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Abstract. Category-level articulated object pose estimation focuses on
the pose estimation of unknown articulated objects within known cat-
egories. Despite its significance, this task remains challenging due to
the varying shapes and poses of objects, expensive dataset annotation
costs, and complex real-world environments. In this paper, we propose a
novel self-supervised approach that leverages a single-frame point cloud
to solve this task. Our model consistently generates reconstruction with
a canonical pose and joint state for the entire input object, and it esti-
mates object-level poses that reduce overall pose variance and part-level
poses that align each part of the input with its corresponding part of
the reconstruction. Experimental results demonstrate that our approach
significantly outperforms previous self-supervised methods and is com-
parable to the state-of-the-art supervised methods. To assess the per-
formance of our model in real-world scenarios, we also introduce a new
real-world articulated object benchmark dataset3.

Keywords: 6DOF object pose estimation · Dataset creation · Unsuper-
vised learning

1 Introduction

Articulated objects, comprising multiple parts connected by revolute or pris-
matic joints with varying joint states (rotational angle of a revolute joint or
translation length of a prismatic joint), commonly exist in the real world. The
interactions between humans and these objects give rise to numerous practical
applications, such as robot manipulations and automation in industrial pro-
cesses [5, 25]. Therefore, pose estimation for these objects has become a crucial
problem in computer vision. We focus on accomplishing the category-level artic-
ulated object pose estimation through a self-supervised approach. Our objective
is to use a point cloud of unknown articulated objects within known categories
obtained from a single-frame RGB-D image segmented by detection models such
3 Code and dataset are released at https://github.com/YC-Che/OP-Align.
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Method w/o Pose w/o Shape Single Real-time
Supervision Supervision Frame Inference

PartMobility [35] ✓ ✓
UPPD [16] ✓ ✓ ✓
EAP [24] ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓

Table 1: Overview of works on self-supervised
category-level articulated object pose estimation.
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Fig. 1: Illustration of the articu-
lated object pose estimation.

as Mask-RCNN [9] as input. Then, we infer each part’s pose and segmentation,
each joint’s direction and pivot, as illustrated in Fig. 1. We aim to achieve this
without utilizing pose and shape annotations during training. Due to the varying
shapes, poses, and complex real-world environments, this task is ill-posed and
remains challenging.

Many works have focused on solving the aforementioned task under simpler
problem settings. Unsupervised Pose-aware Part Decomposition (UPPD) [16]
utilizes object shape annotations as a substitute for pose annotations. PartMo-
bility [35] utilizes multiple-frame point clouds of the same object under different
joint states. However, these methods still face limitations when confronted with
scenarios where shape information is unavailable or when dealing with single-
frame data. To the best of our knowledge, Equi-Articulated-Pose (EAP) [24] is
the only work that has tackled this task with single-frame point cloud as input
and without shape or pose annotations on a synthetic dataset. EAP guides the
network to learn part-by-part reconstruction of the input shapes by combining
disentangled information, such as canonical part shapes, object structure, and
part-level poses, in a self-supervised manner. To achieve such disentanglement,
EAP extracts part-level SE(3)-equivariant shape feature of a local region, in-
stead of object-level SE(3)-equivariant one, from an input and part-level poses.
Since part-level poses are not given in nature, EAP requires iterative updates
of such poses. It also uses an inner iterative operation, Slot-Attention [26], for
segmenting parts. These iterative operations sacrifice inference speed.

We propose Object-level and Part-level Alignment (OP-Align), a novel self-
supervised approach that learns object-level alignment, part-level alignment, and
canonical reconstruction of the entire object rather than the part-by-part recon-
structions. The core idea is that part segmentation and part-level pose estima-
tion should be done for objects with low object-level pose variance. Based on
this idea, we reconsider the order of the process of the part-by-part reconstruc-
tion approach (EAP) and propose a new learning strategy. In our approach, the
network first generates a reconstruction that maintains the canonical pose and
joint state for the entire input and aligns the input with the reconstruction at
the object-level to reduce the overall pose variance. Then, the network segments
parts followed by aligning each part of the object-level aligned input and the
corresponding part of the reconstruction by simulating joint movement. Our ap-
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proach does not employ iterative operation, thus achieving real-time inference
speed. A comparison with previous works is presented in Tab. 1.

