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Abstract. The rapid development of AI systems has been greatly in-
fluenced by the emergence of foundation models. A common approach
for targeted problems involves fine-tuning these pre-trained foundation
models for specific target tasks, resulting in a rapid spread of models fine-
tuned across a diverse array of tasks. This work focuses on the problem
of merging multiple fine-tunings of the same foundation model derived
from a spectrum of auxiliary tasks. We introduce a new simple method,
Model Breadcrumbs, which consists of a sparsely defined weight set that
guides model adaptation within the weight space of a pre-trained model.
These breadcrumbs are constructed by subtracting the weights from a
pre-trained model before and after fine-tuning, followed by a sparsifica-
tion process that eliminates weight outliers and negligible perturbations.
Our experiments demonstrate the effectiveness of Model Breadcrumbs to
simultaneously improve performance across multiple tasks. This contri-
bution aligns with the evolving paradigm of updatable machine learning,
reminiscent of the collaborative principles underlying open-source soft-
ware development, fostering a community-driven effort to reliably update
machine learning models. Our method is shown to be more efficient and
unlike previous proposals does not require hyperparameter tuning for
each new task added. Through extensive experimentation involving var-
ious models, tasks, and modalities we establish that integrating Model
Breadcrumbs offers a simple, efficient, and highly effective approach for
constructing multi-task models and facilitating updates to foundation
models. 1
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1 Introduction

In recent years, foundational models [3] have become instrumental tools, exhibit-
ing unprecedented efficacy across multiple domains. These models are charac-
terized by their extensive scale, generality, and capacity to learn and generalize
knowledge from vast datasets, offering promising solutions to a diverse range of
problems. The inherent ability of foundational models to be fine-tuned has led to
1 The code to reproduce our results is publicly available at:

https://github.com/rezazzr/breadcrumbs

https://github.com/rezazzr/breadcrumbs
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advancements in natural language processing (NLP) [14,30,32,43–45], computer
vision [5, 25,34,42,49], and other related fields [50,51,62].

On one hand, the scalability of expanding foundational models to increase
the number of tasks they can perform in practice poses a significant challenge as
approaches such as joint training are limited in many practical scenarios [8, 9].
In domains such as healthcare, stringent data privacy concerns often prohibit
access to the underlying training data, even when the fine-tuned model on the
said data is publicly accessible, rendering joint training infeasible [2,10]. Even in
scenarios where access to training data is possible, the computational demands
of simultaneous training on a multitude of tasks becomes restraining.

On the other hand, the widespread adoption of foundational models has
led to a certain homogenization in the field [3]. Both the training approach,
commonly transfer learning from a popular foundational model [41], and the
model architecture itself have become standardized, typically following a few
popular foundation models. This standardization has resulted in a proliferation
of publicly available fine-tuned models, all sharing the same architecture [12,
18, 56, 61]. However, beyond their conventional use for model inference, these
numerous fine-tuned models remain largely untapped, representing a missed
opportunity [48].

To address the challenges of scalability, practical constraints, and unlock the
untapped potential of the growing pool of publicly available fine-tuned models,
recent developments in neural network weight averaging techniques have gained
attention [6, 11, 16, 21, 23, 39, 48, 57, 58, 60]. These approaches enable the prac-
titioners to re-purpose the increasingly valuable publicly available fine-tuned
models.

Closer to our approach, Task Arithmetic were introduced by Ilharco et al . [21].
In their method, a foundation model is refined by incorporating the scaled av-
erage of the differences between multiple fine-tuned models and the foundation
model. This allows for the creation of a multi-task model without the need for
additional training or access to the original training data. However, despite its
potential, the Task Arithmetic method [21] encounters limitations when dealing
with numerous tasks. This is mainly due to its dependence on hyperparameter
tuning through validation set performance, a process that becomes computa-
tionally impractical at scale, coupled with an increasing accumulation of noise
as more tasks are merged to the foundation model.

