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Abstract. 6D object pose estimation is crucial in the field of computer
vision. However, it suffers from a significant lack of large-scale and di-
verse datasets, impeding comprehensive model evaluation and curtailing
downstream applications. To address these issues, this paper introduces
Omni6DPose, a substantial benchmark featured by its diversity in ob-
ject categories, large scale, and variety in object materials. Omni6DPose
is divided into three main components: ROPE (Real 6D Object Pose Es-
timation Dataset), which includes 332K images annotated with over 1.5M
annotations across 581 instances in 149 categories; SOPE(Simulated
6D Object Pose Estimation Dataset), a simulated training set created
by mixed reality and physics-based depth simulation; and PAM(Pose
Aligned 3D Models), the manually aligned real scanned objects used
in ROPE and SOPE. Omni6DPose is inherently challenging due to the
substantial variations and ambiguities. To address this issue, we intro-
duce GenPose++, an enhanced version of the SOTA category-level 6D
object pose estimation framework, incorporating two pivotal improve-
ments: Semantic-aware feature extraction and Clustering-based aggrega-
tion. Moreover, we provide a comprehensive benchmarking analysis to
evaluate the performance of previous methods on this new large-scale
dataset in the realms of 6D object pose estimation and pose tracking.
Keywords: Benchmark · object pose estimation · object pose tracking

1 Introduction
6D object pose estimation [16,28,45] and pose tracking [15,21] from single images
is an essential task in computer vision, holding immense potential for applica-
tions in robotics [1] and augmented reality/virtual reality (AR/VR) [19]. Over
recent decades, the domain has experienced significant advancements, primarily
dominated by data-driven learning approaches. Analogous to the pivotal role of
data in learning-based 2D foundation tasks, high-quality, comprehensive datasets
are paramount in the context of 6D object pose estimation and tracking.
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Fig. 1: We introduce Omni6DPose for universal 6D object pose estimation and track-
ing, which comprises three key components: (1) ROPE (right), a large-scale real-world
dataset for evaluation. (2) SOPE (left), a vast synthetic dataset generated through
mixed reality and physics-based simulation for training. (3) PAM (center), a collection
of pose-aligned 3D object models. Omni6DPose is featured by its diversity in object
categories, large scale, and variety in object materials.

Today 6D object pose estimation is studied under two lenses: instance-level
and category-level. In instance-level settings, datasets such as Linemod [10],
YCB-Video [36], and T-LESS [11] have gained widespread acceptance as bench-
marks. These datasets are distinguished by their focus on detailed, individual
object instances, thereby enabling algorithms to precisely learn and predict the
poses of specific items. On the other hand, category-level pose estimation em-
phasizes generalization across different items within a particular object category.
The NOCS [28] dataset stands out as the most widely used in the category-level
object pose estimation field, providing a simulated dataset for training and a
small-scale real-world dataset for evaluation. Despite their contributions to ad-
vancing the field, these datasets present limitations due to their small scale in
terms of instances or categories. This results in two significant challenges:

1. It hampers comprehensive evaluation of different models’ performance, lim-
iting the development of research in this field.

2. It restricts the applicability of research findings across diverse domains, due
to the limited variety of object instances or categories represented.

To address the aforementioned challenges and drive advancements in this
field, this paper introduces Omni6DPose, a universal 6D object pose estima-
tion dataset featured by its diversity in object categories, large scale, and variety
in object materials. Omni6DPose is segmented into three principal components:
(1) ROPE (Real 6D Object Pose Estimation Dataset), which encompasses 332K
images annotated with over 1.5M annotations across 581 instances in 149 cat-
egories; (2) SOPE (Simulated 6D Object Pose Estimation Dataset), compris-
ing 475K images generated in a mixed reality setting with depth simulation,
furnished with over 5M annotations spanning 4162 instances in the same 149
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Fig. 2: ROPE dataset visualization. In the figure, bounding boxes are colored
according to the coordinates in the object’s coordinate system.

categories. The mixed reality bridges the semantic sim2real gap, while the depth
sensor simulation closes the geometric sim2real gap; (3) PAM(Pose Aligned 3D
Models), the manually aligned, real scanned objects utilized in both ROPE and
SOPE, enabling the generation of diverse downstream task data.

