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Abstract. Magnetic Resonance Imaging (MRI) is a widely used imag-
ing modality for clinical diagnostics and the planning of surgical inter-
ventions. Accelerated MRI seeks to mitigate the inherent limitation of
long scanning time by reducing the amount of raw k-space data required
for image reconstruction. Recently, the deep unrolled model (DUM)
has demonstrated significant effectiveness and improved interpretabil-
ity for MRI reconstruction, by truncating and unrolling the conven-
tional iterative reconstruction algorithms with deep neural networks.
However, the potential of DUM for MRI reconstruction has not been
fully exploited. In this paper, we first enhance the gradient and in-
formation flow within and across iteration stages of DUM, then we
highlight the importance of using various adjacent information for ac-
curate and memory-efficient sensitivity map estimation and improved
multi-coil MRI reconstruction. Extensive experiments on several public
MRI reconstruction datasets show that our method outperforms existing
MRI reconstruction methods by a large margin. The code is available at
https://github.com/hellopipu/PromptMR-plus.

Keywords: MRI Reconstruction · Deep Unrolled Model · Gradient-
based Learning · Sensitivity Map Estimation

1 Introduction

Magnetic Resonance Imaging (MRI) provides a radiation-free and highly ver-
satile method for imaging the organs, tissues, and skeletal systems within the
human body. Over the past 50 years since Paul Lauterbur produced the first
MR image, MRI has evolved to become a cornerstone in clinical diagnostics
[19]. However, the process of raw k-space data acquisition in MRI is typically
time-consuming. Accelerated MRI techniques tackle this issue by minimizing the
amount of raw data that needs to be collected for image reconstruction, thereby
shortening the duration of the scan. Modern advances in MRI technology, in-
cluding Parallel Imaging (PI) [8] and Compressed Sensing (CS) [7, 22], have
significantly enhanced the efficiency and quality of MRI scans, making it possi-
ble to acquire high-resolution images within a considerably reduced time frame.
However, with increased patient throughput and the requirements of emerging
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Fig. 1: Our proposed method is memory-efficient and shows better reconstruction per-
formance. (a) GPU memory consumption on Calgary-Campinas brain dataset, (b)
PSNR/SSIM results vs. the number of parameters on the fastMRI knee ⇥8 testset.

technologies, such as real-time MRI [25] and low-field MRI [3], the development
of accelerated MRI reconstruction methods remains a hot research topic [24].

Accelerated MRI reconstruction is a regularized inverse problem, which aims
to reconstruct an unknown MR image from highly undersampled measurements
in k-space. Conventional iterative MRI reconstruction methods minimize a cost
function comprising two main components: a data-consistency term, which as-
sesses the alignment between k-space predicted from the reconstructed image
and the observed measurements, and a regularization term, which incorporates
prior knowledge to encourage the emergence of desirable image attributes, e.g.,
sparsity. Over the past decade, deep learning [20] has emerged as a transfor-
mative approach to MRI reconstruction [26, 37]. Recently, the release of sev-
eral large-scale public MRI reconstruction benchmarks, including the fastMRI
dataset [49], Calgary-Campinas dataset [39], and CMRxRecon dataset [44], has
significantly propelled the advancement of MRI reconstruction methods. Among
deep learning-based MRI reconstruction approaches, the deep unrolled model
(DUM) has garnered significant attention for its exceptional performance and
ability to establish a concrete and systematic link between widely used itera-
tive MRI reconstruction methods and deep neural networks [23]. However, as
pointed out in [51], the current architecture design of DUM is inefficient, char-
acterized by limited information transmission capacity and low flexibility and
robustness. These shortcomings significantly restrict DUM’s performance and
its applicability to unseen data.

In this work, we rethink and improve key components of the DUM-based
MRI reconstruction approach. Our main contributions can be summarized as
follows:

• We improve the adaptive gradient algorithm and apply it to DUM, which can
achieve self-adaptive dynamic learning rates adjusting for different spatial
areas in an MR image. This approach provides a more flexible updating
strategy in each iteration stage of DUM.