To address these challenges and to capitalize on the untapped resources
within the field, our paper introduces Model Breadcrumbs, a simple solution
designed to tackle scalability, noise reduction in merging tasks, and hyperpa-
rameter generalization issues. Model Breadcrumbs constructs multi-task models
from pre-existing fine-tuned models (see Figure 1), surpassing limitations faced
by existing methods. We demonstrate that Model Breadcrumbs not only yields
competitive multi-task models but also provides hyperparameters that general-
ize effectively as the number of tasks increases. In Section 2, we provide context
through a review of related work. Sections 3 and 4 present our framework and its
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evaluation. Finally, Section 5 outlines the scope and limitations of our proposed
method. Our key contributions and findings are summarized as follows:

1. Introducing a simple and scalable approach for merging models and reusing
pre-existing fine-tuned models to construct multi-task models, often outper-
forming their individual fine-tuned counterparts.

2. We empirically show the robustness of our approach to hyperparameter vari-
ations and its ability to generalize with the increasing number of tasks.

2 Related Work

Model Merging Recent studies in the literature have explored the merging
of models trained from scratch with different initializations [1, 53]. One of the
main challenges in this type of model merging is aligning the models before the
actual merger. Therefore, research in this branch primarily focuses on finding
permutations between networks to bring them into alignment with a reference
model, enabling the subsequent merger of the two models in weight space. Our
work, on the other hand, distinguishes itself from this line of research, as we
concentrate on the model merging of networks that share the same initialization,
specifically initialized by a foundation model. Furthermore, our investigation is
focused on the scalability of merging methods, exploring the dynamics when
multiple models are involved in the merger process.

Neyshabur et al . [39] highlighted the benefits of linearly interpolating two
fine-tuned models originating from the same pre-trained model. They showed
that this technique often yields a model that outperforms both of the original
fine-tuned models. This discovery sparked subsequent investigations into the
merging of fine-tuned models derived from a single foundation model, exploring
its potential and practical applications.

Wortsman et al . [57] demonstrated that models fine-tuned on the same
dataset with different hyperparameters can be combined together using a weighted
average to yield an overall higher performing model. Unlike our work they did not
consider merging models from different datasets and tasks. Choshen et al . [6]
merged models from multiple trained models in order to create a better pre-
trained model to be used for downstream tasks. Unlike our work they do not
demonstrate or study the creation of multi-task ability through the merging.
Matena and Raffel [36] considered merging of multiple fine-tuned models origi-
nating from the same pre-trained model, trained on diverse datasets. The merger
operation combines a series of fine-tuned models using a weighted average de-
termined by the Fisher information matrix [37]. However, computing the Fisher
information matrix, as well as finding other required hyperparameters for this ap-
proach, becomes increasingly computationally expensive as the number of mod-
els to be merged grows. Therefore, it faces challenges when applied at scale.
In contrast, our approach is computationally efficient, and as we will show in
Section 4, its hyperparameters exhibit the ability to generalize to the scenarios
where a large number of models are to be merged.
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A related study to ours is conducted by Ilharco et al . [21], introducing a
method named Task Arithmetic for model merging. Their approach begins by
forming Task Vectors, representing the weight differences between pre-trained
and fine-tuned weights for each task. The merged model’s weights are then ob-
tained by adding a scaled sum of these task vectors to the pre-trained weights.
However, their approach necessitates a validation set for each new task, which
adds complexity and computational overhead, coupled with an increasing accu-
mulation of noise as more tasks are merged to the foundation model.

A concurrent study by Yadav et al . [60] presents a method named TIES. Like
the Task Arithmetic method [21], TIES initially constructs a set of Task Vec-
tors. These vectors undergo a masking process to eliminate interfering weights,
identified as a percentage of overall weights with low magnitudes. The remaining
unmasked weights undergo a sign alignment operation to determine their polar-
ity. Finally, a scaled sum merges the task vectors with the pre-trained model.
Our approach differs from TIES in two key aspects. Firstly, we apply masking
to both very large and small magnitude weights of the task vectors to minimize
interference, whereas TIES focuses solely on small magnitude weights. Secondly,
our masking strategy employs layer-wise masking as opposed to overall mask-
ing. Notably, in the context of task vectors, overall masking of small magnitude
weights typically targets weights in the early layers [36].
Federated Learning The concept of initiating learning with a pre-trained
model has been explored in the federated learning literature, as seen in recent
works such as [29,40]. These studies focused on a single downstream task where
data is distributed across multiple clients. In their approach, each client period-
ically aggregates models during the training process. It’s important to note that
this differs from our approach, which deals with multi-task learning involving
multiple downstream tasks rather than a single task distributed across clients.

