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Abstract. Diffusion models, which revolutionized image generation, are
facing challenges related to intellectual property. These challenges arise
when a generated image is influenced by copyrighted images from the
training data, a plausible scenario in internet-collected data. Hence, pin-
pointing influential images from the training dataset, a task known as
data attribution, becomes crucial for transparency of content origins. We
introduce MONTRAGE, a pioneering data attribution method. Unlike
existing approaches that analyze the model post-training, MONTRAGE
integrates a novel technique to monitor generations throughout the train-
ing via internal model representations. It is tailored for customized dif-
fusion models, where training dynamics access is a practical assumption.
This approach, coupled with a new loss function, enhances performance
while maintaining efficiency. The advantage of MONTRAGE is evaluated
in two granularity-levels: Between-concepts and within-concept, outper-
forming current state-of-the-art methods for high accuracy. This substan-
tiates MONTRAGE’s insights on diffusion models and its contribution
towards copyright solutions for AI digital-art.
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1 Introduction

Since the beginning of the diffusion model revolution [6, 14], unprecedented ca-
pabilities in image generation have been developed [27, 29]. This technological
advancement is already put to practical use in media and digital-art [16], how-
ever, such uses challenge traditional boundaries of intellectual property rights [7,
20,31].1 2 The main concern: Each image generated by these models is influenced
by a subset of the training data, which might include copyrighted content. This
raises legal questions about who owns these newly generated images.

* Equal contribution.
1 New York Times: AI Image Generators and Copyright Issues
2 Harvard Business Review: Generative AI and Intellectual Property Challenges
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Fig. 1: MONTRAGE attributions. a) Users select images of objects and styles.
b) Generate a new "artwork" using a customized diffusion model. c) MONTRAGE
monitors the generation process to quantify the influence of each object and artist’s
style, providing insights into the generative process and addressing copyright concerns.

Diffusion model development can be split into two methodologies: Base model
training and fine-tuning [33]. Base model training entails compiling extensive
datasets from varied sources. Their large scale leads to control issues over copy-
righted content, as seen, for instance, in the LAION and IMAGEN datasets [4,
29–31]. In contrast, diffusion model fine-tuning, used for model customization, in-
volves using smaller and specific datasets as well as efficient fine-tuning method-
ologies to customize pre-trained base models for new capabilities [8,15,21,26,28].
This enables diffusion model adaption in low-resource settings. Consequently,
customization became a popular tool among companies and private creators
alike, increasing the risk of copyright infringement.3 We define a ’concept’ as an
identifiable category or style within the customization dataset.

Consider a scenario where a fan collects a combined set of artworks from sev-
eral artists, and employs customization to generate a new artwork. This raises
the issue of attributing each artist’s degree of contribution to this piece - under-
scoring the focus of our research: Determining the origins of personalized content
generation to resolve copyright considerations (see example in Figure 1). Under-
standing how pieces of training data contribute to the model’s output is at the
core of these technological and legal challenges, a task known as data attribution.

Beyond generative AI, data attribution in the context of deep learning has a
well-established history [19]. It usually entails the post-hoc analysis of a trained
model, i.e. without access to the training process. Classical approaches employ
loss gradients and Hessians to quantify how each training sample impacts the
dynamics of pre-trained weights in their local environment and consequently the
model’s output [11, 18, 23]. An important branch of data attribution leverages
access to the training process. This enables the precise tracing and aggregation
of the training samples’ influence on each training iteration [12,24].

3 Adobe Blog: FAIR Act to Protect Artists in the Age of AI

https://blog.adobe.com/en/publish/2023/09/12/fair-act-to-protect-artists-in-age-of-ai
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Fig. 2: Outcomes of MONTRAGE applied to object and artistic datasets featuring sin-
gle and mixed concepts. (a) Presents small-scale attribution tables obtained by mon-
itoring the fine-tuning process of a customization model. (b) Shows the attribution
model output, given a generated image, the attribution model predicts the customized
images that contributed most significantly to its creation.