• We incorporate the momentum technique used in gradient descent acceler-
ation and propose a multi-stage and multi-level feature aggregation scheme
to accelerate the iteration convergence of DUM.
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• We highlight the importance of adjacent information which can be used to
improve multi-coil MRI reconstruction, especially for accurate and memory-
efficient sensitivity map estimation. As shown in Fig. 1(a), our method re-
duces GPU consumption to ⇠ 55% than the previous state-of-the-art.

• We demonstrate the effectiveness of our proposed method on three public
MRI reconstruction benchmarks of different anatomies: the fastMRI knee,
the Calgary-Campinas brain and the CMRxRecon cardiac dataset. As shown
in Fig. 1(b), our method achieves better PSNR and SSIM with fewer param-
eters than existing MRI Reconstruction methods.

2 Related Work

2.1 Deep Unrolled Model (DUM)

DUM maps a truncated optimization algorithm into a deep neural network,
iteratively alternating between gradient descent steps and proximal mapping
steps. Its superior performance and good interpretability make it a preferred
method for a wide range of inverse problems, including compressive sensing, im-
age restoration and image reconstruction [23, 51]. Learned ISTA (LISTA) was
the first unrolling method proposed for fast approximation of sparse coding [13].
LISTA unrolls the traditional ISTA algorithm [5] and truncates it to a fixed
number of iterations. By learning from a training dataset, this trainable version
of ISTA shows significant computational benefits. The success of deep learning
further promotes the idea of relating conventional iterative optimization meth-
ods to deep neural networks, including ADMM-Net [41], ISTA-Net [52] and
AMP-Net [54]. By introducing a condition module to transmit input informa-
tion to each stage of the unrolled model, ISTA-Net++ [48] provides more flex-
ibility to handle multi-ratio and multi-scene images for compressive sensing. In
MADUN [38], a memory-augmented DUM is proposed to enhance the short-term
and long-term information transmission in traditional DUMs.

2.2 DUM for MRI Reconstruction

ADMM-Net [41] and DC-CNN [36] are the pioneering DUMs for MRI reconstruc-
tion, establishing themselves as widely used baseline DUM-based MRI recon-
struction methods. These approaches, based on Convolutional Neural Networks
(CNNs), unroll the alternating direction method of multipliers (ADMM) [6] and
the alternating minimization (AM) algorithm, respectively. KIKI-Net [11] em-
ploys a novel approach by alternating between k-space completion blocks and
image restoration blocks, demonstrating the advantages of cross-domain learn-
ing [10, 21, 56]. Adaptive-CS-Net finds it beneficial to inject information from
neighboring slices into the model. This 2.5D reconstruction strategy has been
adopted in subsequent works [12,45].

The development of DUM has led to various innovative approaches beyond
simple unrolling, categorized broadly into three main variants for enhanced
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MRI reconstruction. (1) Firstly, inspired by Recurrent Neural Network (RNN),
RIM [31,32] uses a latent variable as temporal memory to track the progression
of iterations. Recurrent-VarNet [46] extends this idea by designing a recurrent
state initializer and recurrent units for the hidden state. In parallel, LPD-Net [1]
and NCPD-Net [34] simplify this concept by utilizing a buffer design as addi-
tional learnable memory transmitting across iterations. (2) Secondly, inspired
by efficient variants of proximal gradient descent (PGD), HC-PGD [16] proposes
the history-cognizant unrolling method by concatenating all previous proximal
operator output as input to each iteration. DIRCN [27] further proposes to add
feature map interconnections between neighboring stages. These works suggest
the importance of gradient flow and shared information between cascades for
MRI reconstruction. (3) Moreover, Adaptive-CS-Net [28] incorporates soft MRI
priors, including soft data consistency, image phase information and background
priors, as additional input channels to each iteration. Similarly, HiTDUN [53]
proposes the design of multi-channel input for every iteration. These methods
underscore the advantages of introducing additional priors into the input at
each iteration stage, aiming to dismantle the information bottleneck encoun-
tered within each iteration.

