and the Value matrix contains the
text-induced information to be emphasized in the final image output. Namely,
the cross-attention mechanism relies on calculating attention weights that de-
termine the semantic relevance of each part of V to the query, where the output
is expressed as a weighted average of V’s inner parts, i.e. its feature-vectors.

For the cross-attention layer to perform well, it is expected that there will
be a consistent scale in the Value matrix (V). Let us explain: First of-all, when
we say that V is "scaled", we mean that the magnitudes of feature vectors in
V are similar. This uniformity helps preventing any single feature vector from
dominating the model’s output due to its larger magnitude. In other words,
a similar scale among the vectors in V ensures that the attention weights are
allocated based on semantic relevance rather than differences in magnitude. This
is key for the model to focus accurately on the most pertinent information for
generating images that align with textual inputs. Unlike V, K and Q do not hold
such a scale, since a row in Q can admit any magnitude, and be counteracted by
its in the corresponding row of K (column of KT ) which can admit the inverse
magnitude.

For our table construction algorithm, the inner scale property that V holds
is important - since the attributed change may come from different parts of V
on different training (customization) iterations, and the non-uniform scale will
skew the resulting attributions.
Varying Batch Sizes. Our method can handle batch sizes greater than one, en-
suring accurate training sample attributions regardless of batch size. For batches
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Fig. 2: Batch size experiment. The prevalence of correctly-associated attributions
(and averaged-out mis-associations) in the monitored attribution table. Demonstrated
for varying batch sizes on a 3-concept customization case, and quantified through recall.
Left: The between-concept recall is sampled every 20 epochs throughout the customiza-
tion process. All batch sizes attain perfect recall by the end of the customization, how-
ever the larger batches of 4 require further epochs for the averaging of mis-associations
to take place. Right: Monitored attribution tables are sampled every 50 epochs for
three different customization processes, which vary by their batch size. As usual - rows
correspond to the customization data, and columns to the monitored generations.

of size one, the changes in generation are correctly attributed to the sole training
sample. Larger batches maintain correct attributions as well but experience ad-
ditional noisy associations. The noisy associations are averaged out over epochs,
allowing accurate attributions to prevail in larger batch sizes as well. For in-
stance, following Equation (6) in the main manuscript, on iteration iter, we
update the table entries M [i, j] for every i in the batch, and every j, irrespective
of their relevance to i. For instance, if i1 and i2 represent different concepts A
and B, and j is associated with concept A, both i1 and i2 receive updates from
∆iterV j,monitor. Nonetheless, the correct association (j → i1) is consistently ap-
plied, while incorrect associations (j → i2) become negligible over time due to
random distribution across batches and the averaging effect throughout training.

We demonstrate this averaging effect in Figure 2, where the Recall of the ta-
ble’s columns is evaluated throughout the training process. Indeed, while smaller
batches attain high performance earlier, eventually after enough epochs, the re-
call becomes the same for all batch sizes.
LDS Example and Baseline Accuracy LDS employs Spearman’s rank cor-
relation coefficient, denoted as ρ : RNS × RNS → [−1, 1]. This method involves
taking two vectors u and v, converting them into rank vectors, and then deter-
mining the Pearson correlation between these rank vectors. A value of 1 (or -1)
signifies perfect rank correlation (or anti-correlation), while a value of 0 indicates
no linear relationship. In LDS, we consider u as the ground-truth vector repre-
senting subset re-training losses, and v represents the cumulative attribution of
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Fig. 3: A comparison between our adaptive DML loss function to the tradi-
tional triplet loss function. The results show that attribution models trained with
our loss function outperformed those trained with the traditional loss function across
all metrics.

each subset. NS is the No. of subsets. The ranking of u is deemed as the fixed
ground-truth, and the goal is for the ranking of v to accurately predict that of
u, with higher prediction rates indicating superior attribution methods.