Several recent works expanded the data attribution domain to analyze dif-
fusion models, focusing on scenarios without direct access to the training pro-
cess [22, 32, 34]. On the one hand, avoiding dependence on training access is a
practical approach for base models due to the expensive and time-consuming
training. However, for fine-tuning cases, which require fewer resources, access to
training becomes practical. It holds valuable information, which is advantageous,
especially for legal applications where maximum accuracy is required.

We present MONTRAGE (MONitoring TRaining for Attribution of image
GEnerative models), a novel two step data attribution method for customized
diffusion models. By Leveraging direct training access, MONTRAGE fills a crit-
ical gap in the literature. During the first step, MONTRAGE monitors the in-
ternal representations of the model during the training process, given by the
attention layers’ activations, and accounts for their training dynamics by aggre-
gating their changes into an attribution table. This offers training insights while
maintaining efficiency by avoiding the full generation pipeline overhead. For the
second step, a separate attribution model is trained on the attribution table via a
novel loss function to predict attributions of unseen (un-monitored) generations.
An example is provided in Figure 2.

MONTRAGE is empirically validated on two granularity-levels: Between-
concept (attributing the correct semantic concept) and within-concept. Evalu-
ations include important use-cases of this domain, customization and artistic
styles [13,21]. The results show that MONTRAGE outperforms state-of-the-art
methods [32,34] in obtaining high accuracy more frequently on two datasets. Ad-
ditionally, it succeeds in attributing mixed-concept images, which contain several
concepts. This demonstrates the potential of MONTRAGE for legal, ethical, and
scientific applications. The main contributions of this paper are as follows:
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– Our approach is, to the best of our knowledge, the first to monitor the
training dynamics of diffusion models for data attribution purposes.

– MONTRAGE leverages inner-model representations from cross-attention lay-
ers to enhance data attribution efficiency.

– MONTRAGE employs a specialized loss function for enhanced granularity,
providing nuanced insights into the model’s training process.

2 Background and Related Work

2.1 Diffusion Models

Diffusion models are generative models that produce high-quality samples in
various domains. They operate by an iterative generation process of noise reduc-
tion based on a pre-set noise schedule. Initially, we sample xT ∼ N(0, I). Each
iteration t involves partially denoising xt via a neural network f(xt, t; θ) (θ are
the tuneable weights), subsequently progressing to xt−1. This sequence produces
x0 ∈ X, representing the final output, where X denotes the data domain. In our
setting x0 is an image. This generation process is known as reverse diffusion,
where during training, f is optimized to reverse a Markovian forward diffusion
process defined as xt =

√
1− βt xt−1 +

√
βt n̂ where n̂ ∼ N (0, I), βt ∈ R+ ∀t.

It can be shown that for sufficiently small βt’s, the learned reverse process is
Markovian as well and can be represented as:

pθ(x0:T−1) = pθ(xT )

1∏
t=T

pθ(xt−1|xt), (1)

where pθ is the Probability Density Function (PDF) induced by the model f(·; θ).
For text-to-image models, noisy samples are coupled with prompts, denoted

zt = (xt, p). For convenience, we use the same model notation, i.e. f(zt, t; θ).
Let D = {z1, . . . , z|D|} be an ordered clean-image training set of size |D|, where
each zi := (xi

0, p
i). Let Lt,n̂(zt, θ) be the loss on sample zt considering randomly

drawn t, n̂. Denote L(z, θ) := En̂EtLt,n̂(zt, θ). Denote θ∗(D) as:

θ∗(D) := argmin
θ

Ezi∈DL(z, θ). (2)