2.3 Sensitivity Map Estimation in DUM

Numerous works on DUM have achieved promising results on MRI reconstruc-
tion [11, 21, 36, 41, 56]. However, most of these methods focus exclusively on
synthesized single-coil k-space data, overlooking the more prevalent multi-coil
imaging in real clinical MRI scans. This oversight neglects a more realistic sce-
nario, given the widespread application of parallel imaging. Parallel imaging (PI)
can speed up MRI, with the idea of using multiple receiving coils to reduce the
number of phase encoding lines needed in acquiring raw k-space data. The sen-
sitivity map of a given coil is its local field profile, describing through reciprocity
where that coil can efficiently pick up MR signals from the imaged region. The
reconstruction of multiple coil k-space data needs accurate estimation of the sen-
sitivity maps, which are either directly measured, as in SENSE [30], or indirectly
accounted using a center region of k-space data, as in GRAPPA [14].

Robust and accurate sensitivity map estimation is crucial for multi-coil MRI
reconstruction. The i-RIM directly reconstructs coil images without explicitly
estimating the sensitivity maps. Adaptive-CS-Net [28] uses the normalized low-
pass filtered coil images as sensitivity maps. VarNet [15] and MoDL [2] handle
multi-coil data with pre-estimated sensitivity maps [43]. E2E-VarNet [40] ad-
vances the VarNet by learning sensitivity maps from the Auto-Calibration Sig-
nal (ACS) data of the k-space in an end-to-end manner. Due to its superior
performance and end-to-end approach, many subsequent studies are based on
E2E-VarNet [12,45,46]. When the ACS data is insufficient for accurate sensitiv-
ity map estimation, [4,17] suggest iterative sensitivity map estimation and image
reconstruction, which can be considered as a deep version of J-SENSE [47].



Rethinking Deep Unrolled Model for Accelerated MRI Reconstruction 5

(a) (b)

Fig. 2: Overview of our proposed (a) self-adaptive and (b) momentum-accelerated
gradient algorithm. x̂t+1 and F̂m

t are the output of CNN and Momentum layer in
Eq. (7) and Eq. (10), respectively.

3 Proposed Method

Drawing inspiration from adaptive gradient and momentum-accelerated algo-
rithms in gradient descent optimization, we dynamically incorporate prior knowl-
edge in the data flow, to enable more informative and faster convergence for
gradient-based MRI reconstruction learning, as shown in Fig. 2. Subsequently,
we enhance the concept of adjacent reconstruction by focusing on more robust
and memory-efficient multi-coil sensitivity map estimation, as shown in Fig. 4.
Please refer to Supplementary Section B for architecture details.

3.1 Problem Formulation

We can estimate the complex MR image x from its undersampled measurements
y in k-space by solving an optimization problem [22],

min
x

f(x) = min
x

1

2
||Ax� y||22 +R(x), (1)

where A = MFS is the forward process of acquiring the k-space measurements,
which is a combination of coil sensitivity maps S, the Fourier transform F and
an undersampling mask M . The first term 1

2 ||Ax � y||22 represents the data
consistency term, which ensures data fidelity, while the second term R(x) serves
as the regularization term, aimed at promoting image domain priors, such as
sparsity [7]. We can solve Eq. (1) iteratively via the gradient descent method,

xt+1 = xt � ⌘tgt, (2)

gt = AH(Axt � y) +rR(xt), (3)

where rR(xt) is the gradient or the proximal mapping of R, ⌘t is the scalar
learning rate at iteration t, and t 2 {0, 1, ..., T � 1}, with T being the total
number of truncated iterations. In the context of the deep unrolled models, it
is customary to substitute rR(xt) with a neural network whose parameters are
learned from large-scale training datasets. This allows for the learning of more
sophisticated image domain priors, compared to those that are hand-crafted.
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3.2 Self-Adaptive Gradient Algorithm

During the iterative MRI reconstruction process, some regions in an image are
straightforward to reconstruct, such as the background, which contains minimal
information. However, other areas are more prone to aliasing artifacts resulting
from downsampling the k-space, which are challenging to eliminate. This diffi-
culty often arises because the aliasing artifacts may closely mimic the appearance
of anatomical structures within these regions, necessitating a more meticulous
gradient-based correction at each iteration. Inspired by the adaptive gradient al-
gorithm [9,18,42,50], instead of applying a uniform learning rate across the entire
image space at each iteration, it is reasonable to utilize self-adaptive learning
rates for individual pixels to achieve a more refined reconstruction result. Our
generalization of the standard gradient descent in Eq. (2) employs the following
update for each iteration:

xt+1 = xt � ⌘tgt �Et � gt, (4)