Omni6DPose poses inherent challenges due to its considerable variations,
diverse materials, and inherent ambiguities, which reflect the complexities en-
countered in real-world applications. Figure 2 illustrates some examples from
ROPE. To tackle these issues, we introduce GenPose++, which incorporates
GenPose [43] with two pivotal improvements: Semantic-aware feature extrac-
tion and Clustering-based aggregation, tailored specifically to the nuances of the
Omni6DPose in question. Furthermore, as a Universal 6D object pose estimation
dataset, this paper also offers a comprehensive benchmarking analysis to assess
the performance of existing methods on category-level 6D object pose estimation
and pose tracking. We summarize our contributions as follows:

1. We present Omni6DPose, a comprehensive 6D object pose estimation dataset
with extensive categories, instance diversity, and material variety.

2. We propose a real data collection pipeline and a simulation framework for
generating synthetic data with low semantic and geometry sim2real gaps.

3. We introduce GenPose++ for category-level 6D object pose estimation
and tracking, demonstrating SOTA performance on Omni6DPose.

2 Related work
For 6D object pose estimation, there are two main branches: instance-level and
category-level. Instance-level estimation is tested on seen objects or on unseen
objects with reference, while category-level estimation is tested on unseen in-
stances of known categories without CAD models. In this section, we review and
compare existing datasets to our large-scale category-level dataset and review
relevant algorithms for category-level pose estimation and tracking.

2.1 6D Object Pose Estimation Datasets

Following the outlined branches of 6D object pose estimation, we have reviewed
datasets corresponding to both instance-level and category-level 6D object pose
estimation. A comparative analysis of these datasets is provided in Table 1.
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Table 1: This table compares datasets for 6D object pose estimation, focusing on
object category count, reality of the data, data modalities (RGB, Depth, IR), and object
attributes such as quantity, CAD model availability, and inclusion of transparent and
specular objects. It also details video characteristics by number and marker presence,
along with image and annotation counts. ‘Wild6D∗’ refers specifically to the test split
of the Wild6D dataset, as the training data does not provide annotations. The symbol
‘-’ indicates the absence of a particular feature within the dataset.

Dataset Cat. Real Modality Object Marker-free Vid. Img. Anno.
RGB Depth IR Num. CAD Trans. Spec.

CAMERA [28] 6 ✗ ✓ ✓ ✗ 1085 ✓ ✗ ✗ ✓ - 300K 4M
SOPE(Ours) 149 ✗ ✓ ✓ ✓ 4162 ✓ ✓ ✓ ✓ - 475K 5M

YCB-Video [36] - ✓ ✓ ✓ ✗ 21 ✓ ✗ ✗ ✓ 92 133K 598K
T-LESS [11] - ✓ ✓ ✓ ✗ 30 ✓ ✗ ✗ ✗ 20 48K 48K
Linemod [10] - ✓ ✓ ✓ ✗ 15 ✓ ✗ ✗ ✗ - 18K 15K

StereoOBJ-1M [17] - ✓ ✓ ✗ ✗ 18 ✓ ✓ ✓ ✗ 182 393K 1.5M

REAL275 [28] 6 ✓ ✓ ✓ ✗ 42 ✓ ✗ ✗ ✗ 18 8K 35K
PhoCaL [30] 8 ✓ ✓ ✓ ✗ 60 ✓ ✓ ✓ ✓ 24 3.9K 91K

HouseCat6D [12] 10 ✓ ✓ ✓ ✗ 194 ✓ ✓ ✓ ✓ 41 23.5K 160K
Wild6D∗ [9] 5 ✓ ✓ ✓ ✗ 162 ✗ (✓) ✗ ✓ 486 10K 10K
PACE [41] 44 ✓ ✓ ✓ ✗ 576 ✓ ✗ ✗ ✓ 300 55K 258K

ROPE(Ours) 149 ✓ ✓ ✓ ✓ 581 ✓ ✓ ✓ ✓ 363 332K 1.5M

Instance-level 6D object pose estimation dataset. LineMod [10] is one of
the most used datasets, providing non-temporal RGB-D images and ground truth
pose annotations. YCB-Video [36] provides RGB-D videos and annotations, en-
abling pose-tracking approaches. T-LESS [11] features texture-less objects with
symmetries and mutual similarities. StereoOBJ-1M [17] achieves a leap in dataset
scale and features transparent and reflective objects. While these datasets are
extensive in terms of image and annotation count, they are limited in the diver-
sity of instances they cover. For example, StereoOBJ-1M comprises 339K frames
and 1.5M annotations, yet it includes only 18 unique object instances.