To learn the reverse diffusion, a common loss function at iteration iter is

Liter
t,n̂ (z0, θ) :=

∥∥f(ztiter , titer; θ)− z0
∥∥2 . (3)

where we sample niter, titer once to construct ztiter := (xtiter , p). Note that for
each iter, only a single inverse step is learned, hence it does not entail the full
reverse diffusion. After enough iterations, the model is exposed to a wide range
of noise levels and learns to reverse the diffusion process from any point within
the diffusion sequence. Denote the output of a trained text-to-image model as

xgen := f(zT , T ; θ
∗(D)), (4)



MONTRAGE 5

where zT is sampled as zT = (n̂, pgen) with pgen the generation conditioning
prompt. By Markovianity of (1), the generation of xgen requires a multiple-step
process pre-defined by the scheduled βt, thus a forward pass may become more
time-intensive than a training iteration, especially in fine-tuning methods.4

The input prompt pgen often conditions the generation via cross-attention
layers, a technique originating from [27]. The prompt is encoded into nonlinear
token embeddings c, which are integrated into the generation via cross-attention
layers: Let WK ,WV ∈ θ tunable matrices. Projections into K = WKc and
V = WV c are employed, and combined with query matrices Q, which represent
visual image features , bridging text and image modalities as:

Cross-Attention := softmax
(
QKT

√
m

)
V. (5)

This expresses a weighted average of prompt information (V ). Several recent
works have utilized the analysis of (5) for understanding and control of the
generation process [9, 17,21]. We are the first to analyze it for data attribution.

2.2 Data Attribution and Evaluation Metrics

Data Attribution entails the identification of the influential training data that
affects the trained model’s predictions [19]. In the context of generative models,
it involves mapping the generated outputs to the training examples that facilitate
their creation, an important step for understanding model behavior [32].
Evaluating Data Attribution in Diffusion Models is yet an open research
topic [22]. Different perspectives exist on defining "correct attribution" in dif-
fusion models, where some adapt pre-existing criteria from the literature, and
others offer new approaches tailored for the generative case. In [32], the authors
test the ability of attribution methods to select training images that belong to
the same concept as the images produced by the generative model. They apply
image retrieval criteria, such as recall@K for this purpose.

Recently, Linear Datamodeling Score (LDS) [23], a tailored metric for data
attribution evaluation, has been proposed for classical data attribution. Follow-
ing this, LDS was adapted for diffusion models in [10,34]. LDS defines attribution
reliability as the correlation between attribution scores and the model’s predic-
tions, utilizing various subsets of training images per generation.

In addition to correctness, efficiency is another important factor for a data
attribution method, encompassing computational demands such as calculation
time during training and inference. In our work, we aim for an efficient method
while preserving attribution accuracy, essential for practical use.

2.3 Related Work

While data attribution has been extensively researched for discriminative mod-
els [12, 18, 19, 23, 24], only a few studies have been performed for generative
4 Sometimes Markovianity is not admitted, nonetheless, a multi-step gradual process

is still the common practice today
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models, namely diffusion models. In D-TRAK [34], and Datainf [22], classical
data attribution techniques that utilize the loss gradient and Hessian have been
expanded and improved in terms of accuracy and efficiency to attribute diffu-
sion models. Conversely, GenDataAttribution [32] presents a new methodology,
leveraging the unique characteristics of diffusion models. They employ thousands
of single-image customized models [21] to create a dataset of generated images,
ensuring that a single known training image influences the output. These gen-
erated images provide ground-truth data, which GenDataAttribution leverages
for contrastive learning of an attribution embedding space.

Among the diverse strategies to obtain attributions, a notable approach in-
volves leveraging the training process to trace how each training instance influ-
ences model predictions throughout different training iterations [12, 24]. How-
ever, for diffusion models, the existing attribution methods avoid accessing the
training process. This aligns with the practical constraints of base model devel-
opment, where training is notably resource-intensive, rendering it inaccessible.
Nevertheless, in fine-tuning scenarios, training access is feasible and provides
crucial insights into how training images shape the generated outputs. We hy-
pothesize that leveraging this access has the potential for new capabilities.

