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Abstract. Quantization is among the most common strategies to accel-
erate neural networks (NNs) on terminal devices. We are interested in
increasing the robustness of Super Resolution (SR) networks to low-bit
quantization considering mathematical model of natural images. Natu-
ral images contain partially smooth areas with edges between them. The
number of pixels corresponding to edges is significantly smaller than the
overall number of pixels. As SR task could be considered as ill-posed
restoration of edges and texture, we propose to manually focus quan-
tized CNNs on high-frequency part of the input image thus hiding quan-
tization error in edges and texture providing visually appealing results.
We extract edges and texture using well-known edge detectors based
on finite-difference approximations of differential operators. To perform
inverse transformation we propose to use solver for partial differential
equations with regularization term that significantly increase solution
robustness to errors in operator domain. The proposed approach signif-
icantly outperforms regular quantization counterpart in the case of full
4-bit quantization, for example, we achieved +3.75 dB for EDSR x2 and
+3.67 dB for RFDN x2 on test part of DIV2K.

Keywords: quantization error redistribution, neural network quantiza-
tion, low-bit quantization, super resolution, differential operator, partial
differential equations

1 Introduction

Neural networks (NNs) achieve state-of-the-art results in different low-level vi-
sion tasks including super resolution (SR). The size of such networks typically
varies from several convolutional layers [9,27] to hundreds [18,20,33]. To achieve
new state-of-the-art results in SR, researchers usually either increase the capac-
ity of the network or design new types of NN architectures. In the recent decade,
with the evolution of mobile chips, the SR task is encountered not only on desk-
tops or servers, but also on edge devices with strict requirements on the latency
and power consumption.

There are different approaches to increase the efficiency of SR CNNs for
deployment on edge devices. These include pruning and knowledge distillation for
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architecture optimization, and quantization for improving both performance and
power consumption on edge devices. Quantization of neural networks is a general
approach for different architectures and is achieved by decreasing the bitwidth of
floating point (FP) weights and activations to integer ones. Integer computations
are faster and moreover require less memory read-write operations [6,25,31,32].

Integer representation of neural network weights and activations leads to a
smaller model capacity which makes task execution more challenging. Depending
on the task, low-bit quantization leads to different levels of quality drop. For
example, for high-level vision tasks such as image classification there exist binary
networks that can match the performance of FP models [8, 21, 34]. This implies
that the input-output relation does not necessarily require high bitwidth for
successful completion of the task. This can be attributed to the fact that essential
image features for classification may be potentially represented even with binary
features, i.e., such features describe whether a particular pattern exists in the
image or not. In contrast to high-level vision tasks, efficiently dealing with the SR
task becomes challenging when the intermediate activations are represented with
bitwidth lower than that of the input image, as pixel-level accuracy is required.
Internal feature maps of SR CNNs usually contain both smooth areas, edges and
textures (see Fig. 1). Step-like artifacts typically appear on smooth areas after
quantization, which can be hard for NN to distinguish from real edges.

(a) (b) (c) (d) (e) (f)

Fig. 1: FP and 4-bit quantized representation of input image (a) and (d), one channel
of the 1-st convolution (b) and (e) and one channel of the third convolution (c) and
(f), in trained SRCNN respectively.

Most recent advances in SR network quantization [13,14,26] consider the in-
fluence of quantization on the internal quantized feature maps without consider-
ing the essential properties of natural images and corresponding internal feature
maps. According to compressed sensing theory, natural images can be considered
as partially smooth areas divided by the first type discontinuities on edges. One
of the key assumptions in the compressed sensing is that the number of edges is
much smaller than the overall number of pixels. This assumption inspired us to
make an attempt to redistribute quantization error to a small number of edge
pixels as this should provide visually appealing results. Considering finite differ-
ence approximation kernels of the first and higher order derivatives, we expect
that we will achieve extremely sparse image representations for natural images.
These kernels are high-pass filters (e.g., Laplacian) and thus the quantization
error in such domains will only influence edges in the original image domain.
Based on several papers [28, 30], we finally assume that such a representation
can be sufficient to solve the SR task.

The main drawback of current solutions for low-bit quantization of SR net-
works is that the first and last convolutions usually remain FP. As first and last
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convolutions work with a spatial size comparable with the size of the original
image in general, they are extremely computationally expensive. Thus, making
SR network fully quantized will significantly reduce its inference time. In this
paper, we address the problem of preserving the quality of SR CNNs, while
being fully quantized in bitwidth lower than the original input image using a
partially-smooth image prior.