Category-level 6D object pose estimation dataset. NOCS [28] provides
the first benchmark in category-level pose estimation, while Wild6D [9] ad-
dresses the scalability issue of datasets by leveraging unlabeled and synthetic
data. PhoCal [30] focuses on photometrically challenging objects and House-
Cat6D [12] offers diverse scenes, viewpoints, and grasping annotations. However,
these datasets cover only a limited number of categories, even the most extensive
dataset, HouseCat6D, includes merely ten categories. PACE [41], a concurrent
work, focusing on object pose estimation in complex scenes. In contrast, our
datasets, SOPE and ROPE, set new benchmarks by offering the widest range
of categories and featuring objects with diverse materials, thereby enhancing
dataset diversity and realism for pose estimation research.

2.2 6D Object Pose Estimation and Tracking Algorithm

Category-leval 6D object pose estimation. Category-level 6D object pose
estimation [28,39,40] aims to estimate unseen instance poses within the same cat-
egory. NOCS [28] introduces a normalized object coordinate space for pose pre-
diction without CAD models, while SPD [29] and SGPA [3] utilize category-level
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priors for enhanced estimation. HS-Pose [44] extends 3D-GC [14] for improved
feature extraction from point clouds. IST-Net [16] transforms features between
camera and world spaces implicitly, without relying on 3D priors, surpassing
previous methods. However, these techniques, mainly regression-based, require
ad-hoc designs for symmetric objects. GenPose [43] addresses it by generatively
modeling the pose distribution, eliminating the need for symmetry considera-
tions. Yet, GenPose neglects RGB semantic information, which is increasingly
vital as object category scales grow. Additionally, its energy-based aggregation
algorithm fails with discontinuous multimodal distributions. We introduce Gen-
Pose++, which incorporates a 2D foundation model to leverage RGB semantics,
improving generalization, and introduces an aggregation module to handle dis-
crete multimodal distributions, addressing the limitations of GenPose.

6D object pose tracking. This paper is situated within the domain of category-
level 6D object pose tracking and model-free object tracking. BundleTrack [31]
pioneers model-free tracking by leveraging multi-view feature detection for track-
ing unseen objects without 3D models. CAPTRA [32] enhances articulated pose
tracking through recursive updates for better temporal consistency. CATRE [18]
aligns partially observed point clouds to abstract shape priors for relative trans-
formations and pose estimation. GenPose, adopting a generative approach, effec-
tively addresses the challenge of pose ambiguities in symmetric objects. Together,
these approaches underscore the evolving landscape of object pose tracking, high-
lighting both the progress and the diversity of strategies being explored.

3 Omni6DPose Dataset
This paper introduces a rich variety of object categories, a large-scale, and ma-
terially diverse dataset for real 6D object pose estimation, named ROPE. And,
a simulated dataset, SOPE, synthesizing with mixed reality and featuring depth
simulation, is provided for training. Section 3.1 will discuss the collection and
alignment of 3D objects. Section 3.2 will cover the acquisition and labeling of
the ROPE dataset. Section 3.3 will explain the generation of the SOPE dataset.

3.1 3D Object Collection and Alignment

Universal 6D object pose estimation relies on a comprehensive set of objects. We
selected 149 categories of everyday objects, all reconstructed with high-precision
scanners, and categorized them into two sets: SOPE for simulated data and
ROPE for real-world scenes. SOPE primarily includes objects from sources like
OmniObject3D [35], PhoCal [30], and GoogleScan [7], alongside a subset from
our scans, totaling 5,000 instances. ROPE consists of 580 instances we recon-
structed using industrial scanners. Importantly, while most SOPE objects are
from public datasets, manual category-level pose alignment is necessary. For
object reconstruction, as shown in Figure 3, we use two professional scanners,
EinScan H27 and Revopoint POP 3 8 for objects in different scales. The scan-
7 https://www.einscan.com/
8 https://www.revopoint3d.com/

https://www.einscan.com/
https://www.revopoint3d.com/
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Fig. 3: ROPE dataset collection and annotation. (1) Object scanning, where high-
precision industrial scanners are used to acquire the CAD models of objects; (2) Ob-
ject canonicalization, involving the alignment of each object category to the canonical
space; (3) Video capture, capturing video sequences in varied scenarios with a depth
camera; and (4) Pose annotation, calculating camera poses through Structure from
Motion (SFM), further utilizing Farthest Point Sampling (FPS) to select keyframes
for keypoint annotation, and performing bundle adjustment to derive initial object
pose values, which are then manually refined to obtain more precise annotations.