Let us consider the example of NS = 2. Then ρ results in either 1, when
both u1 > u2, v1 > v2 or u1 < u2, v1 < v2, or -1, when u1 > u2, v1 < v2
or u1 < u2, v1 > v2. Hence, ρ = 1 represents an exact alignment in the rank-
ings of the vectors, whereas ρ = −1 denotes a complete misalignment. With
NS = 2, our evaluation of attributions spans many pairings, calculating the
average number of perfect matches, where Accuracy := E1(ρ > 0) denotes the
rate of accurate predictions. As a baseline, let us consider v to be an (iid) vector,
meaning each of its components is independently drawn from the same distribu-
tion. Due to symmetry, the probabilities of v1 > v2 and v1 < v2 are both 0.5.
Given u’s deterministic nature (ground-truth), this carries over to probabilities
P baseline(ρ > 0) = P baseline(ρ < 0) = 0.5. Therefore, 1(ρ > 0) is a Bernoulli
variable with an expected value of 0.5, leading to

Baseline Accuracy = 0.5. (1)

B.2 Attribution Model Configurations

DML Loss Function Configuration. In the paper, we presented a novel loss
function tailored for customized DML models, namely the adaptive DML loss
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function (see Section 3.2 in the main manuscript). This loss function is applied
in scenarios where distances between samples in the dataset are predetermined,
as in our data attribution scenario, where the model learns the values from
the attribution tables (i.e. the distance between two images) and not just to
distinguish their concepts. Using this loss function leads to finer granularity
in the DML model predictions. In this section, we validate the adoption of our
adaptive DML loss function by demonstrating its enhanced performance relative
to the traditional triplet loss function. Unlike our proposed loss function, the
traditional triplet loss function only ensures that an anchor sample is closer to
a positive sample (same class) than to a negative sample (different class) by a
fixed margin [4]. The traditional triplet loss function is defined as follows:

L(a, p, n) = max(0, ∥a− p∥22 − ∥a− n∥22 +margin), (2)

where a represents the anchor sample, p represents the positive sample, which is
of the same class as the anchor, n represents the negative sample, which is of a
different class from the anchor, ∥a− p∥22 and ∥a− n∥22 is the squared Euclidean
distance between the anchor and the positive sample, and the anchor and the
negative sample, respectively. The margin specifies the minimum difference be-
tween the anchor-positive distance and the anchor-negative distance for the loss
to be zero.

We performed an experiment that demonstrates the superiority of our pro-
posed loss function compared to the traditional loss function. In this experiment,
we trained ten attribution models using the traditional triplet loss function and
then compared their performance with a model trained using our adaptive DML
loss function. The attribution models (for both loss cases) were trained over 5
concept tables containing mixed and unmixed concepts based on both datasets
CustomConcept101 and Artchive. Subsequently, the retrieval metrics mentioned
in the paper (Recall@K, Precision@K, and Spearman’s rank correlation) were
employed to evaluate and compare the resulting attributions for between-concept
performance. We trained all attribution models using identical sets of positive
and negative image pairs, while our loss utilizes the attribution scores from the
attribution as well. We set the triplet loss fixed margin to 1.0, which is a standard
practice.

Figure 3 presents these between-concepts results. We can see that training
with our loss function outperforms training with the standard loss function across
all metrics, achieving the highest scores for all metrics in un-mixed and mixed-
concept experiments.

Embedder Configuration. The attribution model includes a pre-trained
image embedder. In the main manuscript, we used CLIP, guided by its appar-
ent suitability for the task as demonstrated in [5]. In this section, we compare
CLIP to other embedders for data attribution. For this purpose, we trained 30
attribution models with different pre-trained embedders, specifically ViT and
DINO, across five concepts within the two datasets CustomConcept101 and
Artchive. Subsequently, we employed retrieval metrics (Recall@K, Precision@K,
and Spearman’s rank correlation) to evaluate and compare their between-concepts
performance against attribution models utilizing CLIP.
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Fig. 4: A comparison between attribution models using different pre-trained
image embedders. The results show that all three embedders exhibit a strong and
similar performance, making them all appropriate choices for the data attribution task.