Overall, the contribution of this paper is three-fold:
1. We propose to redistribute quantization error using partially-smooth image

prior into minority of edge pixels using finite-difference approximations of
differential operators;

2. We achieve robust restoration of the image to the original domain from its
operator image by regularized partial differential equation solver;

3. The proposed pipeline is capable of full 4-bit quantization and achieve close
to FP performance for various SR networks.

2 Preliminaries
In this section, we provide a brief overview of uniform quantization and pecu-
liarities in CNN quantization.

2.1 Uniform Quantization

Quantization is a process of converting FP values into integer ones performed in
the following way:

xint = clip(⌊x
s
⌉+ z; 0, 2b − 1), (1)

where xint is an integer representation of FP value x, s is a scale factor, z is
an offset, b is the bitwidth of the integer representation. Operator ⌊⌉ denotes
rounding-to-nearest operator and clip() refers to the following function:

clip(x, a, b) =


x, a ≤ x ≤ b

a, x < a

b, x > b

. (2)

To perform equivalent calculations with integer representations, we need to move
back to FP values using the so-called dequantization step:

x ≈ x̂ = s(xint − z), (3)

where x̂ is an FP representation of the quantized value. So even the number
becomes FP it can take only 2b unique values. For more details on neural network
quantization we highly recommend the white paper [25].

2.2 Quantization Errors

Quantization may be viewed as projecting FP values onto a uniform grid of
integer values. There are two types of errors that follow from Eq. 3: rounding



4 D. Makhov et al.

and clipping errors (see Fig. 2). The former occurs due to the round-to-nearest
operation and the latter due to the clip operation. Clipping errors occur since
projecting a non-uniformly distributed tensor onto a uniform integer grid using
its minimum and maximum values leads to a sub-optimal scale. Therefore, usu-
ally we can sacrifice some outlier values to be clipped to increase the accuracy
for the majority of values. This usually happens as the distribution of weights
and activations in DNNs are non-uniform and sometimes skewed. For optimal
quantization of a neural network, we need to find an optimal trade-off between
the rounding and clipping errors so that the final quality is the best.

FP values, x

Quantized values, xint

Dequantized values, x̂

Rounding errorClipping error Clipping error

min max

intmin intmax

0

offset

0

Fig. 2: Different types of quantization errors after quantization and dequantization
steps.

To lower quantization errors for non-uniformly distributed data, methods
such as nonuniform quantization can be used. Nonuniform quantization tries to
make quantization error lower by projecting FP values onto a nonuniform grid,
thus making more accurate conversion for the majority of elements. Nonuniform
quantization can be implemented in two ways: using a nonuniform grid for input
data and a uniform grid for the output data [22], or using both nonuniform rep-
resentations for input and output [6,10,12,16,19]. The first one can be efficiently
implemented on the device using look-up-tables but it is still not supported by
the modern mass-market mobile chips. The latter cannot be implemented for
efficient inference on edge devices as it requires the decoding step before cal-
culation, e.g., matrix multiplication, that leads to a significant computational
overhead.

3 Related Works
Super-Resolution Neural Networks Super Resolution task takes its roots
from the compressed sensing theory that proves that it is possible to restore the
signal with sampling under the Nyquist frequency under several conditions. In
general, SR means that using a low resolution (LR) image we need to produce a
high resolution (HR) image restoring the details that were lost after some degra-
dation (downsampling, blurring, motion, etc.). First application of convolutional
NN to SR task was made by C. Dong and his colleagues in [9] outperforming
other methods at that moment. Further improvements in SR were made with
more and more computationally expensive CNNs. [18,33].