ning time depends on object features: it took about 15 minutes for small, sim-
ple, Lambertian items like a mouse, and up to an hour for complex, large, or
non-Lambertian items like a transparent mug. Finally, we constructed a special-
ized annotation tool for manually aligning objects in the same category to the
category-level canonical space, with each alignment taking roughly one minute.

3.2 ROPE Acquisition and Annotation

The ROPE dataset was systematically acquired utilizing the RealSense D415
imaging device, encompassing scenarios with 2 to 6 distinct objects and video
sequences extending from 762 to 1,349 frames. The integrity and utility of the
dataset are underpinned by the precision of object pose annotations, which
present notable challenges, chiefly:

1. Derivation of relative camera poses, denoted as Tc = {(Ri, ti)}ni=1, where
each pair (Ri, ti) ∈ SE(3), signifying the transformation from the camera
space to the world space for the ith frame, with n symbolizing the aggregate
frame count within the video sequence.

2. Procurement of high-accuracy object poses, represented as To = {(R, t)},
where the pair (R, t) ∈ SE(3), delineating the transformation from the object
space the camera space for any selected frame.

With Tc and To known, it is possible to automate the generation of all anno-
tations within the dataset. Addressing these challenges, we propose a marker-free
annotation system. Previous datasets for calculating relative camera pose rely on
markers, like NOCS [28], or external robot arms for indirect calculation, such as
PhoCal [30], limiting scene diversity. As shown in Figure 3, to enable marker-free
annotation in open scenes, we consider it a structure-from-motion (SfM) prob-
lem, utilizing intrinsic scene features to optimize camera poses Tc using bundle
adjustment techniques. This approach aims to solve the optimization problem:



Omni6DPose 7

Spatially context-aware 
mixed reality

Aligned objects
…

Captured scenes(RGBD)
…

Illuminations 
…

Object materials 
… Physical-based depth 

sensor simulation

Assets for data generation Physical-based simulation Simulated data

RGB Mask Pose(NOCS)

IR-left IR-right Simulated depth

Stereo
matching

RGB gap

Geometry gap

Fig. 4: SOPE synthesis, utilizing mixed reality to bridge the RGB sim2real gap and
physical-based depth sensor simulation to minimize the geometric sim2real gap.

min
Tc

n∑
i=1

∑
j∈Pi

∥π(RiXj + ti)− xij∥2 (1)

where π denotes the camera projection function, Xj represents the 3D points
in the world space, and xij corresponds to the 2D projection of Xj in the ith

camera frame, with Pi being the set of point correspondences in frame i.
For object pose To annotations, previous methods consider only a single

frame, leading to inaccuracies due to the lack of multi-viewpoint constraints.
To overcome this, we introduce a two-stage object pose annotation process: in
the first stage, keyframes are sampled from SfM results using Farthest Point
Sampling (FPS), and 2D-3D keypoint pairs on these keyframes are annotated,
providing initial object pose by minimizing the reprojection error:

min
R,t

∑
k∈K

∥π(RXk + t)− xk∥2 (2)

where Xk are 3D keypoints of object, xk are corresponding 2D annotations
in the image, and K is the set of all keypoint correspondences. The initial poses
are manually fine-tuned based on the object’s projection across all keyframes.

3.3 SOPE Synthesis

ROPE represents a comprehensive benchmark in category-level object pose esti-
mation by scaling up the diversity and number of object categories to unprece-
dented levels, encompassing a wide range of materials. This diversity presents
new challenges for network training data due to the higher demands on the
dataset’s scale and diversity. Collecting a larger real-world dataset would be
prohibitively expensive and unlikely to ensure sufficient diversity.