We compare OP-Align with other methods on a synthetic dataset. To further
test OP-Align’s performance, we generate a real-world RGB-D dataset with mul-
tiple categories of articulated objects. Experimental results demonstrate that our
approach achieves state-of-the-art performance with other self-supervised meth-
ods and comparable performance with other supervised methods on the synthetic
dataset and the real-world dataset while achieving real-time inference speed.

Our contributions are summarized as follows:

1. We propose a new model designed for category-level articulated object pose
estimation in a self-supervised manner, which requires no of pose or shape
annotations.

2. We generate a new real-world RGB-D dataset for the category-level articu-
lated object pose estimation.

3. We conduct experiments on a synthetic dataset and our real-world dataset.
Our model achieves comparable performance with the state-of-the-art super-
vised methods and significantly outperforms previous self-supervised meth-
ods while achieving real-time inference speed.

2 Related Works

Category-level rigid object pose estimation: This task focuses on predict-
ing an unknown rigid object’s pose from images. NOCS [39] predicts the per-pixel
coordinates in canonical space from RGB-D images. Several methods [12,13,37]
further employ CAD models from ShapeNet dataset [2] to generate shape tem-
plates and use iterative closest point (ICP) [34] for matching the pose. Commonly
used backbone for this task is 3D graph convolution network (3DGCN) [22] and
PointNet++ [33]. These methods require expensive large-scale dataset anno-
tation. Some approaches attempt to accomplish this task in a self-supervised
manner. With the CAD model available, several methods [36, 38] render the
predicted pose with the CAD model as a synthetic image and compare it with
the input image. Some methods focus on the multi-view RGB images provided
cases [11, 19]. Especially, SE(3)-eSCOPE [21] achieved this task with single-
view input and without pose annotations or CAD models. They use the SE(3)-
equivariant backbone, Equivariant Point Net (EPN) [3], to simultaneously con-
duct SE(3)-invariant shape reconstruction as a reference frame, and predict the
SE(3)-equivariant pose transformation which sends input to the reconstruction.

Category-level articulated object pose estimation: This task focuses
on predicting part-level pose, part-level segmentation, and joint information for
unknown objects within known categories. Previous methods [1, 14, 20, 41] try
to solve this task with RGB-D image or video input by directly estimating the
part-level pose. Some methods [18,29,31] transfer the task into a movable shape
reconstruction task with neural implicit representation [27, 30] and predict the
pose indirectly. Some methods [8,15] parameterize the joint movement with ac-
tive interaction with articulated objects. To reduce the segmentation cost, [23]
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uses semantic segmentation annotation and transfers it into part segmentation
to conduct semi-supervised learning. However, similar to the rigid object pose
estimation, the cost of the dataset annotation limits the application of these
methods. To solve this task in a self-supervised manner, UPPD [16] utilizes the
annotation of object shape instead of the annotation of object pose. Some meth-
ods [10, 35] used multi-view observation with the same object in different joint
states to predict the joint movement. EAP [24] solved such a task with a single-
frame point cloud input and without shape or pose annotation. EAP repeats
the process of segmenting each part, reconstructing the per-part SE(3)-invariant
shape, and predicting the per-part pose multiple times to gain a refined pose
estimation. However, directly segmenting parts for inputs with different poses
and shapes is challenging, often resulting in poor accuracy, and the inference
speed is unsuitable for real-time applications.

Articulated Object Dataset: Synthetic datasets of articulated objects
such as Shape2Motion, SAPIEN, and PartNet [28,40,43] are commonly used in
the articulated object pose estimation. Compared to RGB-D images captured
from the real world, these datasets lack the consideration of complicated real-
world environments. HOI4D [25] collects multiple articulated and rigid object
mesh data and RGB-D images in human-object interaction. However, due to
the mismatch between the depth and RGB channels, a non-negligible amount
of noise is present in their ground-truth annotation of part segmentation based
solely on the RGB channels.