Neural Network Quantization Quantization of neural networks can be done
in two ways: using post-training quantization (PTQ) or quantization aware train-
ing (QAT). The former considers that we have only an FP model and some
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unlabeled data. This method is fast and provides close-to-FP results with sev-
eral techniques like AdaRound [23], Cross Layer Equalization [24], knowledge
distillation [5], etc. QAT method uses straight-through estimator [3] for approx-
imating the gradients of the round-to-nearest operator. This method requires
labeled data and training pipeline for application and achieves better results
than PTQ generally, but it is also usually time-consuming to make the quan-
tized model converge. CNN quantization unavoidably leads to a quality drop
of different amounts: the smaller bitwidth is used, the more significant is the
quality drop. Also, the quality drop depends on the task complexity, e.g. for
low-level vision tasks ternary and binary networks were proposed that reached
performance close to FP models [8,21,34]. In contrast, low-level vision tasks are
still challenging for low-bit quantization [13].
Quantized Super-Resolution Models Lightweight and efficient solutions
evolved in parallel to reduce the computational overhead while preserving the
performance. Mobile chips development also pushed researchers to find lightweight
and effective solutions starting from the simplest one [27] to the modern state-of-
the-art real time solutions [1,11,29]. Although these solutions are effective, they
still cannot be deployed on terminal devices for real applications without quanti-
zation. Numerous competitions in mobile SR proves great importance of porting
SR solutions to edge devices [7, 15, 17]. In these competitions, quantization is a
general way for reducing inference time but it also adds more challenges. There
are several papers dedicated to SR CNN quantization. In [14], authors proposed
to consider the channel-wise distribution of intermediate feature maps to per-
form quantization more precisely according to the probability density functions.
In [13], authors proposed to allocate appropriate bitwidth for different image re-
gions to reduce quantization error for internal feature maps. These methods are
beneficial for SR CNN quantization but the former requires significant overhead
and memory usage, while mixed precision computations in the latter are less
effective than equal bitwidth counterparts due to casting operations. Moreover,
in all aforementioned papers the first and last convolutions are not quantized,
which in turn does not allow to achieve the lower bound of inference time. In
this work, we focus on full quantization of SR networks including the first and
last layers into 4 bit with 8-bit input images to achieve significant acceleration
while preserving almost the same performance as FP models.

4 Motivation
Natural images comprise a class of 2D discrete signals with certain properties.
There are some empirical observations on natural images that we employ in this
paper. First, an image is a partially smooth 2D signal with a finite number of
discontinuities of the first kind. Second, the number of discontinuities is much
smaller than the total number of pixels. Using these facts we want to hide quan-
tization error into this small number of edge pixels, while lowering it for the
majority of other pixels. Overall, quantization error will stay the same but we
expect that "hiding" it in edges and texture will provide more appealing results.

To get edge pixels from the image, we can employ well-known filters for
edge detection, such as gradient and Laplacian. In the worst case, errors of SR
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networks in such a domain will affect only a small number of pixels on the
output image. As we consider application of finite-difference approximations for
differential operators (gradient and Laplacian are approximations of the first and
second order derivatives, respectively), we utilize solvers for partial differential
equations (PDEs) to restore the output of the network back to the original
domain. We investigated several types of solvers: based only on the boundary
pixels and its regularized version. With the latter we achieved impressive results
for full 4-bit quantization of different SR networks, which we describe in the next
sections.

To show the efficacy of the proposed approach let us consider a toy example
of smooth 8-bit image Fig. 3a that we will quantize into 4 bit. The 4 bit result
(Fig. 3b) suffers from rounding-to-nearest error, which causes step-like artifacts.
But if we quantize the Laplacian of the original image and then restore it back
using PDE solver, we will obtain the result shown in Fig. 3c. This toy example
proves that the Laplacian domain, in particular, with consequent reconstruction
is more robust to quantization errors.

(a) (b) (c)

Fig. 3: Quantization of original 8bit smooth image (a) to 4 bit (b) and restored image
from 4-bit Laplacian (c).

5 Proposed Approach
In this section, we present the proposed approach for application of differential
operators to the quantized SR NNs. First, we give the pipeline overview and
then the detailed description of its parts.

5.1 Pipeline Overview

In a general case, the application of quantized SR NNs is straightforward: an
input low-resolution (LR) image is passed through the quantized network, which
outputs the high-resolution (HR) image. The pipeline of the proposed method
is presented in Fig. 4 and consists of the following parts:
1. Differential Operator: An input image first passes through a differential

operator that extracts edges and texture from it.
2. Quantized SR NN: The obtained LR image in the operator domain passes

through the quantized SR NN to obtain an enhanced version of the image
in the operator domain.

