
Supplementary Material for
Omni6DPose: A Benchmark and Model for
Universal 6D Object Pose Estimation and

Tracking

This supplementary material provides additional statistics of Omni6DPose,
visualization of SOPE dataset, the details of GenPose++ implementation, and
additional experiments and analysis.

A Additional Information of Omni6DPose

In this section, we provide additional statistical details about the Omni6DPose
dataset, showcasing its characteristics and diversity. Specifically, it includes the
statistics of full object categories, object symmetries, and materials. Addition-
ally, to demonstrate the annotation quality of the ROPE dataset, we visualize
the annotated poses of objects.

A.1 Statistics of Full Object Categories

Figure 1 illustrates the frequency of occurrence for all object categories within
the Omni6DPose dataset, demonstrating the diversity of object categories cov-
ered. This diversity poses new challenges for universal 6D object pose estima-
tion and is conducive to facilitating downstream applications, such as object
rearrangement [3] and robot manipulation [1].

A.2 Statistics of Object symmetries

In the domain of 6D object pose estimation, one of the principal challenges is mit-
igating the ambiguity issue arising from object symmetry. Omni6DPose includes
a spectrum of objects characterized by distinct symmetry attributes, broadly
classified into three categories: asymmetric objects such as cameras, continuously
symmetric objects exemplified by bottles, and discretely symmetric objects, typ-
ical examples being boxes. Further delineation within Omni6DPose segregates
discretely symmetric objects based on the count of peaks in the distribution of
the objects’ poses, categorized into Bimodal, 4-peak, 8-peak, and 24-peak clas-
sifications. The detailed statistical outcomes are illustrated in the left section of
Figure 2. This vast diversity of object symmetries compels the development of
new strategies and techniques for precise 6D object pose estimation.

A.3 Statistics of Object Materials

Objects in daily life are made from diverse materials, such as transparent glass
mugs and reflective knives. Precise 6D object pose estimation across different
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Fig. 1: Frequency of occurrence for all object categories within Omni6DPose.



Omni6DPose 3

Fig. 2: Statistics of object symmetries and materials within Omni6DPose. Inner rings
denote ROPE statistics and outer rings denote SOPE. The left chart categorizes
object symmetries into ’continuous’ for objects with continuous symmetry, ’unimodal’
for objects with no symmetry attributes, and ’bimodal’, ’4-peak’, ’8-peak’, and ’24-
peak’ for objects with respective counts of discrete symmetry attributes. The right
chart details object material distributions: transparent, specular, and diffuse.

materials is crucial for the application of pose estimation in real-world scenarios.
Omni6DPose, serving as a comprehensive large-scale 6D object pose dataset,
includes a diverse range of materials, categorized into three main types: Diffuse
objects, Transparent objects, and Specular objects. The distribution of each
material type within the ROPE and SOPE subsets of the dataset is detailed in
the right of Figure 2. This variety provides a significant dataset for research into
6D pose estimation of objects with challenging material properties.

A.4 Visualization of ROPE Annotation Quality

To demonstrate the quality of the annotations in the ROPE dataset, we visualize
the annotated poses of objects. Figure 3 displays the projected edges of anno-
tated CAD models overlaid onto the corresponding images. These visualizations
highlight the precision and accuracy of the pose annotations, underscoring the
reliability of our dataset for evaluation.

Fig. 3: ROPE annotation quality visualization.
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B GenPose++ Implementation Details

B.1 Training Details

In the training phases, both the ScoreNet and Energy models are subjected to
training with a batch size of 128, employing the Adam optimizer. The initial
learning rate is established at 10−3, subsequently decaying to 10−4 to foster
optimal convergence. Specifically, ScoreNet is trained for a total of 28 epochs,
whereas the Energy model undergoes 25 epochs of training.