3 Method

Category-level articulated object pose estimation can be defined as follows. Given
a point cloud X ∈ R3×N of an articulated object consisting of P parts, we assign
each point to a part, predict the rotation and translation for each part, and
provide the pivot and the direction for each joint. To solve this problem, our
model predicts each point’s segmentation probability W ∈ RP×N , each joint’s
pivot and direction {c[i] ∈ R3,d[i] ∈ R3 | i ∈ {1, 2, . . . , J}}, and the rotation and
the translation for each part {R[i] ∈ SO(3), t[i] ∈ R3 | i ∈ {1, 2, . . . , P}}. During
training, we assume that the number of parts P and the type of joints (revolute
or prismatic) are given. Specifically, OP-Align assumes that each joint connects
two independent parts, resulting in J = P − 1 joints, which cover most of the
articulated object categories found in daily environments.

The pipeline of OP-Align is shown in Fig. 2. At the object-level phase, OP-
Align initially employs Efficient SE(3)-equivariant Point Net (E2PN) [44] for
object-level pose selection from a discretization of the SE(3) group, and gener-
ate canonical reconstruction. At the part-level phase, two PointNets (PNs) [32]
with shared weights perform part segmentation and joint parameters estima-
tion separately for the input aligned with object-level pose and the canonical
reconstruction. The obtained joint parameters generate the part-level alignment
between the input and the canonical reconstruction, aligning each part of the
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Fig. 2: Pipeline of OP-Align. At the object-level phase, for the input point cloud X,
we use the E2PN [44] backbone to predict and select object-level pose Ro, to from
pose candidates, and generate the canonical reconstruction Y by adding a learnable
parameter called category-common base shape Ybase. At the part-level phase, two
PointNets [32] with shared weights predict the part segmentation probability Wx,Wy,
joint states ax,ay, joint pivots cx, cy, and joint directions dx,dy for object-level aligned
input RoX+to and reconstruction Y, to generate part-level alignment Rd,Ra,Ta that
aligns each part of X to the corresponding part of Y as part-level aligned inputs Z.

input with its corresponding part of the reconstruction by simulating the joint
movement.

In Section 3.1, we will introduce the concept of object-level and part-level
alignment and the required weighted point cloud distance for training. Then
we will introduce the object-level phase and part-level phase of our model in
Section 3.2 and Section 3.3.

Notice in this section, for a rank n tensor A, we denote the (i1, i2, . . . , in)-
element (a rank 0-tensor) as A[i1,i2,...,in]. Moreover, we use NumPy [7] like no-
tation to extract a tensor from A (but each index starts from 1). For example,
A[i1] denote the i1-th rank (n − 1) tensor along the first axis and A[:,i2] denote
the i2-th rank (n− 1) tensor along the second axis.

3.1 Preliminaries

Expansion from rigid objects to articulated objects To solve the rigid
object pose estimation in a self-supervised manner, SE(3)-eSCOPE [21] utilizes
a SE(3)-equivariant backbone to disentangle shape and pose by generating an
SE(3)-invariant shape reconstruction and selecting SE(3)-equivariant pose from
candidates in a discretization of the SE(3) group for aligning the reconstruction
and input. They observed that poses of SE(3)-invariant reconstructions for ob-
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Fig. 3: Illustration of the object-level alignment, part-level alignment, and the recon-
struction of two inputs (a) and (b). Object-level alignment aligns the inputs with the
canonical reconstructions holistically. Part-level alignment simulates joint movement
to align each part. The category-common base shape remains consistent for all inputs,
and the canonical reconstruction further fits the shape details of each input.

jects in the same category are often consistently aligned. However, for articulated
objects, each part’s pose is also influenced by joint movement. This complexity
renders the reconstruction generated by the SE(3)-eSCOPE unable to maintain
consistent poses for all the parts.

To extend such an approach to articulated objects, as depicted in Fig. 3, we
use object-level alignment to reduce the overall pose variance, part-level align-
ment to simulate joint movement and align each part, and generate reconstruc-
tion with canonical pose and joint state for any objects. Specifically, For object-
level alignment, we use a similar strategy with SE(3)-eSCOPE, by selecting the
pose generating the smallest point cloud distance between the reconstruction and
input, among multiple pose candidates, in other words, anchors. For part-level
alignment, we collectively align each part of the input to the corresponding part
of the reconstruction by aligning joint direction and pivot, then rotate/translate
the input along the joint direction, to obtain multiple part-level aligned inputs
each of which is aligned only with the corresponding part of the reconstruc-
tion. It is essential to note that each part-level aligned input also leaves other
parts unaligned. We use this phenomenon and calculate each point’s distance be-
tween each part-level aligned input and the reconstruction to determine whether
a point in each part-level aligned input belongs to the currently aligned part
which guides the part segmentation learning. To stabilize the reconstruction,
we add a category-common base shape as learnable parameters to represent a
common shape of all the objects in the same category.