There is a related theoretical research branch in training dynamics. This area
typically involves nonlinear analysis of model parameters’ evolution and often
links it to model performance [2, 3, 5, 35]. We use these dynamics to quantify
data samples’ contributions to performance.

We present a first-of-its-kind integration of two methodologies: Exploring
training access for data attribution and leveraging diffusion model characteris-
tics. We monitor internal representations of diffusion models for changes during
training and aggregate this information for data attribution, thereby making a
new contribution to the field.

3 The Method

MONTRAGE leverages the accessibility of the customization process in diffusion
models by applying two steps as illustrated in Figure 3. First, data attribution
values are collected throughout the customization process into an attribution
table. Sequentially, a separate model is trained on the attribution table data via
a specialized loss function that captures the fine granularity of the attributions.

3.1 Data Attribution Table Construction

Prior to fine-tuning on dataset D, a predefined set of generation cases is re-
served for monitoring their evolution throughout the process. In our setting,
each generation case consists of a noise-prompt input pair zjT = (n̂j , pj). Let
Pmonitor be the set of monitoring prompts, i.e. pj ∈ Pmonitor. Note that the cor-
responding generation xgen,j (see Equation (4)) changes throughout the training.
We then fine-tune a customized diffusion model and monitor these predefined
cases. On every iteration, each generation case is encoded into a vector (tensor)
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Fig. 3: MONTRAGE training pipeline. (a) First, the customization process of a
diffusion model is monitored, with changes aggregated into an attribution table. (b)
Next, a separate model is trained using this table.

representation, V monitor,j and fed into the model. The updates in V monitor,j re-
flect changes associated with the incoming batch of customization training sam-
ples. These changes are recorded in M, a data attribution table, organized with
columns representing generations and rows representing customization samples.
In this way, the elements of M are cumulatively updated by tracking changes in
V monitor,j over the course of training, as follows:

Miter+1[i, j] = Miter[i, j] +∆iterV monitor,j , ∀i ∈ Batchiter, (6)

where Miter,Batchiter, ∆iter are M, the batch, and the change in V monitor,j at
iteration iter respectively. We choose ∆iterV := ∥V iter+1 − V iter∥1. Batches of
size 1 are most natural here [24]; varied batch size experiments are in the Supp.
From M to Attributions. Reminder: f(·; θ∗(D)) denotes the diffusion model,
trained on data D. Let us define τ : X → R|D|, as a data attribution function for
f(·; θ∗(D)) of the form τ(xgen;D). The ith entry, denoted τ(xgen;D)i, assigns
a real-valued score to the training sample zi ∈ D indicating its importance to
the xgen. After fine-tuning is completed, the jth column of M, denoted M [:, j],
expresses the unnormalized data attribution for xgen,j , and we define

τTable(x
gen,j ;D) :=

1∑
i M [i, j]

M [:, j]. (7)

Note that τTable(x
gen,j ;D) is a probability vector.

Efficient Generation Monitoring Through the Choice of V monitor. There
is an inherent computational challenge of monitoring generations. While a train-
ing iteration samples a single step t to compute the sample loss of Equation (3), a
full generation entails the full T steps reverse diffusion process (see Equation (1)).
This makes the monitoring of full generations during fine-tuning time-consuming,
especially in the efficient customization case.

To avoid the generation computational overhead, we turn to prior research,
which underscored the analytical value as well as the efficiency of the cross-
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attention layer in generation analysis [9, 17, 21]. We propose to utilize this in
data attribution, namely MONTRAGE monitors tensor V of Equation (5).

To further clarify the behavior of tensor V , consider the same monitored
prompt but different noise seeds. While V , being prompt-based, is unaffected by
the seed during a forward-pass, its monitored training dynamics are. Hence the
aggregated attributions reflect the interaction between internal text representa-
tions and the generated images.