B.2 Network Details

In this section, we detail the feature encoder of GenPose++, which processes
data from two modalities: RGB and pointcloud. For the RGB modality, we utilize
a frozen, pre-trained DINOv2 [2] to extract the semantic features. Specifically,
we begin by cropping the object region from the original image based on the
object mask and resizing this crop to 224 × 224 pixels. This resized region is
then passed through DINOv2 to produce a feature map of dimensions 16 × 16.
Each feature vector in this map is 384 elements long and represents a 14 × 14
patch from the original RGB image. To streamline the process, we employ the
‘ViT-S/14’ variant of DINOv2, which reduces the number of parameters and
enhances inference speed. For the pointcloud modality, the object’s point cloud is
extracted directly using the object mask. We then apply Farthest Point Sampling
(FPS) to sample 1024 points and extract global features using pointnet++ [4].
During the feature extraction process for the point cloud, the RGB features are
point-wise concatenated onto the corresponding points, integrating data from
both modalities to enrich the feature representation.

C Visualization of SOPE

We synthesize 475K frames for training by integrating context-aware mixed re-
ality with physics-based depth sensor simulation. To enhance the generalization
capability of SOPE, we systematically apply domain randomization during the
data generation process, specifically targeting variations in illumination and ob-
ject material properties. Considering the relatively lower instance numbers of
transparent and reflective objects among all types of objects, we increase their
occurrence probability in SOPE. Consequently, Figure 4 exhibits selected exam-
ples from the Synthetic Objects in SOPE, showcasing the diversity and realism
of the simulated dataset.

D Additional Experiments and Results

In this section, we analyze the necessity of physics-based deep simulation and the
distance in feature space between context-aware mixed reality generated RGB
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Fig. 4: SOPE dataset visualization. In the figure, bounding boxes are colored ac-
cording to the coordinates in the object’s coordinate system.
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Fig. 5: Visualization of structured-light depth sensor noise on transparent and specular
areas. The visualization presents the discrepancy between the ground truth point cloud
(blue) and the captured point cloud (red) by the depth sensor. The examples include
a transparent mug, a transparent vase, and a specular knife.

images and real images. This elucidates why the SOPE dataset enhances sim-
to-real generalization capabilities. Additionally, to demonstrate the robustness
of our method to mask predictions, we present the performance of our pose
estimation method using SAM segmentation results.

D.1 Physical-based Depth Sensor Simulation.

Structured light-based depth sensors typically introduce noise into the captured
depth images, which is particularly pronounced in regions with transparent and
reflective objects. This results in a considerable sim-to-real gap when training
on perfect synthetic point clouds. Our ablation experiments, as discussed in
the main manuscripts, have already established that physics-based depth sensor
simulations can significantly bridge the sim-to-real gap. To more vividly demon-
strate the divergence between the point clouds captured by the depth sensor
and the ideal synthetic ones, Figure 5 shows the depth noise in the transparent
and reflective regions from a subset of the ROPE dataset. These visualizations
clearly articulate the necessity of physics-based depth sensor simulation.
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D.2 Context-Aware Mixed Reality RGB.

Previous synthetic datasets employ rasterization to integrate manually created
object models into a real scene, an approach that falls short in terms of overall
image fidelity and the realism of individual objects. In contrast, our method

Fig. 6: Visualization of the features of RGB images ex-
tracted by DINOv2, reduced to 2D plane using t-SNE.

leverages ray-tracing and
real scanned objects to
produce highly realistic
imagery. As noted in
the main manuscript, the
inclusion of RGB in-
formation markedly en-
hances performance. To
delve deeper into this,
in Figure 6, we show-
case the comparison of
features extracted using
DINOv2 from both syn-
thetic and real RGB images. It demonstrates that the features within the syn-
thetic data set significantly overlap with those in the real data, which bridges
the semantic sim-to-real gap.

Table 1: Ablation study of object segmentation mask.

Mask IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

GT 39.0 19.1 2.0 10.0 15.1 19.5 29.4
SAM 38.7 18.9 1.9 10.3 15.6 19.5 29.8

D.3 Performance with SAM Segmentation Results.

To demonstrate the robustness of our method to mask predictions, we present
the performance of our pose estimation method using SAM segmentation results.
The SAM segmentation model generates masks that may not always align per-
fectly with the ground truth. However, as shown in Table 1 our method maintains
high accuracy in pose estimation despite these variations.
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