3 Model Breadcrumbs Framework

The Model Breadcrumbs framework is designed to enable the construction of
multi-task models from pre-existing fine-tuned foundation models without the
need for further training. The central idea is to merge models and aggregate
valuable knowledge for the resulting multi-task model while filtering out potential
harmful perturbations that could impact its performance. This section provides
an overview of the process for acquiring and merging Model Breadcrumbs.

To start generating Model Breadcrumbs, we begin with a pre-trained founda-
tion model that has undergone fine-tuning for various auxiliary tasks. Denoting
the weights of the foundation model as θ, after fine-tuning on a specific task
t, the weights are transformed into θ′t. The initial step involves creating task
vectors by calculating the weight differences between θ′t and θ, resulting in θdt .

θdt = θ′t − θ (1)

Note that θdt contains both (a) large outliers, indicating substantial deviations
from the pre-trained starting point, and (b) negligible differences representing
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Fig. 1: Method overview. We start with a foundational model that has undergone
fine-tuning on various tasks. Next, we build a fine-tuning trajectory for each fine-tuned
model by subtracting the pre-trained model weights from each of the fine-tuned models
(task vectors). We then, at each layer, apply a masking operation over the absolute
value of the the resulting trajectory, eliminating both outliers and small values. Finally,
these masked task vectors are aggregated and combined with the reference pre-trained
model to create a unified multi-task model.

minor perturbations from the foundation model’s weights. The presence of these
extremes can impact the effectiveness of the resulting multi-task model upon
merging. To address this concern, we implement a masking process that filters
out both large outliers and small perturbations.

In each layer L, we mask out the extreme tails of the absolute magnitude
distribution of θdt , using γ and β as thresholds for the right and left tails, re-
spectively. Let wL

i represent the index of the weights sorted by their absolute
magnitude in layer L and i the order in the sort (lowest to highest). The mask
mβ,γ

L for the layer L is defined as:

mβ,γ
L [wi] =

{
0 if i ≤ β or i ≥ γ

1 otherwise
(2)

The masked weights are set to zero in θdt or returned to their respective pre-
training weights in θ′t. Aggregating mβ,γ

L over all layers, for task t, results in the
final mask mβ,γ

t .
Next, we apply the mask mβ,γ

t to the task vectors θdt . We now have a set
of weight differences that define a trajectory within the weight space of the
foundation model. Traversing this trajectory allows us to effectively transfer the
knowledge accumulated during fine-tuning across tasks, while filtering out the
harmful perturbations. For a total of T tasks, we assemble a multi-task model θ∗
by following the trajectories defined by the Model Breadcrumbs with a specific
strength parameter α. The formation of this multi-task model is expressed in
Eq. 3. Algorithm 1 describes the overall procedure of the Model Breadcrumbs
merging strategy.

θ∗ = θ + α
∑
t∈T

mβ,γ
t .θdt (3)



6 MR. Davari and E. Belilovsky

Algorithm 1: Model merging via Breadcrumbs.
Data: Foundation model θ, Fine-tuned models {θ′t}

n
t=1, α, β, and γ

Result: Multi-task model θ∗

for t← 1 to n do
/* Create task direction. */
θdt ← θ′t − θ
for layer ∈ Layers(θ) do

/* Record the absolute value of the task direction at the
current layer */

p← |θdt,layer|
/* Generate a mask for top k percent of the weights */
mγ

t,layer ← mask_topk_percent(p, k = γ)