Et =
⌘tqP

t

⌧=0 g
2
⌧
+ ✏

� ⌘t, (5)

where Et is the residual pixel-wise learning rate at the t-th iteration, and the
denominator in Eq. (5) computes the root of the sum of squares of all previous
gradients of individual pixels. ✏ is a small number to improve the numerical
stability. The operation � denotes element-wise multiplication. We note that,
the accumulation of historical pixel-wise gradients in Eq. (5) can help improve
iteration convergence by

(1) scaling down the updating steps for regions with historically large gradients,
which may be prone to overshooting;

(2) scaling up the updating steps for regions with historically small gradients,
which may benefit from a more aggressive update.

To unroll our self-adaptive gradient algorithm with a DUM, we deviate from
the common practice of substituting rR(xt) with a neural network in Eq. (4).
There are compelling reasons for this. First, learning the rR(xt) term in gt (see
Eq. (3)) can lead to numerical instability in Et during the early stage of training.
Second, the adaptive gradient strategy in Eq. (5), which is the basic variant
utilized in AdaGrad [9], may not be the most suitable choice for a DUM in the
context of MRI reconstruction. To leverage the robust nonlinear representation
capabilities of neural networks, we improve upon the adaptive gradient algorithm
by reformulating Eq. (4) as follows:

xt+1 = xt � ⌘tA
H(Axt � y)� (⌘trR(xt) +Et � gt) (6)

= xt � ⌘tA
H(Axt � y) + CNNt(xt,A

HAxt,A
Hy, st). (7)

For the last term in Eq. (6), we reparametrize it with a CNN, as indicated in
Eq. (7). This neural network takes as input the fundamental components from
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which the term is constructed, namely, xt, AHAxt, AHy, and a learnable aux-
iliary memory st, which serves as a hidden state to track the historical gradient
information implicitly. Note that AHy yields x0, which represents the image
transformed from zero-filled k-space. For further discussion, please refer to Sup-
plementary Section E.

3.3 Momentum-Accelerated Gradient Algorithm

The momentum method [29] accelerates gradient descent in Eq. (2) by accumu-
lating a velocity vector in directions of persistent reduction in the optimization
objective across iterations:

xt+1 = xt � ⌘tmt, (8)
mt = µmt�1 + (1� µ)gt, (9)

where µ 2 [0, 1] is the momentum coefficient. The momentum mt is known
as the exponential moving average of historical gradients. It can benefit the
optimization of the current iteration, thereby considerably accelerating conver-
gence. In Sec. 3.2, we introduced the hidden state st, which is used to implicitly
track the pixel-wise historical gradient information. Here, we propose explicit
multi-stage and multi-level feature aggregation, to mimic the idea of momentum
and increase the information flow across the iterations. For a typical multi-level
encoder-decoder denoiser, such as Unet, in the t-th iteration, we insert a Momen-
tum layer before the m-th level decoder layer. This layer concatenates features
at the current stage and features from all previous iteration stages at the same
level, followed by a 1 ⇥ 1 convolution layer to reduce the dimensionality, and a
Channel Attention Block (CAB) to adaptively fuse the multi-stage information,
as described below:

Momentum(Fm

0 , ...,Fm

t
) = CAB(Conv1⇥1(Concat(Fm

0 , ...,Fm

t
))), (10)

where Fm

t
is the input feature of the m-th level decoder layer at the t-th iteration.

3.4 Adjacent Reconstruction

Incorporating information from adjacent slices in multi-coil MRI reconstruction
has been substantiated in prior work [12, 28, 45]. However, a significant limita-
tion of adjacent slice reconstruction lies in its substantial memory consumption
during the estimation of multi-coil sensitivity maps. This issue stems from the
design of the sensitivity map estimation (SME) network in earlier work [40].
The network adopts a coil-by-coil estimation approach to accommodate a vari-
able number of coils, increasing flexibility but leading to higher memory demands
in the adjacent reconstruction setting (see Fig. 4(a)). To be more specific, for
k-space data with N coils and 2a+1 adjacent slices, the total number of forward
passes required for the SME process is calculated as (2a + 1)N . Typically, the
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(a) time (b) contrast (c) slice

Fig. 3: The sensitivity maps exhibit variations across (a) time, (b) contrast and (c) slice
dimension. First row: original images, second row: magnitude of differences between
the sensitivity map of the central image and each of those of its adjacent images.