To bridge the sim2real gap, which is pronounced when using synthetic data,
either in RGB or geometry, this paper proposes a novel method based on mixed
reality with depth simulation for synthetic data generation. Specifically, as demon-
strated in Figure 4, we employ mixed reality [28] techniques to generate RGB
data, thereby reducing the RGB sim2real gap. In parallel, we simulate the mecha-
nism of structured light depth sensors within blender [6]. This involves rendering
infrared (IR) images and applying stereo matching to produce synthetic depth
maps, effectively narrowing the geometry’s sim2real gap.
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Fig. 5: Omni6DPose statistics, showcasing the dataset distribution. Left: Category
distribution, highlighting 149 categories and diverse materials. Right: Object size dis-
tribution across 5000 objects, illustrating diversity in shapes.

During data generation, we implement domain randomization for illumina-
tion and object materials to further enhance the dataset’s diversity. All the
background images are sourced from public datasets, including 19,658 images
from MatterPort3D [2], 2,572 from ScanNet++ [38], and 540 from IKEA [28].
To the best of our knowledge, this is the first simulated dataset that uses a
context-aware mixed reality approach combined with physical-based depth sen-
sor simulation for object pose estimation tasks.

3.4 Dataset Statistics

Object Category Statistics The comprehensive distribution of object cate-
gory and size are both demonstrated in Figure 5. Most of the categories possess
≥ 25K pose annotations in the SOPE dataset, providing sufficient training op-
portunities. Categories containing objects with diverse and challenging material
options (e.g., transparent or specular materials) are equipped with apparently
more data generation, such as dishes, cups, bottles, bowls, mugs, etc.

Object Size Statistics As shown in Figure 5, the objects in our dataset span
a wide range of sizes. The majority of the objects are approximately 0.1 meters
in length along the diagonal of their bounding boxes, with the largest objects
exceeding 1 meter.

4 Category-level 6D Pose Estimation Method

Given the Omni6DPose, one naturally ponders the optimal technical approach
for large-scale category-level pose estimation. The recently introduced state-
of-the-art category-level 6D pose estimation technique, GenPose [43], offers a
promising avenue by employing a diffusion-based probabilistic method [23, 24].
Moreover, the diffusion model has demonstrated remarkable efficacy across var-
ious high-dimensional domains with extensive training data [5, 25, 34, 42]. Ex-
panding on this groundwork, our study delves further into the probabilistic
approach, presenting an enhanced iteration of GenPose, named GenPose++.
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Fig. 6: Overview of GenPose++. We employ segmented point clouds and cropped
RGB images as inputs. PointNet++ extracts geometric features, while DINO v2, a
pre-trained 2D foundation model, extracts semantic features. These features are fused
to condition a diffusion model, which generates object pose candidates and their cor-
responding energy. Finally, clustering is applied to address aggregation issues in the
multimodal distribution of poses for objects with non-continuous symmetry, such as
boxes, effectively resolving the pose estimation challenge.

GenPose++ integrates two crucial enhancements: Semantic-aware feature ex-
traction (see Fig.6 (a)) and Clustering-based aggregation (as shown in Fig.6
(c)). The subsequent sections will detail the three primary stages of the Gen-
Pose++ pipeline. Moreover, given the estimated 6D pose, GenPose++ provide
a additional regression network to predict the 3D scale of the object.

4.1 Training Semantic-aware Score and Energy Networks

The learning agent is trained on our paired dataset D = {(pk, Ok, Ik)}nk=1, where
pk ∈ SE(3), Ok ∈ R3×N , and Ik ∈ R3×H×W denote a 6D pose, a partially
observed 3D point cloud with N points, and a cropped RGB image with H ×W
resolution, respectively. Given an unseen object with point cloud O∗ and RGB
image I∗, the goal is to recover the corresponding ground-truth pose p∗.

Following GenPose, we initially train a score network Φθ : R|P|×R1×R3×N×
R3×H×W → R|P| and an energy network Ψϕ : R|P|×R1×R3×N×R3×H×W → R1

from the dataset D using the denoising score-matching objective [26]:

Et∼U(ϵ,1)

{
λ(t)E p(0)∼pdata(p(0)|O,I),

p(t)∼N(p(t);p(0),σ2(t)I)

[∥∥∥∥s(p(t), t|O, I)− p(0)− p(t)

σ(t)2

∥∥∥∥2
2

]}
(3)

The training loss of the score and energy network can be obtained by replacing
s(p(t), t|O, I) in Eq. 3 with Φθ(p(t), t|O, I) and ∇pΨ

∗
ϕ(p(t), t|O, I), respectively.