Weighted Point Cloud Distances We combine part segmentation probability
with the point cloud distance between the part-level aligned inputs and the
reconstruction to learn part segmentation and part alignment simultaneously. To
achieve this, we use weighted point cloud distances, and later, part segmentation
probability will sometimes be set as weights. A commonly used point cloud
distance is the chamfer distance (CD), and we also employ the Density-awarded
Chamfer Distance (DCD) [42]. Given two point clouds P and Q, the single-
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directional weighted CD (L1) and DCD from P to Q with the weight w are
defined as

CD(P,Q,w) =
1

|P|

|P|∑
n=1

w[n] min
m∈{1,2,...,|Q|}

∥∥P[n] −Q[m]

∥∥ ,
DCD(P,Q,w, α) =

1

|P|

|P|∑
n=1

w[n] min
m∈{1,2,...,|Q|}

(
1− e−α∥P[n]−Q[m]∥2

)
.

(1)

The sensitive distance range of DCD can be adjusted with the hyper-parameter
α.

3.2 Object-level phase

In the Object-level phase, OP-Align performs object-level pose selection, fol-
lowing a methodology similar to SE(3)-eSCOPE [21], and generate canonical
reconstruction.

By feeding the input X, E2PN [44] backbone initially outputs the SE(3)-
equivariant feature Feqv ∈ RD×60. This feature is generated by 60 anchors rep-
resenting different poses of the object. Here, 60 is the number of elements of
the icosahedral rotation group, a discretization of the 3D rotation group SO(3).
Then, we max pool Feqv among anchor dimension to obtain a SE(3)-invariant
feature finv ∈ RD. We use PoseHead, consisting of multi-layer perceptron (MLP),
to output per-anchor rotation and translation {(R[i], t[i]) = PoseHead(Feqv[:,i]) |
i ∈ {1, 2, . . . , 60}}. To obtain the canonical reconstruction Y ∈ R3×N , we also
use an MLP called ReconHead and a learnable parameter Ybase which represents
the category-common base shape and is of the same size as Y. The canonical
reconstruction Y is obtained by adding the output of ReconHead and Ybase;
Y = ReconHead(finv) +Ybase.

We also need to select the correct object-level pose from per-anchor rotation
and translation {(R[i], t[i])}. We calculate the single-directional CD between
the input transformed by the rotation and the translation of each anchor and
the reconstruction. Then we select the anchor’s rotation and translation that
minimize CD as an object-level pose;

Ro, to = argmin
i∈{1,2,...,60}

CD(R[i]X+ t[i],Y,1), (2)

where 1 represents the vector with all elements equal to 1. Notice that we do not
expect the object-level pose Ro, to obtained here to be accurate because we have
not considered joint movement in this phase of the model. However, Ro, to can
reduce the overall pose variance for subsequent non-SE(3)-equivariant model’s
inputs by applying RoX+ to as object-level aligned input.

Object-level Losses We employ DCD as the object-level reconstruction loss

Lo = DCD(RoX+ to,Y,1, αL) + DCD(Y,RoX+ to,1, αR), (3)
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where αL = 30 and αR = 120.
In addition, two regularization losses are introduced to make reconstructions

more stable. The first one is for shape variance between category-common base
shape Ybase and canonical reconstruction Y and is defined by

LregS =
1

N

N∑
i=1

∥∥Y[i] −Ybase[i]

∥∥
2
. (4)

The second one is a local density regularization to ensure the reconstruction does
not contain outliers and avoids sparse density in certain parts. It is defined by

LregD =
1

K − 1

K∑
i=2

Var(∥Y −KNN(Y, k)∥), (5)

where KNN(Y, k) refers to the k-th nearest point from each point in Y, and we
set K = 64 in this paper.