Fig. 4: Concept illustration of different strategies for multi-coil sensitivity map es-
timation (SME). The main difference between the four strategies lies in the Auto-
Calibration-Signal (ACS) information sharing between coils and adjacent MR image
slices. Each single coil sensitivity map gets ACS information from (a) a single coil and
a single image slice; (b) multiple coils but a single image slice; (c) a single coil but
multiple adjacent image slices; (d) multiple coils and multiple adjacent image slices.

value of N ranges from 8 to 34 and a is set to 2. We propose to reduce the num-
ber of forward passes, by utilizing the correlations between adjacent sensitivity
maps.

A sensitivity map is subject to variation, based on the position of the imaging
subject and changes over time due to the subject motion. Additionally, in multi-
contrast MRI acquisition, variations in acquisition parameters, such as inversion
time (TI) and repetition time (TR), can indirectly influence the sensitivity map
estimation through the acquired k-space data, as shown in Fig. 3. Consequently,
the estimation of adjacent sensitivity maps is a spatially, temporally, and con-
trastively correlated process. We therefore propose to estimate sensitivity maps
by utilizing information from spatially, temporally, and contrastively adjacent
slices. As shown in Fig. 4(c), we simultaneously estimate a single coil sensitivity
map at all adjacent 2a + 1 slices using information across these slices. In this
way, we can reduce the number of forward passes from (2a + 1)N to N . Our
estimation of the n-th sensitivity map set Sn

adj
can be described as:

Sn

adj
= SME(ACS(xn

0,adj)), (11)
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where Sn

adj
= [Sn

a�c
, ...,Sn

c
, ...,Sn

a+c
] is an adjacent sensitivity map set which is

the concatenation of central slice sensitivity map Sn

c
with its 2a-adjacent slice

sensitivity maps of the n-th coil. ACS(xn

0,adj) is the n-th coil Auto-Calibration
Signal (ACS)1 within all adjacent 2a+ 1 slices.

4 Experiments and Results

In this section, we present the experimental results of our proposed approach.
We showcase the reconstruction performance of our model across multiple pub-
licly available datasets, including Calgary-Campinas brain [39], CMRxRecon car-
diac [44], and fastMRI multi-coil knee [49] datasets. These datasets encompass a
diverse range of anatomies, contrasts, views, slices and motion states. For details
about the datasets, please refer to Supplementary Section A. For information on
the experimental setup for each dataset, see Supplementary Section C.

4.1 Calgary-Campinas Brain Results

Tab. 1 presents the quantitative results for ⇥5 and ⇥10 acceleration factors
on the Calgary-Campinas brain test set. Our method is compared with two
state-of-the-art (SOTA) methods: Recurrent-VarNet [46] and PromptMR [45].
Our proposed method significantly outperforms these benchmarks, demonstrat-
ing its outstanding performance. Qualitative results under ⇥10 acceleration are
shown in Fig. 5. Interestingly, while PromptMR achieves significantly higher
PSNR and SSIM values compared to Recurrent-VarNet, it exhibits less accurate
reconstruction in the area highlighted by the red box.

The highly undersampled k-space data makes the ill-posed reconstruction
challenging at aliasing artifacts removal. While leveraging large-scale training
data to learn the image priors can improve the reconstruction accuracy, we note
that Recurrent-VarNet learns a weaker prior, resulting in reconstructions that
appear blurry. Conversely, PromptMR adopts a strong but overly biased prior,
leading to sharper reconstructions but introducing incorrect structures. Our pro-
posed method, in contrast, successfully learns the appropriate prior, achieving
a reconstruction that closely mirrors the ground truth in terms of structural
accuracy.