Figure 4 presents the data attribution model results for different pre-trained
embedders (CLIP, ViT, and DINO). In general, the performance of all three em-
bedders is remarkably similar across the evaluated metrics, with slight variations
in specific areas. For unmixed concepts, the performance is relatively consistent
among the embedders, indicating that each embedder has a comparable ability
to handle single-concept generations. In the case of mixed concepts, while there
are minor differences in the metrics results, these do not significantly favor one
embedder over the others. This demonstrates that all three embedders exhibit
a strong and comparable performance when dealing with more complex, com-
bined concepts as well. Overall, the results indicate that CLIP, ViT, and DINO
embedders perform similarly, and they all are suitable choices for this task. Our
decision to use CLIP was based on its unique text-to-image pre-training capa-
bilities, which we believe could offer additional advantages for data attribution
for text-to-image models.

B.3 Additional Complementary Experiments

Baseline Comparison to Text Embedding-based NN. In the main paper
MONTRAGE is benchmarked against leading methods such as GenDataAttri-
bution [5] and D-TRAK [6]. Despite these comparisons, it is also crucial to eval-
uate MONTRAGE against a more straightforward baseline—text embedding-
based neural networks like CLIP or T5. These networks, which categorize based
on prompt inputs, are relatively simple as they require no additional training.
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To establish a robust comparison, we conducted experiments evaluating MON-
TRAGE against the officially released CLIP model (sourced from its GitHub
repository). The evaluation was carried out using the recall@5 (R@5) metric
across all 5-concept tables of the CustomConcept101 dataset. The results re-
vealed that MONTRAGE outperformed CLIP by 8.06% in the R@5 metric. This
superior performance can be traced back to MONTRAGE ’s network embedder,
which is a pre-trained CLIP model fine-tuned specifically to address data attri-
bution challenges, effectively utilizing reliable data from our attribution table
M.

Evaluation with GenDataAttribution Dataset. GenDataAttribution [5]
primary contribution is the development of a novel dataset specifically tailored
for the data attribution task. Additionally, they showcase a model trained and
evaluated on this data - which MONTRAGE is compared to in the main paper;
however when it comes to data - we decided to utilize different datasets for our
evaluations. The datasets selected for our evaluations are more relevant to our
scenario: The CustomConcept101 dataset supports model customization—a key
application of our approach, and the Artchive collection of artworks is aligned
with the end goal of ensuring legal compliance for artists. The dataset of Gen-
DataAttribution, while valuable, deals with a complex scenario - constructing
labels without access to the training process, which results with one-hot attri-
butions, i.e. generated images are attributed to a single training image only.
In their paper GenDataAttribution indeed mentions that such a single-image
attribution cannot capture full attributions, which prevents multi-concept eval-
uations. Nonetheless, due to the importance of GenDataAttribution’s contribu-
tion, we further validate our approach to their dataset. We conducted an addi-
tional small-scale experiment using the GenDataAttribution dataset, applying
our trained attribution models from the Artchive dataset styles, and measured
using the recall@5 (R@5) metric. The results demonstrated that MONTRAGE
outperformed GenDataAttribution’s method by 2.9%, underscoring the robust-
ness of MONTRAGE.

Assessing MONTRAGE’s Performance on 100K LAION Dataset Sam-
ples. In our between-concept evaluation, we utilized Recall@k to asses MON-
TRAGE data attribution within customized concepts. Here we provide addi-
tional evaluation, assessing MONTRAGE within 100K samples of the LAION
dataset, specifically evaluating MONTRAGE’s ability to accurately retrieve cus-
tomization images from this LAION subset. This experiment serves as a quanti-
tative complement to the qualitative findings presented in Figure 7 of the main
paper, where we focused on identifying the highest attribution images, on the
same 100K subset. To provide a comparative perspective, we assessed MON-
TRAGE against GenDataAttribution using ten 5-concept tables and the R@K
metric. The results indicated that MONTRAGE outperformed GenDataAttribu-
tion by 1.2%, further demonstrating its effectiveness across different evaluation
settings and datasets.
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C Experimental Results Additional Information

C.1 Runtime and Storage Analysis

MONTRAGE runtime was evaluated, given its essential use in monitoring cus-
tomization models where high efficiency is important. The runtime includes two
main components: the creation of the attribution table and the training of the
attribution model, where the latter depends on the number of concepts. Ini-
tially, monitoring a customized model is required to generate the attribution
table, which extends the customization phase by approximately 6% (regardless
of the No. of concepts). Training the attribution model adds an additional 25%,
50% to the customization time for five and ten concepts, respectively. Once the
attribution model is deployed, attributing a generated image in the inference
phase requires only several milliseconds.