3.3 Part-level phase

In this phase, we focus on segmenting both the object-level aligned input and the
reconstruction into parts and estimating their joint parameters. By comparing
the obtained joint pivots, joint directions, and joint states, we determine the rel-
ative pose transformations to align each part of the input with the corresponding
part of the reconstruction.

OP-Align uses two PNs [32] with shared weights to process the object-level
aligned input RoX + to and the reconstruction Y separately. These two PNs
output the segmentation probabilities Wx,Wy ∈ RP×N , joint pivots cx, cy ∈
R(P−1)×3, joint directions dx,dy ∈ R(P−1)×3 and per-part joint states ax,ay ∈
R(P−1)×2 from each joint, where subscripts x and y indicate outputs from RoX+
to and Y respectively. Here, joint state a∗ represents joint angles for revolute
joints and translation lengths for prismatic joints, and the dimension of the
second axis of R(P−1)×2 reflects the assumption that each joint connect two
parts. We define the part-level aligned inputs Z[j,i], j = 1, 2, . . . , P − 1, i = 1, 2,
obtained by a relative transformation that aligns the i-th part connected to the
j-th joint of RoX+ to with the corresponding part of Y by

Z[j,i] =

{
Ra[j,i]Rd[j]((RoX+ to)− cx[j]) + cy[j] (revolute joint),
Rd[j]((RoX+ to)− cx[j]) + cy[j] +Ta[j,i] (prismatic joint).

(6)

Here, Rd[j] is a rotation matrix of the joint direction alignment that sends the
joint direction dx[j] to dy[j]; Rd[j]dx[j] = dy[j]. Ra[j,i] is the rotation matrix
of joint state alignment, the rotation of a revolute joint with rotation angle
ay[j,i] − ax[j,i] around the axis dy[j]. And Ta[j,i] is the joint state alignment
translation dy[j](ay[j,i] − ax[j,i]) which represents a translation of a prismatic
joint. The illustration of such alignments are shown in Fig. 4. By applying the
above equation to each part, OP-Align generates a point cloud set, part-level
aligned inputs Z = {Z[j,i] | i ∈ {1, 2}, j ∈ {1, 2, . . . , P − 1}} where each part of
the input X is aligned to the corresponding part of the reconstruction Y.
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Fig. 4: Illustration of joint direction alignment Rd, joint state alignment Ra that
simulating revolute joint movement, and ta that simulating prismatic joint movement.

Corresponding part assignment Objects with more than two parts, such
as eyeglasses or basket, have some shared parts, each of which is connected
with multiple joints. These shared parts result in the number of part-level aligned
inputs | Z | not necessarily being the same as the number of parts P . To correlate
Z with part segmentation probability, we assign one part label σ(j, i) to each
pair of a joint j and a part i connected to this joint, j = 1, 2, . . . , P − 1, i =
1, 2. We require the assignment σ to satisfy two conditions: (1) for any j ∈
{1, 2, . . . , P − 1} σ(j, 1) ̸= σ(j, 2) and (2) for any p ∈ {1, 2, . . . , P} there exist j
and i such that σ(j, i) = p. Let σ be the assignment that minimizes the (sum
of) segmentation-weighted CD calculated by

∑
j

∑
i

1
b[j,i]

CD(Z[j,i],Y,Wx[σ(j,i)])

among all possible assignments satisfying (1) and (2). Here b[j,i] denotes the
number of times the part σ(j, i) is shared. During the inference phase, we use
the mean translation by linear interpretation and the mean rotation by the
spherical linear interpolation (SLERP) as the shared part’s pose.

Part-level Losses We employ a segmentation-weighted DCD as the part-level
reconstruction loss

Lp =

P−1∑
j=1

2∑
i=1

1

b[j,i]
(DCD(Z[j,i],Y,Wx[σ(j,i)], αL) + DCD(Y,Z[j,i],Wy[σ(j,i)], αR)).