The monitoring of V holds several advantages: First, V does not require full
generations, saving ample computation time; Second, V is an informative repre-
sentation of the generation, which encapsulates the text conditioning; Third, The
objective of concept customization is to generate diverse outputs that maintain
semantic consistency with the customization concept. Monitoring V encapsulates
this assumption - as the resulting attributions become consistent for images gen-
erated from the same concept; Fourth, V is readily scaled (inner parts of V have
the same scale), making it fit for monitoring, see supplementary for explanation.
A detailed pseudo-code of this approach is provided in Alg. 1.

Algorithm 1 Monitoring customization for attribution table construction.

1: M← attribution table,
2: initialized as matrix of zeros
3: D← customization image-prompt pairs
4: Pmonitor ← monitoring prompts
5: G← Generator
6: E← Text Encoder
7: Let (xi, pi) be the ith image-prompt
8: pair in D

9: for each epoch do
10: for each (xi, pi) ∈ D do
11: G,E← forward +
12: backward (optimization step)
13: on [xi, pi]
14: for each pj ∈ Pmonitor do
15: cj ← E(pj)
16: V j ←Wvcj ▷ see (5)
17: if not first iteration then
18: M[i, j]+ = ∥V j − Ṽ j∥
19: Ṽ j ← V j

3.2 Data Attribution Model

To enhance the applicability of the generated attribution table M , our methodol-
ogy extends its attribution utility to unseen image generations, i.e., generations
outside Pmonitor. Following [32], we employ a Distance Metric Learning (DML)
approach to learn an image embedding space in which the similarity between
generated and training (customization) images corresponds to the attribution.

Our methodology involves training a Siamese network, tailored to align with
our attribution table’s unique characteristics, to distinguish between conceptu-
ally similar (positive) and distinct (negative) pairs of customized and generated
images. This network is trained using M as training data. During training (shown



MONTRAGE 9

Fig. 4: Our DML model training. Trained on the attribution table M. it gains
accurate predictions and extends attribution capabilities to unseen generated images.

in Figure 4), each image pair goes through a two-stage transformation involv-
ing initial feature extraction by a pre-trained embedder which feeds a Scaler
layer, designed to adjust the scale and shift of the embedding vector, making
it fit for this task, and outputs the final embedding. The attributions are then
obtained as shifted cosine similarity5 between vector embeddings of generation
and customization pairs. These predicted attributions are used to measure the
loss against the ground truth attribution scores obtained from M.
The Adaptive DML Loss Function. The Siamese network employs a three-
component adaptive loss function. Let (Pap, Pnp), (GTap, GTnp) be the positive
and negative pairs of predictions and ground truth (the attribution values ob-
tained from M) respectively, denote Papi

, Pnpi
as the ith entries of Pap, Pnp

respectively. Let B be the No. of pairs in a batch. To account for the distance
between concepts, we introduce the new Adaptive Triplet Loss:

Adaptive Triplet Loss :=
1

B

B∑
i=1

max(Pnpi
+mi − Papi

, 0), (8)

where mi is the margin derived from the ground truth pairs mi = GTapi
−GTnpi

.
This loss penalizes the model based on the margin between each positive and
negative prediction. It is incorporated into an adaptive DML loss as follows

Adaptive DML Loss := L1(Pap, GTap)+L1(Pnp, GTnp)+Adaptive Triplet Loss,
(9)

where the L1 losses account for between-concepts, and the Adaptive Triplet loss
accounts for between and within-concept, through the margin mi.

Conventional DML models measure distances between concepts (classes),
while our model also predicts distances within a concept using M values and the
Adaptive DML Loss. Thus the hierarchicy of attributions is learned, enhancing
between-concept understanding and concept attribution granularity.