4.2 CMRxRecon Cardiac Results

We compare our method with PromptMR, the winning method of the MIC-
CAI2023 CMRxRecon challenge, for ⇥4, ⇥8 and ⇥10 acceleration factors on the
CMRxRecon cardiac test set. In Tab. 2, our method exhibits superior perfor-
mance to PromptMR across different views and contrasts. Qualitative results
under ⇥10 acceleration are shown in Fig. 6. Our method reconstructs fine de-
tails of the interventricular septum, highlighted in the red box, with significantly
higher clarity than the PromptMR method, which is severely compromised by
aliasing artifacts.
1 It is usually a part of the acquired central k-space data.
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Table 1: Quantitative comparison of PSNR/SSIM (mean ± std) of different MRI
reconstruction methods on the Calgary-Campinas brain dataset under ⇥5 and ⇥10
acceleration. The best and second best performance are in red and blue colors, respec-
tively.

Method
Acc = 5⇥ Acc = 10⇥

PSNR(dB) SSIM(%) PSNR(dB) SSIM(%)

Zero-filled 25.27±1.31 73.75±3.93 24.35±1.21 69.04±3.67
Recurrent-Varnet [46] 36.27±1.72 94.37±1.33 33.27±2.12 91.47±2.23

PromptMR [45] 36.83±1.68 94.85±1.26 34.10±2.11 92.69±1.92

Ours 37.24±1.57 95.15±1.21 34.74±1.97 93.38±1.65

Fig. 5: The reconstruction results and SSIM error maps of various methods for the
Calgary-Campinas brain imaging under ⇥10 acceleration factor. The red boxes high-
light the differences in the recovery of white and gray matter structures.

4.3 FastMRI Knee Results

We evaluated the PSNR and SSIM at acceleration factors of ⇥4 and ⇥8 on the
fastMRI multi-coil knee test set. Our method is compared with several methods,
including SOTA methods HUMUS-Net-L [12] and PromptMR. In the table, ’PD’
and ’PDFS’ denote proton density-weighted images without and with fat sup-
pression, respectively. Tab. 3 demonstrates that our approach achieves the best
performance across all other competitive methods on this large-scale dataset.
Qualitative results under ⇥8 acceleration are shown in Fig. 7. Our approach
achieves a more detailed reconstruction of the meniscus region as shown in the
red box, closely approximating the ground truth. In this region, meniscus tears
were identified by radiologists from the fastMRI+ dataset [55]. The qualitative
comparison suggests that our approach is more robust in reconstructing abnor-
mal knee regions for highly accelerated acquisition.

5 Abalation study

In this section, we justify our design choices through ablation studies on the
brain and cardiac datasets.
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Table 2: Quantitative comparison of PSNR/SSIM (mean ± std) of different MRI
reconstruction methods on the CMRxRecon cardiac dataset under ⇥4, ⇥8 and ⇥10
acceleration. The best and second best performance are in red and blue colors, respec-
tively.

Acc Method

Cine Mapping

SAX LAX T1w T2w

PSNR(dB) SSIM(%) PSNR(dB) SSIM(%) PSNR(dB) SSIM(%) PSNR(dB) SSIM(%)

4⇥
Zero-filled 26.20±1.54 72.99±5.14 25.11±1.62 69.87±4.73 24.23±1.16 67.27±3.84 24.97±1.10 77.16±2.91

PromptMR [45] 45.78±1.89 98.78±0.43 45.58±1.72 98.72±0.37 46.49±2.23 98.93±0.57 42.02±1.93 98.05±0.72
Ours 46.26±1.76 98.87±0.34 46.13±1.70 98.83±0.34 47.45±2.13 99.09±0.42 42.68±1.84 98.25±0.59

8⇥
Zero-filled 25.18±1.67 70.21±5.87 24.34±1.66 67.67±5.80 23.41±1.25 64.12±4.43 24.21±1.12 74.84±3.07

PromptMR [45] 40.65±1.52 96.97±0.68 39.64±1.87 96.36±1.04 40.94±1.69 97.28±0.85 38.24±1.82 96.53±1.09
Ours 41.44±1.48 97.32±0.58 40.49±1.83 96.76±0.94 42.08±1.63 97.70±0.67 39.23±1.71 96.98±0.89

10⇥
Zero-filled 24.83±1.67 69.35±5.92 24.13±1.67 66.89±5.58 23.16±1.27 64.14±4.47 24.25±1.14 76.08±2.91

PromptMR [45] 39.18±1.50 96.15±0.80 38.28±1.62 95.60±1.07 38.99±1.58 96.61±0.99 37.21±1.76 96.22±1.16
Ours 39.99±1.49 96.58±0.72 39.13±1.66 96.05±0.99 40.37±1.58 97.19±0.79 38.22±1.70 96.70±0.96

Fig. 6: The reconstruction results and SSIM error maps of various methods for the CM-
RxRecon cardiac T1-weighted imaging under ⇥10 acceleration factor. The red boxes
highlight the differences in the recovery of the interventricular septum.