(7)

We also add some regularization. We assume that the mean segmentation
probability of each part exceeds the threshold β in the reconstruction and apply
the segmentation regularization by

LregW =
1

P

P∑
p=1

max

(
β −

∑N
i=1 Wy[p,i]

N
, 0

)
, (8)

where β is set to 0.05. we consider that the part-level aligned inputs of one shared
part should coincide and introduce a regularization loss LregP;

LregP =
1

2(P − 1)

P−1∑
j=1

2∑
i=1

∥∥Z[j,i] − Z[j,i]

∥∥
2
, (9)

where Z[j,i] indicates the mean shape of {Z[a,b]|σ(a, b) = σ(j, i)}. And since the
reconstruction should have a fixed canonical joint state, we define the recon-
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Table 2: Overview of the real-world dataset. The real-world dataset contains object
categories with different number of parts, number of joints, and joint types.

Category Training Testing Object DetectionImage Instance Image Instance Part Joint(prismatic) Joint(revolute)

basket 974 4 449 2 3 0 2 SAM [17]
drawer 884 4 452 2 2 1 0 SAM [17]
laptop 740 4 412 2 2 0 1 Mask-RCNN [9]

scissors 922 4 421 2 2 0 1 Mask-RCNN [9]
suitcase 813 4 381 2 2 0 1 Mask-RCNN [9]

Basket Drawer Laptop Scissors Suitcase
RGB-D Image & 

Segmentation Mask

…

Fig. 5: Example of object point cloud in the real-world dataset. We use RGB-D images
and object segmentation masks to back-project object point cloud.

struction Y’s joint state ay as zero and apply the joint state regularization by

LregA =
1

2(P − 1)

P−1∑
j=1

2∑
i=1

a2y[j,i]. (10)

Finally, since both the predicted joint pivots of the input and that of the recon-
struction should be close to the object itself, we applied a regularization defined
by

LregJ = DCD(cy[j],Y,1, αL) + DCD(cx[j],RoX+ to,1, αR), (11)

as the joint pivot regularization.

4 Real-world Dataset

To evaluate the performance of OP-Align in real-world scenarios, we introduce
our novel real-world dataset. The real-world dataset contains 5 categories of
articulated objects, basket, laptop, suitcase, drawer, and scissors, cap-
tured by ASUS Xtion RGB-D camera. For each category, we randomly select
4 objects for training and 2 objects for testing. For each object, we set 8 ran-
dom joint states and captured about 30 frames of RGB-D images for each. We
also generated object segmentation masks predicted with detection models such
as Mask-RCNN [9] or Segment Anything Model (SAM) [17]. The object point
cloud can be generated by combining the depth channel of RGB-D images with
a segmentation mask. Tab. 2 and Fig. 5 show an overview of this dataset. The
annotation of the real-world dataset includes each part’s segmentation, rotation,
and translation and each joint’s pivot and direction.
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5 Experiments

Datasets: We use a synthetic dataset generated by authors of EAP [24] and
our real-world dataset for evaluation. The synthetic dataset contains laptop,
safe, oven, washer, and eyeglasses categories, selected from the mesh data
in HOI4D [25] and Shape2Motion [40] dataset. We follow EAP [24]’s authors to
render these mesh data into the partially observed point cloud, simulating the
point cloud observation from a single-view camera.
Baselines: For the synthetic dataset, we choose EAP [24] and 3DGCN [22] as
self-supervised and supervised method baselines. We also report the results of
a ICP algorithm, and NPCS [20] with EPN [3] backbone, which the authors of
EAP [24] implemented. For the real-world dataset, we trained 3DGCN [22] and
PointNet++ [33] as supervised method baselines.
Evaluation Metrics: For the synthetic dataset, we follow EAP [24] and report
the mean values of segmentation IoU, part rotation error, part translation error,
joint direction error, and the distance from a point to a line as joint pivot error.
For the real-world dataset, we follow category-level 6D object pose estimation
methods [4, 6, 39] and choose the mean average precision (mAP) with multiple
thresholds. An instance’s part pose is considered correct if the mean translation
and rotation error of each part are both below the given thresholds. Specifically,
we use thresholds 5, 10, 15cm for translation, and 5◦, 10◦, 15◦ for rotation. We
also use the same thresholds for joint pivot and direction. For part segmenta-
tion, we use the mean value of intersection over union (IoU) of each part and
thresholds of 75%, 50% as metrics.
Evaluation Strategies: Because OP-Align is a self-supervised model, it only
predicts the relative poses of the input and the reconstruction instead of the
poses defined by humans. Therefore, to evaluate our model’s performance, we
need to determine the poses of the reconstruction parts. To achieve this, we follow
EAP [24] and utilize ground truth labels from the training set. In preparation,
for each training data and each part, a relative pose between the reconstruction
and the input is obtained through Equation 6 by using a trained model, which,
in combination with the ground truth pose, derives an estimated pose of each
part of the reconstruction. We use these estimated poses to determine one com-
mon pose for each part of the reconstruction via a RANSAC-based method. For
evaluation, we use the common pose as the pose of each part of the reconstruc-
tion. See supplement material for more details. We also note that for symmetric
object categories such as basket, laptop, scissors and suitcase, the part seg-
mentation is easily replaced with each other. For each object, among all possible
permutations of indices of segmentation labels, we choose the permutation with
the largest mean IoU over parts. The poses of parts are also permuted according
to the chosen permutation.
Training Settings: We trained a model for each category for 20,000 iterations
with a batch size of 24. We used the Adam optimizer with a learning rate of
0.0001 and halved the learning rate every 5,000 iterations. The total loss is
defined as λoLo + λpLp + λregSLregS + λregDLregD + λregWLregW + λregPLregP +
λregALregA + λregJLregJ, where (λo, λp, λregS, λregD, λregW, λregP, λregA, λregJ) =
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Table 3: The mean metrics on partially observed point cloud from the synthetic
dataset. Supervision refers to the annotations used in training.