/* Generate a mask for the bottom k percent of the weights */
mβ

t,layer ← mask_bottomk_percent(p, k = β)

mβ,γ
t,layer ← merge_masks(mβ

t,layer,m
γ
t,layer)

end
/* Generate 1 mask per fine-tuned model */

mβ,γ
t ← stack_masks

({
mβ,γ

t,layer

}
layer∈Layers(θ)

)
end
/* Generate the multi-task model */
θ∗ ← θ + α

∑
t∈T mβ,γ

t .θdt
return θ∗

4 Experiments

In this section, we conduct a series of experiments to evaluate the Model Bread-
crumbs framework. Our experiments focus on the following key aspects: 1. Merg-
ing Model Breadcrumbs: We incrementally add tasks, totalling 8 in our inves-
tigation, to assess the scalability and performance of merged Model Breadcrumbs
as the number of tasks increases. 2. Generalization of Hyperparameters: We
explore how the hyperparameters introduced by Model Breadcrumbs—α, β, and
γ—generalize over the number of datasets. 3. Effect of Scale: We investigate
the impact of the scale and complexity of the foundation models on the Model
Breadcrumbs’ adaptability and robustness. 4. Target Task Improvement:
We examine the potential of enhancing the performance a fine-tuned model on
a target task by merging related tasks into it. 5. Ablation Study: We study
the importance of the design choices introduced by Model Breadcrumbs for suc-
cessful and competitive model merging.

4.1 Data, Metrics, and Models

In our analysis, we follow the benchmarks and settings used by Ilharco et al . [21]
for a more meaningful comparison with existing reports. We present results using
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(b) At each point, evaluation is performed only
over the observed tasks.

Fig. 2: The solid line is the averaged normalized accuracy across all evaluation points.
Each data point corresponds to an experiment involving a subset of the 8 tasks under
study. Notably, it is evident that the Model Breadcrumbs (with 90% sparsity), consis-
tently outperform the Task Arithmetic [21]. Specifically, in the experiment involving all
eight tasks, the Model Breadcrumbs outperform the Task Arithmetic by a substantial
margin of 5.7%.

normalized accuracy, a metric calculated as the ratio of accuracy achieved by
the merged model to that of the fine-tuned model.

Normalized Accuracy =
Accuracy of Merged Model

Accuracy of Fine-tuned Model
(4)

It is noteworthy that the fine-tuned model establishes the upper bound with
a normalized accuracy value of 1. Subsequently, the concept of average normal-
ized accuracy is introduced, representing the mean normalized accuracy across
multiple tasks. In Section 4.2, 4.3, 4.4, and 4.6, we assess our findings using
an extensive set of 8 datasets: Cars [26], DTD [7], EuroSAT [19], GTSRB [20],
MNIST [28], RESISC45 [4], SUN397 [59], and SVHN [38]. We fine-tune vari-
ous CLIP models [42] (ViT-B-32, ViT-B-16, and ViT-L-14) to explore model
merging. For more information on the datasets and the fine-tuning process see
Appendix A.

In Section 4.5, we apply our approach to the NLP domain, specifically inves-
tigating four GLUE tasks [54] (MRPC [15], RTE [54], CoLA [55], and SST-2 [52])
based on the benchmarks used by [21, 57]. Our process involves fine-tuning the
T5-base model [46] on these datasets and subsequently merging publicly avail-
able fine-tuned models from other datasets (IMDB [35], RACE [27], QASC [24],
MultiNews [17], SQuAD [47], and CommonGen [31]) into each of them. Ap-
pendix B provides additional details on the datasets, the fine-tuning process,
and the publicly available fine-tuned models we used in our experiments.