Table 3: Quantitative comparison of PSNR/SSIM (mean ± std) of different MRI
reconstruction methods on the fastMRI knee dataset under ⇥4 and ⇥8 acceleration.
The best and second best performance are in red and blue colors, respectively.

Method

Acc = 4⇥ Acc = 8⇥

PD PDFS PD PDFS

PSNR(dB) SSIM(%) PSNR(dB) SSIM(%) PSNR(dB) SSIM(%) PSNR(dB) SSIM(%)

Zero-filled 30.86±1.73 80.65±3.76 31.00±3.33 78.48±6.16 27.70±1.84 74.12±4.94 27.97±2.02 68.78±5.58
Unet [35] 37.27±1.76 92.11±2.72 37.07±2.47 88.03±5.04 35.41±2.14 90.36±3.13 34.84±1.59 83.71±5.04
i-RIM [33] 39.61±2.33 94.16±2.87 38.23±3.13 89.27±4.96 37.91±2.47 93.22±2.85 35.84±1.71 85.27±4.93

E2E-VarNet [40] 40.09±2.32 94.56±2.64 38.43±3.24 89.50±4.95 38.72±2.50 93.93±2.68 36.16±1.76 85.70±4.94
HUMUS-Net [12] - - - - 38.72±2.50 94.07±2.68 35.98±1.75 85.77±4.93

HUMUS-Net-L [12] - - - - 39.03±2.47 94.18±2.61 36.19±1.79 85.84±4.92
PromptMR [45] 40.58±2.59 94.87±2.75 38.59±3.33 89.75±4.94 39.48±2.54 94.51±2.54 36.42±1.79 86.10±4.93

Ours 40.85±2.74 95.00±2.84 38.71±3.37 89.85±4.92 40.09±2.58 94.90±2.45 36.49±1.88 86.29±4.95
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Fig. 7: The reconstruction results and SSIM error maps of various methods for the
fastMRI multi-coil knee proton density (PD) imaging under ⇥8 acceleration. The red
boxes highlight the differences in the recovery of the meniscus region. The red box in
the reference image was annotated by radiologists from the fastMRI+ dataset [55] to
indicate the knee abnormality of meniscus tears.

Table 4: Abalation of different input combinations of CNN on the Calgary-Campinas
brain dataset under ⇥10 acceleration.

Input Baseline - - - - - - Ours

xt X X X X X X X X
AHAxt X X X X
AHy X X X X
st X X X X

PSNR(dB) 35.76 +0.00 +0.01 +0.09 +0.08 +0.31 +0.36 +0.36
SSIM(%) 94.33 +0.00 �0.01 +0.06 +0.05 +0.25 +0.27 +0.28

5.1 Input Variations to CNN

We conducted an ablation study for different input combinations to CNN, to
validate the effectiveness of our proposed method. Results are shown in Tab. 4.
The baseline network in each iteration only accepts the output from the last
iteration xt as input, which is the setting for most unrolled models, such as
E2E-VartNet and PromptMR. Our proposed method takes additional input,
AHAxt, AHy and st, which outperforms the baseline by a large margin. More
specifically, adding AHAxt or AHy solely to the input has no impact on the
performance. Adding st can improve the performance, as it serves as additional
memory to track the progression of the reconstruction process. Adding AHAxt

together with AHy greatly improves the gains. We assume the reason is that
the residual connection of two terms into the network can provide soft data
consistency information to the model. Adding AHAxt together with st performs
the closest to our final design. It seems the missing of AHy has little impact, as
it is a constant value and its information may be compactly represented in the
st. This assumption is implied by the evidence that the result of adding AHy
together with st into the network does not perform better than adding st alone.
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Table 5: Quantitative comparison of PSNR/SSIM using different numbers of previous
stages’ outputs for multi-stage feature fusion on the Calgary-Campinas brain dataset
under ⇥10 acceleration.