3. PDE solver: A PDE solver is used to restore the obtained enhanced image
from the DO to the original domain. Dirichlet boundary conditions from the
initial LR image are used to guarantee a unique solution. The boundaries are
upsampled using a bilinear upsample since the input LR image has a smaller
size than the output image. As will be shown later, we utilize regularization
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Fig. 4: The proposed pipeline for quantized SR CNNs.

term to make the solver more robust to quantization errors in the operator
domain.

The key idea of the proposed approach is that such a sparse input representa-
tion allows the capacity of the network to be utilized only for a small amount of
information extracted from the whole image, which makes it easier to quantize.
However, the neural network is not capable to restore the image from its oper-
ator image by itself. Therefore, we utilize an additional module, a PDE solver,
which allows to reconstruct the enhanced image in the original domain from the
enhanced operator image (the network output) and initial conditions from an
input LR image. It is worth noting that the backbone of the original CNN is not
modified, all layers (including the first and the last) are uniformly quantized,
and only the differential operator and PDE solver blocks are added to it. In the
next sections, we describe each of these blocks in more detail.

5.2 Differential Operator

The first and higher order derivatives can be represented using finite difference
approximations for discrete signals (such as images) differentiation. Without loss
of the generality, let us consider a simple 1D case for the well-known Laplace
equation:

∇2f(x) = 0, (4)

where f(x) is a 1D twice differentiable real-valued function. In the Cartesian
coordinate system, this can be written in the following form:

∇2f(x) =
∂2f

∂x2 = 0. (5)

To find a unique solution to Laplace’s equation, we need to specify boundary con-
ditions. Considering central finite difference approximation of the second order
we can rewrite second order derivative in the following matrix form:

∂2f

∂x2 =


−1 2 −1 0 0 . . . 0 0 0
0 −1 2 −1 0 . . . 0 0 0
0 0 −1 2 −1 . . . 0 0 0
...

...
...

...
... . . .

...
...

...
0 0 0 0 0 . . . −1 2 −1

 ·


y1
y2
...
ym

 , (6)

where yi are discrete values of function f .
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In order to achieve efficient implementation on edge devices, instead of matrix
multiplication we utilize convolution with a 2D finite difference operator kernel
approximation in order to transform the input image into the operator domain.
Operator application can also be implemented via filtering in the frequency do-
main, but ordinary convolution requires less time for small kernel sizes. It is also
worth noting that the operator kernel can be easily made trainable since the
operator is applied to the input image via convolution.

5.3 PDE Solver

To perform the inverse transformation from the operator domain we utilize a
PDE solver. There are several ways how it can be implemented:

1. Using linear algebra to solve a system of linear equations;
2. Using Green’s function as a solution to a linear differential equation (similar

to inverse filtering);
3. Using a PDE solver with regularization.

We will not consider the first approach in this paper, as solving matrix equa-
tion 6 is not computationally efficient on terminal devices since this process is
iterative. The second approach is described in detail in the supplemental infor-
mation. The significant disadvantages of this approach, as we show in ablation
study, are its low robustness to errors occurring in the operator domain and zeros
in the denominator (zeros in Fourier coefficients of the operator). To overcome
the first problem, we use patch-wise processing with a large overlap relative to
the patch size, while for the second problem, we use a special case of Tikhonov
regularization by adding a small constant in the denominator. However, the
patch-wise processing with such a large overlap leads to a significant computa-
tional overhead which decreases the benefits of full 4-bit quantization.

To overcome the aforementioned issues, we regularize the PDE solver with
the points from the initial domain. This problem can be formulated as follows:

argmin
y

[
∥Ly − L̂y∥

2

2 + λ · ∥y − ŷ∥22
]
, (7)

where Ly is the operator image of image y we want to restore. L̂y is an estimate
of the operator image from the quantized SR network, ŷ is the estimate in
the initial domain. Parameter λ is a hyper-parameter that is responsible for
the trade-off between estimates in the initial and operator domains. By using
the Parseval’s theorem on preserving the L2-norm, we can obtain the following
analytical solution of this minimization problem:

F(f) =
F(ŷ) + λ · F(K) · F(L̂y)

1 + λ · |F(K)|2
, (8)

where (·) denotes the complex conjugate.
The regularized PDE solver is more computationally expensive than inverse

filtering but it is robust to errors in the boundary conditions and errors in the
operator domain. Moreover, the denominator is always positive if non-negative
λ is used, and therefore this solver is not ill-posed in contrast with the inverse
filtering formulation.
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6 Experiment Results