4.2 Merging Model Breadcrumbs

In this section, we explore the scalability and performance of merged Model
Breadcrumbs as we progressively include tasks, reaching a total of 8 in our
investigation, as detailed in Section 4.1. Merging enables the creation of multi-
task models that can excel across various tasks simultaneously. This versatility
is valuable both in scenarios where we have multiple privately fine-tuned models
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Fig. 3: Validation Free Setting. For the ViT-B-32 model, we tune the hyperparameters
of each method (Breadcrumbs and Task Arithmetic) based on the first 1, 2, or 3
tasks and add additional tasks using those hyperparameters (validation set free). For
the ViT-L-14 model, the Breadcrumbs method was only tune for the 1 task scenario
and evaluate on the additional tasks using those hyperparameters, though the Task
Arithmetic appraoch was given more chances to adjust its hyperparameters (task 1, 2,
and 3). We observe that Breadcrumbs substantially outperforms task vectors in this
setting.

Table 1: The evaluation of the above merging strategies over 8 tasks using ViT-B-32
reveals the advantage of Breadcrumbs over other merging methods. Note that not only
Fisher Merging [36] lags behind both Task Arithmetic [21] and Model Breadcrumbs, it
also requires significantly more computational resources.

Method Avg. Normalized Acc.

Breadcrumbs 83.35
Task Arithmetic [21] 77.66
Fisher Merging [36] 75.11
Random Sparsed Task Arithmetic 74.00

as well as in cases where we have access to publicly available fine-tuned models.
This allows the extraction of existing knowledge from these models without the
need for extra training or access to additional training data. Table 1 presents
a comparison between Model Breadcrumbs with 90% sparsity (β = 90%, γ =
99%), the recently proposed Task Arithmetic [21], and Fisher Merging [36] across
8 tasks, using ViT-B-32 model. Model Breadcrumbs outperforms all considered
methods by a substantial margin. Fisher Merging [36] lags behind both Task
Arithmetic [21] and Model Breadcrumbs, and notably, it requires significantly
more computational resources. Therefore, we proceed with the rest of our studies
without evaluating Fisher Merging.

In Figure 2, we assess all possible task subsets of the 8 tasks detailed in
Section 4.1, amounting to a total of 256 = 28 combinations, under two settings:
1. evaluation over all 8 tasks and, 2. evaluation only on the subset of tasks that
have been observed. As we can see in Figure 2a merging Model Breadcrumbs
(90% sparsity) results in superior multi-task models compared to the Task Arith-
metic [21]. Furthermore, the performance gap between these two approaches in-
creases as more tasks are observed, resulting in vastly superior multi-task models
when more Model Breadcrumbs are available.
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Fig. 4: The 200-task sequence originates from the ImageNet dataset [13], created by
dividing the data into 200 5-class classification tasks. After encountering 10 tasks using
the ViT-L-14 model, the best hyperparameters for each method (Breadcrumbs with
85% sparsity and Task Arithmetic [21]) are selected and fixed. Each point on the
plot represents the evaluation of the method over all tasks observed up to that point.
With an increasing number of tasks, Model Breadcrumbs consistently outperforms Task
Arithmetic [21] by a substantial margin, highlighting the robustness of hyperparameters
in the Model Breadcrumbs approach.

In Figure 2b we can see that for small task numbers the resulting merged
model performs closely to that of the multiple fine-tuned models although the
gap increases as more tasks are added. Model Breadcrumbs again prove to be
more performance that Task Arithmetic [21] in this setting.

4.3 Validation-Free Setting

In Section 4.2, we compared Model Breadcrumbs and Task Arithmetic [21] un-
der their respective optimal hyperparameters. These hyperparameters were fine-
tuned based on model performance on the validation dataset for each subset of
tasks following [21]. However, as the number of tasks increases, the search for
optimal hyperparameters becomes increasingly resource-intensive. Furthermore,
the need for a validation set from each task being added can be restrictive due to
privacy concerns or due to the unavailability of additional validation data. Thus,
we consider a new setting where hyperparamters are tuned based on a few tasks,
and subsequent tasks are added using these pre-determined hyperparameters.

The results are shown in Figure 3. Remarkably, our experiments reveal that
the hyperparameters of Model Breadcrumbs exhibit a high degree of generaliz-
ability. Specifically, for the ViT-B-32 model when considering scenarios involving
three tasks and beyond, up to the 8-task scenario, the optimal hyperparameters
remain consistent. Moreover, for the ViT-L-14 model, the hyperparameters do
not change beyond the 1 task scenario. This remarkable stability underscores the
robustness and versatility of Model Breadcrumbs. We observer that on the other
hand the approach Task Arithmetic [21] can quickly collapse in performance.