In comparison to existing methods, MONTRAGE exhibits superior runtime
efficiency. While D-TRAK’s training runtime matches MONTRAGE, its infer-
ence time is significantly longer due to the need to compute the model’s gradi-
ents for each generated image. Conversely, GenDataAttribution’s inference time
aligns with MONTRAGE’s, but it requires thousands of individual customiza-
tions to develop a suitable training set, which greatly increases its overall run-
time. Thus, MONTRAGE provides the best of both worlds: delivering efficient
performance in both training and inference times compared to its competitors.

The memory consumption of MONTRAGE is primarily influenced by the
size of the generated attribution table. Although this table adds to the overall
memory footprint, its size is considerably smaller when compared to that of a
typical diffusion model. For instance, an attribution table featuring 100 con-
cepts, each with 5 images, amounts to 50,000 entries—roughly 200 KB. This is
minimal compared to a diffusion model, which, with its hundreds of millions of
parameters, can occupy several gigabytes of memory.

C.2 Complementary Results

In this Section, we provide additional information regarding the results of our
experiments. Figures 5 and 6 present examples of our five and ten attribution
tables, respectively, as generated by the monitoring process of V (see Section 3.1
in the main paper).

Tables 1 and 2 compare the performance of MONTRAGE’s attribution mod-
els against state-of-the-art data attribution methods for diffusion models across
two datasets: CustomConcept101 and Artchive.

Figure 7 presents additional examples of MONTRAGE attribution outputs
when applying one of our attribution models for the base-model attribution.



Abbreviated paper title 11

Dataset Concept type Number of
Concepts Metric MONTRAGE

(ours)
GenData

Attribution DTRAK

CustomConcept101

Un-mixed
Concept

5
Recall@5 0.747 0.718 0.49

Precision@5 0.9 0.863 0.15
Spearman’s rank

correlation 0.943 0.483 0.47

10
Recall@5 0.729 0.67 0.24

Precision@5 0.895 0.824 0.14
Spearman’s rank

correlation 0.915 0.563 0.46

Mixed Concept

5
Recall@10 0.77 0.591 0.28

Precision@10 0.939 0.727 0.36
Spearman’s rank

correlation 0.856 0.467 0.53

10
Recall@10 0.763 0.525 0.16

Precision@10 0.937 0.647 0.19
Spearman’s rank

correlation 0.906 0.525 0.46

Table 1: Performance comparison of MONTRAGE against state-of-the-art data at-
tribution methods on the CustomConcept101 dataset.

Dataset Concept type Number of
Concepts Metric MONTRAGE

(ours)
GenData

Attribution DTRAK

Artchive

Un-mixed
Concept

5
Recall@5 0.442 0.383 0.35

Precision@5 0.776 0.676 0.14
Spearman’s rank

correlation 0.73 0.509 0.33

10
Recall@5 0.415 0.337 0.29

Precision@5 0.764 0.626 0.14
Spearman’s rank

correlation 0.782 0.594 0.25

Mixed Concept

5
Recall@10 0.494 0.367 0.33

Precision@10 0.892 0.679 0.46
Spearman’s rank

correlation 0.652 0.549 0.37

10
Recall@10 0.483 0.308 0.27

Precision@10 0.886 0.564 0.44
Spearman’s rank

correlation 0.796 0.581 0.22

Table 2: Performance comparison of MONTRAGE against state-of-the-art data at-
tribution methods on the Artchive dataset.
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Fig. 5: Example of Attribution Table M, for 5 mixed and unmixed concepts.
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Fig. 6: Example of Attribution Table M, for 10 mixed and unmixed concepts.
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Fig. 7: Example of MONTRAGE attributing base model images.
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