In this section, we provide results for different SR networks to show the benefits
of the proposed approach for low-bit quantization. We employ SRCNN, ESPCN,
EDSR, and RFDN to demonstrate the overarching benefit of our approach for
SR tasks under full low-bit quantization. In the ablation subsection, we compare
our approach with different solvers and check its robustness to different bitwidth.
In the main results subsection, we present results of the proposed method on
different SR architectures in comparison with regular LSQ+ [4] quantization.
Finally, we provide comparison with DAQ [14] and CADYQ [13] SOTA methods,
and show that our approach achieves current state-of-the-art results for full 4-bit
quantization on EDSR network. Generally, the suggested approach is orthogonal
to these methods and can be combined together.

6.1 Experimental Setup

For our experiments, we used the open-source code for SRCNN 1, ESPCN 2,
EDSR 3, RFDN 4 and used our method as a wrapper for each of these models. We
also found that using PyTorch bilinear upsample results in shifts in the resulting
images that do not allow to achieve optimal performance. To overcome this
issue, we used the ResizeRight package 5. For EDSR, we used mean subtraction
and addition outside the main pipeline, as mean RGB values were calculated for
DIV2K images in the original domain. All other training details (such as learning
rate, number of epochs, etc.) were used as is, please refer to the repositories
mentioned above. For our experiments we initialized kernels with: Dirac delta
(kernel that does not change the input image), sum of gradients, Laplacian,
sum of Sobel horizontal and vertical filters. We tried these filters both fixed and
trainable and due to space limitations only the best results are presented.

Finally, we measured theoretical complexity of the proposed approach and
other methods using BitOps [2]. BitOps for an arbitrary layer is calculated in
the following way:

BitOps = FLOPS · w_bit

32
· a_bit

32
,

where FLOPS is floating point operations, w_bit and a_bit are bitwidths of
weights and activations, respectively.

6.2 Ablation Study

Inverse Filtering vs. Regularized PDE Solver Our first attempts were
made using Inverse Filtering as a PDE solver, but this approach has the follow-
ing drawbacks. First, using operator kernels makes inverse filtering an ill-posed
1 https://github.com/yjn870/SRCNN-pytorch
2 https://github.com/yjn870/ESPCN-pytorch
3 https://github.com/sanghyun-son/EDSR-PyTorch
4 https://github.com/njulj/RFDN
5 https://github.com/assafshocher/ResizeRight

https://github.com/yjn870/SRCNN-pytorch
https://github.com/yjn870/ESPCN-pytorch
https://github.com/sanghyun-son/EDSR-PyTorch
https://github.com/njulj/RFDN
https://github.com/assafshocher/ResizeRight
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problem, so we added a small constant to the denominator to overcome this
(special case of Tikhonov regularization). Additionally, we faced with high in-
stability during the inference stage, as errors in the operator domain produced
errors in the original domain that were propagated throughout the whole image.
Therefore, for inverse filtering solver, we used a small trick by dividing the image
into small patches of size 64-by-64 with overlap of 16.

To overcome these drawbacks, we developed a regularized PDE solver (Eq. (8))
that has additional computational overhead but is no longer ill-posed allowing
to use trainable operator kernels and images of different size without patch-wise
processing. In Tab. 1, we present results on different NNs with inverse filtering
and regularized PDE solver. From the obtained results we can conclude that
the regularized PDE solver outperforms inverse filtering and does not have the
disadvantages mentioned above. The drawback of the regularized approach is
additional computational overhead, which is discussed in Sec. 6.5.
Table 1: Comparison between inverse filtering and regularized PDE solvers for SRCNN
x3 on different test sets (PSNR, dB / SSIM / LPIPS). Bold values denotes the best
results.