Motivated by these results, we extended the evaluation to a much longer task
sequence using ViT-L-14 model. We split the ImageNet data [13] into 200 tasks,
each classifying 5 classes. After finding optimal hyperparameters for both Model
Breadcrumbs and Task Arithmetic using 10 tasks, we kept these hyperparam-
eters and incrementally merged all 200 tasks to create a multi-task model. As
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Fig. 5: Comparative performance analysis of Model Breadcrumbs and Task Arith-
metic [21] methods across varying CLIP model scales (ViT-B-32, ViT-B-16, and ViT-L-
14) as the number of tasks increases. The solid line represents the averaged normalized
accuracy across all evaluation points. Each data point corresponds to an experiment
involving a subset of the 8 tasks under study. Our findings highlight the potential of
larger-scale models to mitigate performance degradation and, as seen in Figure 5b, the
capability of Model Breadcrumbs to produce multi-task models that surpass individual
fine-tuned models for specific tasks.
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Fig. 6: Comparison of Model Breadcrumbs and Task Arithmetic [21] in the merger of
task pairs, revealing improved accuracy on both tasks and a higher frequency of multi-
task models surpassing individual fine-tuned accuracy levels when employing Model
Breadcrumbs.

seen in Figure 4, the observed trend remains, with Model Breadcrumbs (85%
sparsity: β = 85%, γ = 99.3%) consistently outperforming Task Arithmetic [21]
by a significant margin as the number of tasks increases. This showcases the
generalizability of the hyperparameters for the Model Breadcrumbs approach.

The practical implication of this stability in hyperparameter settings is that,
in practice, we can rely on a relatively small number of tasks to determine opti-
mal hyperparameters when applying Model Breadcrumbs to diverse multi-task
learning scenarios. This simplifies the implementation process, reduces the need
for extensive hyperparameter tuning, and contributes to the framework’s practi-
cality and ease of use. In contrast, Task Arithmetic [21] do not exhibit the same
level of hyperparameter stability. Consequently, this fundamental divergence be-
tween Model Breadcrumbs and Task Arithmetic [21] underlines the substantial
advantage of Model Breadcrumbs in real-world multi-task learning scenarios.
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4.4 Effect of Scale

In this section, we explores the impact of using larger CLIP models on our anal-
ysis, comparing the performance of ViT-B-32, ViT-B-16, and ViT-L-14 mod-
els. For each model type, the optimal Model Breadcrumbs were found at 90%
(β = 90%, γ = 99%), 90% (β = 90%, γ = 99.2%), 85% (β = 85%, γ = 99%)
sparsity respectively. As shown in Figure 5, the adoption of larger models sig-
nificantly improves the performance of both our proposed Model Breadcrumbs
method and the Task Arithmetic [21] baseline. Moreover, as more tasks are in-
troduced, the capacity to construct better-performing multi-task models grows,
with larger-scale models demonstrating superior results.

Specifically, we observe in Figure 5a, when utilizing the ViT-L-14 model and
considering 8 tasks, merging Model Breadcrumbs produces a single multi-task
model with an average performance that reaches 91.48% of the performance
achieved by employing 8 individual fine-tuned models (i.e., one per task). The
shift from 8 fine-tuned models to a single multi-task model substantially reduces
inference time and compute resources, accompanied by only a minor relative loss
in performance. This underscores the practical advantages of our approach.

Moreover, Figure 5b highlights that the performance decline observed when
merging either Model Breadcrumbs or Task Arithmetic [21] can be significantly
mitigated by adopting larger-scale models. Notably, for the ViT-L-14 model,
merging Model Breadcrumbs for certain tasks can result in multi-task models
that either match or surpass the performance of individual fine-tuned models.
To delve deeper into this phenomenon, we conducted a closer examination of
task merger for ViT-L-14, considering the two tasks scenario.