Method Supervision Segmentation Rotation Translation Pivot Direction Memory Speed
Pose Segmentation Joint IoU↑ (degree)↓ ↓ ↓ (degree)↓ (GB)↓ (FPS)↑

3DGCN [22] ✓ ✓ ✓ 94.05 11.61 0.093 0.084 9.78 - -
NPCS-EPN [20] ✓ ✓ ✓ - 11.05 0.080 0.147 15.20 - -

ICP ✓ 66.45 44.12 0.242 - - - -
EAP [24] 68.46 10.44 0.121 0.162 23.09 9.23 <1

Ours 80.70 8.10 0.129 0.110 6.63 2.31 41

Synthetic Dataset Real-world Dataset

Object-level 
Aligned Input

Reconstruction

Basket Drawer Laptop Scissors Suitcase

Part-level
Aligned Inputs

Laptop Safe Oven Washer Eyeglasses

Fig. 6: Visualization of object-level aligned inputs, part-level aligned inputs, and re-
constructions of OP-Align on the synthetic dataset (left) and two testing instances on
the real-world dataset in each category (right). Segmentation is indicated by color, and
joints are indicated by black arrow.

(10, 10, 100, 10, 10, 10, 10, 10). We randomly sample 1024 points without RGB
information from each object as input.

5.1 Results on the Synthetic Dataset

We compare the performance of OP-Align on the partially observed point cloud
from the synthetic dataset with other methods. As the results in Tab. 3, OP-
Align exceeds other self-supervised methods by a large margin on multiple met-
rics. These results show that OP-Align can provide accurate joint and part pose
prediction along with part segmentation. The visualization shown in Fig. 6 (left)
demonstrates that object-level alignment can align the input with reconstruction
holistically, and part-level alignment can align each part of the input with the cor-
responding part of the reconstruction. Also, thanks to the object-level alignment
for reducing the pose variance, our method achieved higher part segmentation
performance when compared with EAP [24]. However, the part segmentation
performance still has room for improvement. Our assumption is that supervised
3DGCN [22] can directly learn segmentation with the geometric feature from the
point cloud, while OP-Align leverages the difference of point distance between
each part-level aligned input and the reconstruction for the indirect learning of
segmentation probability with Lp. Especially in the region close to the joint,
where points of part-level aligned inputs easily overlap, the point distance had
no significant difference between each part-level aligned input, resulting in sub-
optimal segmentation performance. We also compared our model in terms of
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Table 4: The comparison of mAP metrics on the real-world dataset. Supervision refers
to the annotations used in training.