Test set IF PDE solver Reg. PDE Solver

Set5 32.27 / 0.952 / 0.157 32.65 / 0.956 / 0.143
Set14 28.62 / 0.893 / 0.267 28.86 / 0.897 / 0.249
Urban100 26.66 / 0.880 / 0.240 26.96 / 0.886 / 0.213
BSDS300 28.59 / 0.878 / 0.304 28.81 / 0.881 / 0.281

Robustness of the Proposed Approach to Different Bitwidth We checked
our approach on EDSR with scale x2 using different bitwidths ranging from 2
to 8 for both weights and activations. The PSNR curves for the proposed ap-
proach and regular LSQ+ quantization are shown in Fig. 5. For reference, we
also provide results for the FP model and bicubic upsampling. From this figure,
we can conclude that the proposed approach significantly outperforms regular
quantization for all bitwidths. Moreover, our method is still better than bicu-
bic upsampling even for quantization into full 2-bit quantization, while regular
quantization produces results worse than bicubic upsampling at this bitwidth.

6.3 Main Results

In Tab. 2 we present the best results achieved with the proposed method in FP
and quantization scenarios. We present results for fully quantized networks with
weights and activations quantized in 4-bits (denoted as W4A4). Visual effect of
the proposed approach is presented in Fig. 6. For more examples please refer to
supplemental materials. From visual and quantitative results we observe that the
proposed approach significantly improves SR network performance. We observe
that most problems with regular quantization pipeline occur on smooth areas,
while the proposed approach does not suffer from it. Moreover, details with
our approach are also improved as the network does not spend its capacity to
overcome false contours from quantization.
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Table 2: Results for different SR networks with full 4-bit quantization using regular
quantization pipeline and our method (PSNR, dB / SSIM).

CNN FP W4A4
Regular Regular Our method

SRCNN

x2

Set5 37.36/0.9842 34.23/0.9653 37.18/0.9836
Set14 32.34/0.9491 30.54/0.9243 32.12/0.9482

Urban100 29.45/0.9347 27.82/0.9074 29.14/0.9317
B100 33.09/0.9514 30.87/0.9225 32.94/0.9501

x3

Set5 31.33/0.9382 32.63/0.9550 32.76/0.9573
Set14 28.13/0.8759 28.91/0.8973 28.99/0.8989

Urban100 26.23/0.8652 27.02/0.8867 27.12/0.8882
B100 27.95/0.8568 28.82/0.8811 28.90/0.8833

x4

Set5 30.74/0.9575 29.73/0.9183 30.63/0.9348
Set14 27.53/0.8985 26.87/0.8421 27.36/0.8601

Urban100 24.41/0.8881 23.87/0.7919 24.27/0.8086
B100 27.68/0.8823 26.96/0.8221 27.60/0.8420

ESPCN x3

Set5 32.27/0.9519 30.05/0.9203 31.88/0.9462
Set14 28.72/0.8942 27.35/0.8607 28.54/0.8883

Urban100 26.58/0.8766 25.54/0.8480 26.53/0.8747
B100 28.63/0.8782 27.29/0.8423 28.48/0.8733

EDSR

x2

Set5 38.58/0.9879 34.75/0.9698 38.08/0.9852
Set14 33.77/0.9550 31.34/0.9372 33.37/0.9536

Urban100 31.99/0.9557 29.17/0.9309 31.14/0.9495
B100 34.01/0.9573 32.06/0.9411 33.74/0.9557

DIV2K 34.57/0.9711 30.23/0.9502 33.98/0.9687

x3

Set5 34.41/0.9668 32.18/0.9489 34.00/0.9641
Set14 30.37/0.9112 28.92/0.8906 30.05/0.9075

Urban100 29.31/0.9218 27.43/0.8931 28.73/0.9140
B100 29.63/0.8943 28.64/0.8752 29.43/0.8904

DIV2K 30.91/0.9389 28.39/0.9155 30.49/0.9332

x4

Set5 32.71/0.9554 31.00/0.9373 32.22/0.9519
Set14 29.05/0.8811 27.83/0.8618 28.75/0.8772

Urban100 26.04/0.8582 24.81/0.8261 25.62/0.8483
B100 28.48/0.8615 27.63/0.8418 28.27/0.8562

DIV2K 28.94/0.9071 27.10/0.8877 28.57/0.9018

RFDN x2

Set5 38.35/0.9861 34.72/0.9721 37.85/0.9846
Set14 33.54/0.9543 31.06/0.9380 33.15/0.9519

Urban100 31.55/0.9515 28.92/0.9302 30.83/0.9469
B100 33.84/0.9563 31.83/0.9411 33.57/0.9545

DIV2K 34.33/0.9699 30.09/0.9526 33.76/0.9674
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Fig. 5: PSNR for the proposed approach and regular quantization of EDSR x2 using
different bitwidths. Results for the FP model and bicubic upsampling are also shown
for reference.