As we can see in Figure 6, when adding pairs of tasks via Model Breadcrumbs
and Task Arithmetic [21], the merger generally leads to improved performance
on both tasks, resulting in a single model that is competitive and often superior
to using two specialized fine-tuned models. Furthermore, for the same task pairs,
Model Breadcrumbs consistently produces multi-task models that surpass their
equivalent Task Arithmetic [21] versions. Notably, Model Breadcrumbs merg-
ers generate a higher number of multi-task models where both tasks exceeded
their respective fine-tuned accuracy levels. This highlights the potential of Model
Breadcrumbs not only to maintain but also to enhance task-specific performance
within a multi-task framework. We further examine this concept in the next sec-
tion.

4.5 Target Task Improvement via Model Merging

Motivated by the insights from Figure 6, we explore the potential of enhancing
the performance of a fine-tuned model for a specific target task solely through
model merging. We fine-tune the T5-base model [46] for four GLUE tasks [54]
(discussed in Section 4.1) based on benchmarks used by [21,57]. We then merge
six publicly available T5-base models (IMDB [35], RACE [27], QASC [24], Multi-
News [17], SQuAD [47], and CommonGen [31]) with each of them. Appendix B
provides more details on fine-tuned models and the fine-tuning process.
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Table 2: Model merging enhances the fine-tuned models. Specifically, the merger of
Breadcrumbs yields higher-performing models without requiring additional training
data or combining with models trained on similar data. Values represent the average
performance over 20 runs, followed by the standard error.

Method / Dataset MRPC RTE CoLA SST-2

Zero-shot 74.8 52.7 8.29 92.7
Fine-tuned 87.9 ±0.68 76.2 ±0.46 51.6 ±0.37 93.3 ±0.35
Fine-tuned + Task Arithmetic 88.6 ±0.59 76.4 ±0.40 52.1 ±0.32 93.5 ±0.31
Fine-tuned + Breadcrumbs 90.0 ±0.50 77.5 ±0.38 53.2 ±0.34 94.4 ±0.32
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Breadcrumbs Under Microscope: an Ablation Study

Fig. 7: Performance comparison of
the Model Breadcrumbs against alter-
native masking choices, reveals: Model
Breadcrumbs yields a higher distri-
bution of high-performance multi-task
models, underlining its robustness to-
wards hyperparameter perturbations.
Model Breadcrumbs produces the
highest performing multi-task model.
The number on top of each violin in-
dicates the performance of the highest
performing model of that setting.

The results, presented in Table 2, evaluates various approaches, including
Zeroshot, pure fine-tuning, utilizing Task Arithmetic [21] derived from newly
added tasks in the fine-tuned models, and employing Breadcrumbs of the new
tasks added to the fine-tuned models. The findings demonstrate that incorporat-
ing Breadcrumbs from these new tasks effectively enhances the performance of
our fine-tuned models, surpassing all other considered approaches. Importantly,
this improvement is achieved without the need for additional training or requir-
ing data from the exact same dataset. This approach underscores the versatility
and effectiveness of utilizing Model Breadcrumbs to improve task performance
across diverse tasks.

4.6 Ablations

In this section, we perform ablations to examine alternative design decisions
within the Model Breadcrumbs method. Specifically, we explore different ap-
proaches for constructing the masking operation, namely: 1. Bottom-Weight
Masking: Masking only the bottom-most smallest absolute magnitude weights
per layer. 2. Top-Weight Masking: Masking only the top largest absolute magni-
tude weights per layer. We compare these alternatives to the full Model Bread-
crumbs approach, which encompasses both (1) and (2), as well as the Task
Arithmetic [21] method, which lacks any masking. In our investigation, we con-
duct a grid search to identify the optimal hyperparameters for each of the four
configurations. We assess the resulting multi-task models on 8 tasks discussed
in Section 4.1. The results are shown in Figure 7.
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Fig. 8: Comparison of Cosine Similarity Between Tasks in Model Breadcrumbs and
Task Arithmetic. The figure illustrates the cosine similarity distribution among tasks,
highlighting how Model Breadcrumbs enforces greater orthogonality, leading to reduced
interference during model merging.