Method Supervision Segmentation↑ Joint↑ Part↑
Pose Segmentation Joint IoU75% IoU50% 5◦5cm 10◦10cm 15◦15cm 5◦5cm 10◦10cm 15◦15cm

3DGCN [22] ✓ ✓ ✓ 83.31 95.83 47.51 85.79 94.59 13.07 46.77 68.66
PointNet++ [33] ✓ ✓ ✓ 19.83 42.20 21.06 57.38 75.56 4.47 23.25 39.82

Ours 23.79 50.42 12.57 63.59 74.04 14.79 46.09 59.76

Fig. 7: The comparison of mAP metrics on the real-world dataset.

inference speed and GPU memory with EAP [24]. OP-Align utilizes less GPU
memory and achieves faster inference speed.

5.2 Results on the Real-world Dataset

We conduct self-supervised training for OP-Align and compared the result with
supervised 3DGCN [22] and PointNet++ [33] on the real-world dataset. The
results are shown in Tab. 4 and Fig. 7 and the visualization is shown in Fig. 6
(right). OP-Align achieves results better than or comparable to PointNet++ [33]
on all the metrics, and results comparable to 3DGCN [22] on part metrics, even
without any annotations. However, similar to the results on the synthetic dataset,
part segmentation learning with Lp requires accurate point distance between
part-level aligned inputs and the reconstruction, which is extremely challenging
in real-world environments where outliers and missing points commonly exist.
We also notice that our model still lags behind supervised methods in terms of
the joint pivot and part translation metrics, as shown in laptop and suitcase
visualization in Fig. 6. This phenomenon may be because the predicted joint
pivots by our model, while capable of achieving part-level alignment, may not
necessarily overlap with the actual joint pivots in reality. This also affects the
performance of part translation based on joint movement.

5.3 Ablation Studies

We conduct four different ablation experiments on the real-world dataset, re-
lated to the shape variance regularization LregS, the reconstruction density reg-
ularization LregD, the segmentation regularization LregW, and the joint pivot
regularization LregJ, as shown in Tab. 5. Examples of the reconstructions of
objects in the real-world dataset laptop category are shown in Fig. 8. As the
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LregS LregD LregW LregJ
Segmentation↑ Joint↑ Part↑

50% 15◦15cm 15◦15cm

(a) ✓ ✓ ✓ 51.87 42.79 35.39
(b) ✓ ✓ ✓ 50.36 51.52 32.15
(c) ✓ ✓ ✓ 39.73 32.49 27.51
(d) ✓ ✓ ✓ 47.52 36.27 20.49
Full ✓ ✓ ✓ ✓ 50.42 74.04 59.76

Table 5: Results of ablation studies.

(a) (b)

Fig. 8: Reconstruction examples
of ablation model (a) and (b).

reconstructions and performance of ablation model (a) show, without LregS, the
reconstructions’ joint state is not fixed, which results in a huge performance drop
at metrics of joint and part prediction. For ablation model (b), without LregD,
reconstruction’s points are concentrated into a small region, which affects the
overall performance of our model. For ablation model (c), without LregW, some
objects are regarded as single-part objects, and we fail to generate valid joint
parameters. Finally for ablation model (d), without LregJ, joint pivot may be
placed outside of the object, resulting in poor performance on both joint and
part pose metrics.

6 Failure Cases and Limitations

Failure Cases: We found that OP-Align fails for objects belonging to categories
where some parts comprise only a small fraction of the entire object and their
movement does not significantly affect the overall shape. For basket category, as
shown in Fig. 6, the handle parts account for 16.9% of the entire object (median
in the testing set) and the movement of these parts results in small changes
to the overall shape. This means that even without part-level alignment, our
canonical reconstruction is sufficiently close to the overall object. This also leads
to our model’s inability to correctly segment parts and predict joint movements.
Limitations: OP-Align requires the number of parts and joint types as known
information, which limits its ability to learn from objects in categories with
unknown joint types or variable numbers of joints and parts.

7 Conclusion

We proposed a novel approach, OP-Align, and a new real-world dataset for the
self-supervised category-level articulated object pose estimation. Our approach
achieves state-of-the-art performance among self-supervised methods and com-
parable performance to previous supervised methods, yet with real-time infer-
ence speed. Our future plan is to design a self-supervised universal pose estima-
tion model, which can be trained with inner-category data and automatically
detect the number of parts, number of joints, and joint type.
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