Table 3: Comparison between DAQ, CADYQ, regular quantization and the proposed
method in case of full 4-bit quantization for EDSR x2 on Urban100 benchmark. *Please
note that the average feature quantization rate (FQR, see [13] for details) was 7.33 and
this value was also used for BOps estimation.

Method BOps, G Latency, ms PSNR SSIM

Regular 5.63 12.69 29.17 0.9309
DAQ 12.56 N/A 27.13 0.8103

CADYQ* 24.76 N/A 30.84 0.9132
Our 6.41 (6.01) 13.52 31.14 0.9495

6.4 Comparison with Other Methods

Additionally, we compare the proposed method with DAQ [14] and CADYQ [13]
(Tab. 3) for the case of full 4-bit quantization. It is worth noting that CADYQ
uses a set of bitwidths to allocate the appropriate number of bits for different
regions of the input image and internal feature maps. In case when we limit this
set to 4 bit only, the method becomes LSQ+ (denoted as Regular W4A4). From
these results, it can be seen that the proposed method outperforms the regular
approach and the considered SOTA methods. We adopted BitOps [2] as a mea-
sure of complexity as it is not hardware specific and allows to estimate the most
expensive computations (multiply-accumulate) with respect to the bitwidth of
corresponding operations. In our calculation we made BOps calculations as is,
not considering ways to accelerate them. For optimization, we can reuse F(K)
and use the symmetry property for real-valued signals. Moreover, terms λ ·F(K)
and 1 + λ · |F(K)|2 can be pre-computed once without further impact on the
inference time (please see updated BOPps with optimizations above in Tab. 3,
this value is provided in brackets). With such an optimization, BOps are sig-
nificantly reduced. Additionally we performed latency measurements on Nvidia
A10G GPU. We used the following setup: input image 512x512, float16 evalu-
ation of pre- and post-processing, w8a8 quantization for all convolutions with
TensorRT compilation. We have approximated w4a4 inference time based on
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(a) (b) (c) (d)

Fig. 6: Image examples for (a) SRCNN x3, (b) ESPCN x3, (c) EDSR x3, (d) RFDN
x2.
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Nvidia report on cutlass experimental w4a4 API, as it is currently not officially
supported in TensorRT 6.

6.5 Computational Complexity

Introducing additional parts into the pipeline unavoidably leads to the additional
computational overhead. Thus, we checked the BitOps for different networks with
and without proposed blocks (Fig. 4) for input image of size 512 by 512.

From theoretical calculations (Tab. 4) we can conclude that the proposed
method adds substantial computational overhead as operator and solver are
calculated in FP using Fast Fourier Transform. In order to neglect this overhead
on terminal device, it is possible to apply both operator and solver on CPU,
DSP or GPU while the quantized network could be inferenced on the NPU.

Table 4: Computational overhead in BitOps (G) for different SR networks using the
proposed approach.

Model Scale FP Regular W4A4 Regular W4A4 Our

SRCNN x2, x3, x4 14.99 0.23 0.26

ESPCN
x2 5.55 0.08 0.16
x3 5.93 0.09 0.26
x4 6.46 0.10 0.40

EDSR
x2 360.12 5.63 6.41
x3 410.71 6.42 7.50
x4 520.20 8.13 9.62

RFDN
x2 140.63 2.20 2.77
x3 142.33 2.22 3.09
x4 144.71 2.26 3.54

7 Conclusions

This paper is dedicated to the problem of full 4-bit quantization of SR neural net-
works. We utilize essential properties of natural images to overcome significant
performance degradation of low-bit quantization. We propose to redistribute the
quantization error by hiding it in edges and texture of the original image. To
extract this information we apply finite-difference approximation of differential
operators and for restoration from the operator domain we utilize the regularized
PDE solver. Our result on different SR networks show a significant improvement
in performance in comparison with regular quantization pipeline in the case of
full 4-bit quantization. According to the BitOps measurements we can conclude
that computational overhead is insignificant in comparison with full 4-bit quan-
tization acceleration.
6 https://developer.nvidia.com/blog/int4-for-ai-inference/

https://developer.nvidia.com/blog/int4-for-ai-inference/
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