Input # of previous iterations

0 1 5 9 11

PSNR(dB) 35.88 +0.02 +0.04 +0.04 +0.05

SSIM(%) 94.43 +0.02 +0.05 +0.06 +0.07

5.2 Multi-Stage Information Flow

In Tab. 5, we investigate the effect of incorporating different numbers of previous
iteration results into the current iteration for multi-stage information fusion. As
the number increases, the reconstruction performance increases gradually. This
implies the benefit of incorporating the information from previous iterations in
DUM-based MRI reconstruction.

5.3 Adjacent Sensitivity Map Estimation

In Tab. 6, we examine the impact of various strategies shown in Fig. 4 for sen-
sitivity map estimation on both reconstruction performance and memory con-
sumption. The ACS data input to the SME network is represented as a complex
tensor with shape (B, 2a+1, N, h, w), where 2a+1 represents the adjacent num-
ber, N denotes the number of coils of each slice and B indicates the batch size.
Here, the batch size is linearly related to the memory consumption. Strategy
A reshapes the tensor to a batch size of (2a + 1)BN and a channel size of 1
for coil-by-coil estimation. Strategy B concatenates the coils within each slice,
reducing the batch size to (2a + 1)B. Strategy C concatenates the same coils
from adjacent slices, decreasing the batch size to BN . Strategy D combines all
coils within a single batch. Note that only strategies A and C can be used for
data with variable numbers of coils. Our experiments demonstrate that Strat-
egy C, which utilizes adjacent information, not only shows the best performance
but also reduces memory consumption by a factor of 2a+ 1 compared to Strat-
egy A. Intriguingly, strategy B is found to be the least effective. Ideally, since
the coils within the same slice should be uncorrelated, this strategy should not
negatively impact performance. However, the noise that is coupled across coils
during acquisition may be amplified under this strategy, degrading the SME
performance.

In Tab. 7, we further explore the impact of different adjacent types on Strat-
egy C using the CMRxRecon cardiac datasets. These types include temporal
information in the cine LAX dataset, contrast information in the T1 mapping
dataset, and slice information in the cine SAX dataset. Strategy C shows con-
sistent improvement over Strategy A for adjacent types of time and contrast.
However, the result of the slice adjacency experiment deviates from our expec-
tations, as previously observed in the brain dataset in Tab. 6. This discrepancy
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Table 6: Comparison of different strategies for sensitivity map estimation on the
Calgary-Campinas brain dataset under ⇥10 acceleration. The "Batch" number is lin-
early related to memory consumption. "Flexibility" indicates the ability to accept data
with varying numbers of coils.

Strategy Batch Channel PSNR(dB)/SSIM(%) Flexibility

A (2a+ 1)BN 1 35.60/94.22 3

B (2a+ 1)B N 35.30/93.98 7

C BN 2a+ 1 35.88/94.43 3

D B (2a+ 1)N 35.76/94.32 7

Table 7: Quantitative comparison of PSNR(dB)/SSIM(%) of different sensitivity map
estimation strategies using different adjacent information types on the CMRxRecon
cardiac dataset under ⇥10 acceleration.

Strategy Adjacent type

Time Contrast Slice

A 41.67/97.35 42.62/98.15 42.75/97.58

C 41.94/97.54 42.77/98.22 42.53/97.54

is attributed to the considerable slice gap present in the cardiac dataset, which
is 4.0 mm compared to no slice gap in the brain dataset. This suggests that
adjacent reconstruction can be beneficial only when adjacent slices show high
correlations; otherwise, it might even detract from performance by introducing
confounding factors for the network.

6 Limitations

Like other deep unrolled models, our approach may exhibit limited generalization
to unseen sampling masks, modalities, and anatomies, and it may be suscepti-
ble to adversarial attacks. Hallucinations and artifacts may be observed when
the model is applied to highly undersampled k-space data (e.g., at acceleration
factors of 10), when trained on a limited amount of data, or when tested on
out-of-distribution datasets.

7 Conclusion

In this paper, we improve the deep unrolled model for multi-coil MRI reconstruc-
tion through informative gradient-based learning and memory-efficient sensitiv-
ity map estimation. Our proposed method achieves state-of-the-art performance
on several public MRI reconstruction benchmarks.
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