5 The shifted cosine similarity function adjusts the standard cosine similarity range
from [−1, 1] to [0, 1], aligning with the ground truth values for comparison.
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4 Evaluation

4.1 Datasets

The evaluation of our proposed method utilizes two datasets, which cover two
main applications of MONTRAGE: Generative model customization and artistic
styles. CustomConcepts101 [21] is a benchmark dataset designed for evalu-
ating model customization techniques. It is also applicable for assessing data
attribution methods. The dataset encompasses 101 unique concepts, each rep-
resented by a collection of 3 to 15 images, and corresponding textual prompts.
This dataset’s variety offers a solid basis for evaluating our method’s adaptability
and accuracy across diverse visual concepts. The Artchive dataset [13], offers an
extensive collection of paintings by famous artists, including Van Gogh, Monet,
and Gaudi. Incorporating the Artchive dataset enables a comprehensive evalua-
tion of our method’s ability to attribute complex artistic styles. Our evaluation
is performed over the entire CustomConcepts101 dataset (101 concepts) and 50
artistic style concepts that were randomly selected from the Artchive dataset.

4.2 Experimental Settings

Our experiments setting is based on Custom Diffusion [21], a state-of-the-art
text-to-image fine-tuning technique known for its efficiency in storage and run-
ning time. For the implementation we used their Diffusers library (Hugging Face)
version. The pre-trained stable-diffusion-v1-4 [27] is used for the base diffusion
model in all customizations. The monitored customization fine-tuning mostly
follows the code’s original hyper-parameters (details in supplementary).

The monitoring itself and the construction of the attribution table M does
not require any hyper-parameter, other than the choice of Pmonitor. To this end,
we employed 10 prompt templates, uniform across concepts (see supplementary).
As in [24], MONTRAGE naturally works with batch size 1, used here. The sup-
plementary (Sec. B) shows bigger batches still give concept-aware attributions.

For the attribution model we used a pre-trained Clip [25] as the Embedder,
since it has been found most suitable for this task in [32]. The Scaler compo-
nent has been implemented as a PyTorch ScalingLayer, which applies trainable
normalization and shifting parameters to adjust the attribution space. Our im-
plementation code is available in the following link. 6.
Methods for Comparison. To evaluate MONTRAGE, we benchmarked it
against two leading data attribution methods designed for diffusion models: Gen-
DataAttribution [32] and D-TRAK [34], implementated while adhering to the
specifications in their respective publications, using available code and models.

4.3 Test Cases and Metrics

We evaluate each of the two steps in MONTRAGE: First, the attribution table
M is evaluated for its reliability. Second, the attribution model is tested for
6 https://github.com/omerHofBGU/MONTRAGE

https://www.artchive.com/
https://github.com/omerHofBGU/MONTRAGE
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its ability to generalize M for attributing unseen images. Runtime and storage
analysis for both steps can be found in the supplementary, Sec. C. We adopt two
performance evaluation strategies, one for each step:
Attribution Table Reliability Assessment (within-concept). Evaluating
the reliability of M is challenging due to the lack of ground truth values, since
attributions are subjective interpretations derived from the data and the model.
Although we possess ground-truth concepts, our goal is to assess the within-
concept attributions in M, i.e. sub-concept granularity evaluation. Thus we cap-
italize on single-concept customizations, where there is no risk of concept-aware
attributions - a scenario where the attributions are ranked correctly due to cor-
rect concept assignment rather than within-concept understanding. The recently
proposed LDS metric is a good fit for this evaluation strategy [10, 23, 34] (see
Section 2.2). LDS evaluates the correlation between summed attribution scores
of a training data subset and the performance of a model re-trained on this
subset. LDS focuses on internal consistency without using ground truth labels.
LDS Formal Definition. Let S ⊂ D a subset of the training data, and its corre-
sponding subset-trained model f(·; θ∗(S)). Let τ(xgen;S), θ∗(S), defined simi-
larly to τ(xgen;D), θ∗(D) respectively, see Sec. 2 for notations. Let gτ (xgen, S;D) :=
τ(xgen;D)T 1S , where 1S is the indicator vector for the subset S. The LDS for
a data attribution method τ regarding a generated xgen produced by a model
trained on D is defined as:

LDS(τ,D, xgen) := ρ({L((xgen, pgen), θ∗(Sm))}N
S

m=1}, {gτ (xgen, Sm;D)}N
S

m=1).
(10)

ρ denotes Spearman’s rank correlation [1], and {Sm}NS

m=1 are NS subsets of
D.
LDS Challenges in the Customization Setting. In settings involving single-concept
datasets, with some concepts having as few as three images (such as Custom-
Concept101), applying LDS necessitates tailored modifications. To ensure robust
subset evaluation, we set NS = 2 across all concepts, which guarantees multiple
images per subset but may limit attribution diversity in concepts with larger
image counts. Thus, we replace random subset sampling with a customized sam-
pling strategy to promotes diverse attributions - see details in the supplementary,
Sec. A.
Within-Concept Criterions. We define the LDS Accuracy for NS = 2 as:

Accuracy(τ,Dc) := Exgen1 [LDS (τ,Dc, xgen) > 0] , (11)

where xgen is generated via Pmonitor (from Algo. 1), using multiple generations
per-prompt. See supplementary, end of Sec. B.1 for explanation of this criterion.

For NS = 2, it is easy to show that a baseline τrand(x
gen;Dc), which ignores

xgen and assigns random uniform (normalized) attributions, results with:

Accuracy(τrand, Dc) = 0.5∀Dc (Baseline), (12)

see derivation in the supplementary. Therefore in Fig. 5 we present the re-
sults of testing MONTRAGE against competing methods for out-performing
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Fig. 5: Within-concept evaluation of our attribution table M. Top row: Com-
paring our method against competitors, using the LDS Accuracy criterion (11), for
η = 0.9, 0.8, 0.7, 0.6. Bottom row: Evaluating Accuracy by sweeping values of η from
1.0 (perfect) 0.5 (baseline accuracy) (12). MONTRAGE has a clear advantage in higher
values of η, but not in low values. To account for the whole [0.5, 1] range, we employ
the Area Under the Curve (AUC), where MONTRAGE outperforms the competitors.

the 0.5 random baseline, i.e. we set a threshold η > 0.5. The test considers
{Dc}c∈customizations and empirically evaluates the percentage of customized mod-
els f(·; θ∗(Dc)), for which τ admits the Accuracy of (11), i.e.

Evaluate τ given η as 100 ·
∑

c∈customizations Accuracy(τ,Dc) > η

No. of Customizations
. (13)

Within-concept Results. The single-concept customizations provide a customized
model for each concept. Each customized model generates 500 images, resulting
with 500 × No. of customizations generated images for this evaluation (5500 in
CustomConcept101 and 2500 in Artchive). Figure 5 shows the within-concept
evaluation results of MONTRAGE, GenDataAttribution and D-TRAK within
a single concept via the Accuracy criterion of Eq. (11). The results show a clear
advantage of MONTRAGE in the high accuracy range (high values of η).
Attribution Model Generalization Assessment (between-concepts): To
estimate the capability of our attribution model in generalizing M, we focus on
its predicted attribution scores for unseen generated images, namely generations
obtained via prompts p /∈ Pmonitor. To this end, we adopt the image retrieval
evaluation scheme used in [32], which tests attributions at the semantic concept
level. Image concepts are used as ground truth labels and the attribution model
is evaluated for its ability to assign high attribution scores to input images that
belong to the same concept as the generated one. The metrics recall@K and
precision@K were used as commonly applied in the DML setting. Additionally,
Spearman’s rank correlation is used to compare the ordering of the learned
attributions with the original attributions obtained from M.
Between-concept Experimental Procedure. We analyzed M constructed for multi-
concept model customizations (five and ten concepts), where the dataset was
divided accordingly (e.g . in the CustomConcepts101 dataset, which has 101
concepts, we monitored 20 five-concept customizations and 10 ten-concept cus-
tomizations). For each table, three DML attribution models were trained with
varying seeds resulting in hundreds of attribution models (additional details can
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Fig. 6: Between-concepts evaluation. MONTRAGE surpasses existing methods
across two datasets and various metrics, especially in mixed concept experiments.