Unlike GenPose, our score and energy network are semantic-aware, as both
networks are conditioned on an RGB image to incorporate semantic cues for
pose estimation. To fuse the features extracted from the image and point cloud,
we encode the RGB image img and point cloud obj using the pre-trained fea-
ture extractors from DINOv2 [20] and PointNet++ [22], respectively. Then, we
concatenate these features together in a pointwise manner similar to [27].
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4.2 Candidates Generation and Outlier Removal

Following GenPose, we subsequently sample pose candidates {p̂i}Ki=1 by solving
the following Probability Flow (PF) ODE [24] constructed by the score network
Φθ from t = 1 to t = ϵ:

dp

dt
= −σ(t)σ̇(t)Φθ(p(t), t|O, I) (4)

where p(1) ∼ N (0, σ2
maxI), σ(t) = σmin(

σmax
σmin

)t, σmin = 0.01 and σmax = 50.
To remove the outliers in candidates, we sort the candidates into a sequence

p̂τ1 ≻ p̂τ2 ... ≻ p̂τK where:

p̂τi ≻ p̂τj ⇐⇒ Ψϕ(p̂τi , ϵ|O) > Ψϕ(p̂τj , ϵ|O) (5)

Then, we filter out the last 1 − δ% candidates and obtain p̂τ1 ≻ p̂τ2 ... ≻ p̂τM
where δ = 40% is a hyper parameter and M = ⌊δ ·K⌋.

4.3 Clustering-based Aggregation
In this section, we aggregate the remaining candidates {p̂τi = (T̂τi , R̂τi)}Mi=1

to obtain the final results. GenPose achieves this by simply mean-pooling the
filtered candidates. However, this strategy will encounter a severe mean-mode
issue when the object possesses discrete symmetrical properties. As illustrated in
Fig. 6, a ping pong paddle has two symmetric ground truth poses (modes). Since
the score network has encountered both modes during training, an optimally
trained score network will likely output candidates around both modes. Simply
mean-pooling these candidates will yield the average of the two modes, known
as the ‘mean mode’, which will deviate from both modes.

To mitigate this issue, we introduce a clustering-based aggregation mecha-
nism. We employ DBSCAN [8] to cluster the candidates. It identify dense regions
in the data space, forming clusters based on the density of data points and ef-
fectively separating noise from meaningful patterns, without the need to specify
the number of clusters. This is achieved through dynamic determination of clus-
ter quantities based on distance threshold (ε) and density threshold (MinPts).
For instance, in our empirical setting, we set ε ≈ 0.45rad and MinPts = 5. After
clustering the candidates, we select the cluster with the largest number of objects
and get the mean-pooling result as the final estimation following GenPose.

5 Experiments
5.1 Category-Level 6D Object Pose Estimation

Metric In prior studies, metrics such as the mean average precision (mAP) for
3D bounding box IoU and the mean average precision (mAP) for objects with
translation errors less than m cm and rotation errors less than n◦ have been
commonly used [28]. This evaluation typically involves two steps: instance-level
object segmentation and pose estimation from these detections. However, these
metrics are influenced by the detection model’s performance. To focus solely on
evaluating the precision of pose estimation, we assume ground truth instance
segmentation is known and propose the following two metrics:
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Table 2: Quantitative comparison of category-level pose estimation on
ROPE. ↑ represents a higher value indicating better performance, while ↓ represents
a lower value indicating better performance. Prior-free indicates whether the method
requires category prior. ‘-’ indicates that GenPose does not predict the object scale.

Method Input Prior-free AUC ↑ VUS ↑

IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Deterministic

NOCS [28] RGBD ✓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SGPA [3] RGBD ✗ 10.5 2.0 0.0 4.3 6.7 9.3 15.0

IST-Net [16] RGBD ✓ 28.7 10.6 0.5 2.0 3.4 5.3 8.8
HS-Pose [44] D ✓ 31.6 13.6 1.1 3.5 5.3 8.4 12.7

Probabilistic GenPose [43] D ✓ - - - 6.6 9.6 13.1 19.3
GenPose++(Ours) RGBD ✓ 39.0 19.1 2.0 10.0 15.1 19.5 29.4

– AUC@IoUn: This metric assesses the accuracy of predicted 3D bounding
boxes, calculated via the Area Under the Curve (AUC) from various Inter-
section over Union (IoU) thresholds starting at n. In our study, we utilize
AUC@IoU25, AUC@IoU50, and AUC@IoU75 as the benchmarks.