Our findings reveal two key insights: (i) both forms of weight masking, as
employed in Model Breadcrumbs, are essential for achieving competitive per-
formance. Model Breadcrumbs, which combines both bottom and top weight
masking, emerges as the most effective approach. (ii) The grid search for hyper-
parameters within the Model Breadcrumbs approach yields a higher distribution
of high-performance multi-task models compared to the other three settings. Fur-
thermore, there is much lower variation in the overall performance distribution
of the multi-task models produced by the Model Breadcrumbs. These observa-
tions underscore the robustness of Model Breadcrumbs to variations in hyperpa-
rameter settings, further enhancing its practicality and reliability in real-world
applications.

In Figure 8, we examine the cosine similarity between tasks using Model
Breadcrumbs and Task Arithmetic [21]. Most tasks show orthogonality, indicat-
ing minimal side effects upon merging. However, upon closer inspection, seman-
tically similar tasks (e.g., MNIST [28], SVHN [38], and GTSRB [20]) exhibit
higher cosine similarity, suggesting non-orthogonality. This similarity could in-
troduce interference during merging. In contrast, Model Breadcrumbs pushes all
cosine similarity values closer to zero, reinforcing orthogonality. This reduction
in interference could explain the enhance performance of the resulting multi-task
models when using Breadcrumbs.

In Figure 9, we demonstrate the impact of hyperparameters on the perfor-
mance of models using the ViT-B-32 model, assessed across eight vision tasks
outlined in Section 4.1. For ease of readability, in this part we use β and γ to
represent how much weights have been masked. Figure 9a examines the relation-
ship between α and β, the primary determinants of task vector sparsity. As β
increases and more weights are masked, large alphas, which amplify the remain-
ing weights’ contributions, become less tolerable, necessitating lower α’s as β
grows. Upon identifying optimal α and β values, we investigate gamma. In Fig-
ure 9b, we depict the relationship between β and gamma. Regardless of beta’s
value, the γ that optimizes a combination of α and β tends to hover around 1%,
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Fig. 9: Influence of hyperparameters on model performance using the ViT-B-32 model
across eight vision tasks. For ease of readability, in this part we use β and γ to represent
how much weights have been masked. It shows the relationships between α and β, and
between β and γ, highlighting the stability of hyperparameters across the possible
combinations.

with lower betas allowing for higher gammas and vice versa. Across both figures,
we consistently observe that numerous combinations of alpha, beta, and γ result
in high-performing merged models, as previously noted in Figure 7.

5 Conclusions

In this paper, we introduced Model Breadcrumbs, a simple yet effective approach
to constructing multi-task models from pre-existing fine-tuned foundation mod-
els. Our extensive experiments showcase the method’s capability to enhance per-
formance across multiple tasks, demonstrating stable and generalizable hyper-
parameters. This simplicity makes Model Breadcrumbs practical for real-world
multi-task learning scenarios. Additionally, scaling experiments indicate that
larger models further benefit from the approach, narrowing the performance gap
between merged models and individual fine-tuned ones. Notably, our exploration
in NLP data highlights the method’s versatility across different modalities.

While promising, Model Breadcrumbs has limitations. Its performance hinges
on the quality of the initial fine-tuned models; issues like poor generalization
or severe overfitting can propagate. Future research can delve into mitigating
these limitations and exploring more sophisticated aggregation techniques for
multiple trajectories. Additionally, as the number of tasks increases, considering
the expansion of model capacity becomes crucial for sustained high performance.

In conclusion, Model Breadcrumbs stands out for its simplicity, efficiency,
and effectiveness in constructing multi-task models. Leveraging publicly avail-
able fine-tuned models, it aligns with the trend of updatable machine learn-
ing, supporting community-driven model refinement efforts. We anticipate that
Model Breadcrumbs will contribute to the development of efficient and scalable
multi-task learning solutions in the future.
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