be found in the supplementary material). We experiment with un-mixed images,
where each generated image contains one concept, and mixed-concept images,
where each generated images contain two concepts from the five or ten cus-
tomization concepts. For recall@K and Precision@K of the unseen generated
images, we set K=5 in the un-mixed concepts and K=10 in the mixed-concept
(a larger K is employed since their attribution spans across more of images).
Between-concepts Results. Figure 6 presents the between-concepts evaluation
results for MONTRAGE, GenDataAttribution, and D-TRAK on the Custom-
Concept101 and Artchive dataset. The plots show retrieval metrics for both un-
mixed and mixed-concepts experiments, including recall, precision, and Spear-
man’s rank correlation. These results represent the average performance across
different attribution model’s seeds. In the figure, we can see that MONTRAGE
consistently outperformed GenDataAttribution and D-TRAK across all metrics,
achieving the highest scores for all metrics in un-mixed and mixed-concept ex-
periments. In particular, MONTRAGE’s performance was notably superior in
the mixed-concept experiments compared to the un-mixed concepts experiments.
This larger performance between MONTRAGE and other methods underscores
MONTRAGE’s enhanced capability in attributing more complex (mixed-concept)
generations. Note that the performance on the Artchive dataset was lower for all
attribution methods compared to the CustomConcept101 dataset. This under-
scores the significant challenge in understanding generations of artistic styles.
Qualitative Base Model Analysis. The MONTRAGE attribution model sat-
isfies an embedding that can be used to attribute any image. We can use it to
compare base-model generated images with the base-model training dataset, ef-
fectively estimating attributions of the base model. Figure 7 demonstrates this.
We used a subset of 100K images taken from the LAION dataset [30] - used
for the training of the base model. We applied one of our attribution models for
the base-model attribution. Surprisingly, MONTRAGE, designed for customized
model attribution, also shows potential for base model attribution.
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Fig. 7: Base model qualitative results. MONTRAGE succeeds in attributing base
diffusion model training images as well. A quantitative complement to these findings
is presented in the supplementary materials.

5 Limitations

A notable limitation of MONTRAGE is its dependence on having access to the
training process. This facilitates MONTRAGE’s frequent achievement of high
accuracy, as evidenced in the within-concept evaluations, and may be perceived
as an "unfair" advantage. However, given the nature of fine-tuning, where train-
ing access is anticipated, copyright issues may arise - for which it is imperative
to utilize all accessible resources. This includes training dynamics access to en-
able maximized data attribution accuracy - justifying this "unfair" advantage.
Additionally, MONTRAGE was implemented for customized models [21], and
other use-cases remain to be tested.

6 Conclusion and Future Work

In this work, we introduced MONTRAGE, a novel data attribution method
tailored for customized diffusion models. Our approach uniquely monitors the
model’s internal representations during training and leverages this data to con-
struct an attribution model. This technique not only elucidates how training
data influences image generation but does so efficiently.

Our method was evaluated on datasets focused on customization and artistic
style, critical areas for data attribution. The results demonstrate MONTRAGE’s
capability to provide granular insights at both within-concept and between-
concepts levels. Such granularity underscores the potential of MONTRAGE to
significantly impact legal and ethical considerations in image generation.

While this study concentrated on specific prompt-related representation mon-
itoring, exploring additional monitoring techniques could yield further advance-
ments. We also recommend in future research to utilize training access during
fine-tuning (through MONTRAGE or other) alongside a complementary tech-
nique for base models, ensuring a comprehensive data attribution framework.
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