– VUS@n◦mcm: This metric offers a detailed analysis of 6D pose estimation
accuracy, derived from the Volume Under Surface (VUS) across ranges of
rotational (up to n◦) and translational (up to mcm) error thresholds. VUS
aggregates the accuracy of pose predictions within set boundaries. In this pa-
per, we apply VUS@5◦2cm, VUS@5◦5cm, VUS@10◦2cm, and VUS@10◦5cm
for comprehensive performance assessment.

Additionally, to demonstrate the robustness of our method to segmenta-
tion masks, we present the pose estimation performance of GenPose++ using
SAM [13] segmentation results in the supplementary material.

Baselines We evaluate five category-level pose estimation methods: NOCS [28],
SGPA [3], HS-Pose [44], IST-Net [16] and GenPose [43]. Except for NOCS, which
conducts both object detection and pose estimation as a whole, all methods are
equipped with ground truth detection results. For SGPA, the prior point cloud
of each category is constructed by randomly selecting an object from the training
dataset. Considering that previous methods’ augmentations for symmetry prop-
erties are only applicable to specific object categories within the NOCS dataset
and not suitable for all object categories in Omni6DPose, data augmentation
for object symmetry is disabled during training for all baseline methods. All
methods are trained on SOPE and directly tested on ROPE.

Results and Analysis. In Table 2, we present the quantitative evaluation re-
sults of previous methods compared to GenPose++ on the ROPE dataset. Over-
all, generative methods continue to dominate in the performance evaluation on
ROPE. The VUS surface depicted in Figure 7 provides a more detailed reflec-
tion of the performance of each model. Unlike deterministic approaches, genera-
tive methods can handle ambiguity without any specialized design requirements.
Moreover, these methods directly generate the distribution of object poses, elim-
inating the need for depth map-based pose fitting. This approach is particularly



12 J. Zhang, W. Huang, B. Peng, M. Wu, F. Hu, Z. Chen, B. Zhao, H. Dong

NOCS SGPA HS-Pose

IST-Net GenPose GenPose++ (Ours)

Fig. 7: Qualitative comparison with baselines on ROPE dataset.

advantageous for challenging material types, such as transparent or reflective ob-
jects, where structured-light depth cameras tend to introduce significant noise,
severely impacting pose fitting accuracy. Furthermore, the NOCS method does
not demonstrate effective performance on the ROPE dataset, leading to the sup-
position that methods relying solely on RGB information to predict the shape of
an object in the canonical space become less robust as the scale of category di-
versity increases. Compared to GenPose, GenPose++ achieves a significant lead
by leveraging the powerful perception capabilities of the 2D foundation model,
along with the robustness of clustering towards discrete symmetric properties.
You can find qualitative visualizations in Figure 8.

5.2 Ablation Study

In order to validate the design decisions of our approach, we performed a series
of ablation experiments on our method:

– w/o clustering. Without clustering directly take the average of all remain-
ing pose candidates after outlier removal as the pose estimation output.

– w/o scale prediction. Use the estimated pose to transform the observed
point cloud into object space, then take the bounding box length as the
maximum projection from the point cloud to each axis.

– w/o simulated depth. Use perfect depth for training.
– w/o point-wise feature fusion. In the feature extraction stage, separately

extract the RGB feature and geometric feature, and then concatenation.

Table 3 illustrates the contribution of each component of GenPose++ to its
performance. The introduction of the clustering module allows GenPose++ to
effectively aggregate the multimodal distributions caused by discrete symme-
tries, leading to higher performance. The scale prediction in GenPose++ signifi-
cantly surpasses direct calculations from the object’s point cloud due to ambigu-
ities from partial observations and errors from point cloud noise, particularly in
transparent and reflective objects. Training with simulated depth data results in
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Table 3: Ablation study on category-level 6D object pose estimation

Ablation AUC ↑ VUS ↑

IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Full 39.0 19.1 2.0 10.0 15.1 19.5 29.4
w/o scale prediction 13.8 3.4 0.2 10.0 15.1 19.5 29.4

w/o clustering 38.6 18.7 1.9 9.4 14.1 18.4 27.8
w/o simulated depth 35.3 16.5 1.7 7.3 11.9 14.6 24.3
w/o point-wise fusion 34.2 15.4 1.4 7.1 10.6 14.6 21.9

GT NOCS SGPA HS-Pose IST-Net GenPose Ours

Fig. 8: Qualitative comparison with baselines on ROPE dataset.

better performance than training with perfect point clouds, as the physics-based
depth camera simulation substantially reduces the sim2real gap for depth data.
Point-wise fusion outperforms global fusion as it retains more of the object’s
local geometric features, which are crucial for accurate object pose prediction.

5.3 Category-Level 6D Object Pose Tracking

Metric. We report the following metrics for object pose tracking evaluation:

– FPS: Frames Per Second, which indicates the speed of pose tracking.
– VUS@5◦5cm: Volume Under Surface, assessing pose estimation accuracy

for rotation errors within 0 to 5◦ and translation errors within 0 to 5cm.
– mIoU: Mean Intersection over Union, representing the average 3D overlap

between the ground truth and the predicted bounding boxes.
– Rerr(◦): Average rotation error in degrees.
– Terr(cm): Average translation error in centimeters.

Baselines. This paper employs BundleTrack, CATRE, and GenPose as base-
lines for object pose tracking. BundleTrack is a training-free approach that uti-
lizes multi-view feature point detection and matching for tracking the pose of
unseen objects. CATRE aligns partially observed point clouds to abstract shape
priors to estimate relative transformations, enhancing pose accuracy. Conversely,
GenPose utilizes a generative approach to effectively resolve pose ambiguities,
notably in symmetric objects. Following GenPose, we have adapted GenPose++
to object pose tracking with minor modifications.
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Results and Analysis. Table 4 presents the results of category-level object
pose tracking algorithms CATRE, GenPose, and our method, as well as the re-
sults for the unseen object pose tracking algorithm BundleTrack. The category-
level pose estimation methods appear to achieve relatively better outcomes since
they benefit from learning the category-level canonical space of objects within
the SOPE dataset. However, for the training-free BundleTrack, reliance on RGB
information for keypoint detection and matching poses challenges, often failing
on objects with weak textures. Additionally, its dependency on depth values for
global optimization renders it less effective in handling instances with substan-
tial depth noise, such as transparent or specular objects. Our method, without
undergoing specialized design, has achieved results comparable to state-of-the-
art approaches. Although the inference speed of our method is lower than that of
CATRE and GenPose, the achieved 17.8 FPS is sufficient for certain downstream
tasks, such as robotic manipulation. Furthermore, recent rapid developments in
research on fast samplers are beneficial to our approach, potentially enhancing
its performance and applicability in real-time scenarios.

Table 4: Results of category-level object pose tracking on ROPE. The results
are averaged over all 149 categories. GT. Pert. denotes that a perturbed ground truth
pose is utilized as the initial object pose.

Methods Input Init. Speed(FPS)↑ 5◦5cm↑ mIoU↑ Rerr(◦)↓ Terr(cm)↓

BundleTrack [31] RGBD GT. 12.4 1.3 3.9 46.9 23.5
CATRE [18] D GT. Pert. 38.5 15.9 55.4 21.3 2.6
GenPose [43] D GT. Pert. 26.3 13.3 - 19.3 1.2

GenPose++(Ours) RGBD GT. Pert. 17.8 15.9 53.4 17.6 1.2

6 Conclusions and Discussion

In this study, we introduce Omni6DPose, a comprehensive dataset for 6D ob-
ject pose estimation, featuring extensive scale, diversity, and material variety.
Through thorough experimentation, our findings suggest that the probabilis-
tic framework holds promise for category-level 6D object estimation, leveraging
semantic information provided by RGB images to address large-scale pose es-
timation challenges. However, the performance of GenPose++ on Omni6DPose
reveals significant room for improvement, with the model still hampered by slow
inference speeds resulting from the iterative refinement nature inherent in the
diffusion model. Future works could focus on addressing these challenges and
integrating the universal 6D pose estimation module trained on Omni6DPose
into a broader range of downstream tasks [4, 33,37,42].
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