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Abstract. Face recognition (FR) systems are vulnerable to external in-
formation leakage (EIL) attacks, which can reveal sensitive information
about the training data, thus compromising the confidentiality of the
company’s proprietary and the privacy of the individuals concerned. Ex-
isting EIL attacks mainly rely on unrealistic assumptions, such as a high
query budget for the attacker and massive computational power, result-
ing in impractical EIL attacks. We present AdversariaLeak, a novel and
practical query-based EIL attack that targets the face verification model
of the FR systems by using carefully selected adversarial samples. Ad-
versariaLeak uses substitute models to craft adversarial samples, which
are then handpicked to infer sensitive information. Our extensive evalu-
ation on the MAAD-Face and CelebA datasets, which includes over 200
different target models, shows that AdversariaLeak outperforms state-
of-the-art EIL attacks in inferring the property that best characterizes
the FR model’s training set while maintaining a small query budget and
practical attacker assumptions.

Keywords: Face Recognition · External Information Leakage · Adver-
sarial Samples

1 Introduction

Face recognition (FR) systems are deployed in various domains, including physi-
cal access control [22], surveillance [18], and mobile device security [13]. The core
component of modern FR systems is a large-scale deep neural network (DNN)
that performs face verification, i.e., identifying whether two images belong to the
same individual [1,23]. The inclusion of DNNs in the recognition pipeline causes
the system to be vulnerable to various security breaches and attacks [11, 26].
Those attacks are major concerns since an attacker can perform an external
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information leakage (EIL) attack to infer implicit statistical properties about
the target model’s training set. This would result in a violation of the confi-
dentiality of the company’s proprietary (specifically the model’s training set)
and harm the privacy of the included individuals [24,30]. These properties could
include sensitive and personal information, such as gender, ethnicity, age and
geolocation. Existing works have demonstrated that different machine learning
(ML) models, including face verification (FV) models, are vulnerable to EIL at-
tacks [6, 10, 19, 30]. However, these works often rely on unrealistic assumptions
about the attacker’s knowledge (complete knowledge of the model’s architecture
and parameters, access to the training set collection space, etc.) and computa-
tional resources (training hundreds of substitute models, access to many data
samples, etc.) [17, 24]. As a result, the current state-of-the-art EIL attacks may
not be practical in a real-world attack scenario.

We present AdversariaLeak, a novel and practical EIL attack that targets the
FV model of the FR system and assumes a realistic attacker knowledge while
using a small number of queries to the target model. Given an attacker’s sample
set, the attacker trains a substitute model for each property value and uses the
models to craft adversarial samples, i.e., samples that mislead the model and
cause it to make an incorrect prediction. A few of the crafted adversarial sam-
ples, referred to as the unique adversarial samples, are then handpicked and used
to query the target model, maliciously leading it to reveal its training set prop-
erties. By using the unique adversarial samples to model the substitute models’
differences, the attacker can examine the effect of the property distribution in
the training set on the model’s decision boundary.

Fig. 1: An overview of AdversariaLeak with the ’gender’ property; (A) induce substi-
tute models; (B) craft adversarial samples for each of the substitute models; (C) filter
the unique adversarial samples; (D) query the target model to infer the property value.

We evaluate AdversariaLeak in two attack scenarios and 180 different target
models using the CelebA dataset [15] and three of its implicit properties: the
individuals’ age group, gender, and the presence of a 5 o’clock shadow (a day-
old beard). Additionally, to show that AdversariaLeak can be generalized to
other datasets, we extended our evaluation to an additional dataset, the MAAD-
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Face [25] dataset, and tested the gender property (male). AdversariaLeak was
evaluated on five different property distributions: 100%, 75%, 50%, 25%, and
0%, each of which represents the proportion of the positive property value in the
training set. If the examined property is gender, then a distribution of 25% means
that 25% of the identities in the training set are male and the rest are female. Our
evaluation demonstrates that AdversariaLeak outperforms existing EIL attacks
by: i) successfully inferring the property value that best characterizes the target
model’s training set; ii) holding practical and realistic attacker assumptions; and
iii) using a small query budget that includes only 24 to 60 queries to the target
model (depending on the attack scenario).

Understanding and mitigating the information leakage that AdversariaLeak
exposes is essential to: 1) Ensure fair and secure deployment of widely used
FR systems. 2) Safeguard personal data. 3) Maintain the integrity of these FR
systems that rely heavily on sensitive biometric authentication. 4) Highlight
potential biases and weaknesses, prompting the development of more robust and
fair FR systems. The main contributions of this paper are:

– The first EIL attack that successfully utilizes adversarial samples.
– The first EIL attack that assumes realistic attacker restrictions, which is

done by using a small number of substitute models and a minimum number
of queries.

– A generic attack that is not dependent on specific properties or any prior
knowledge about the training set.

2 Related Work

EIL attacks can target different types of models, such as fully connected neural
networks (FCNNs) [10], convolutional neural networks (CNNs) [24], collaborative
learning models [19], and generative adversarial networks (GANs) [30]. Depend-
ing on the attacker’s knowledge regarding the target model’s architecture and pa-
rameters, existing EIL attacks can be categorized as complete-knowledge (white-
box), no-knowledge (black-box), and partial-knowledge (gray-box) attacks. The
first EIL attack, which was a white-box attack, trained substitute models on
datasets with different property distributions and used the models’ parameters
to train a meta-classifier for predicting the external property value [2]. This
attack was extended to FCNNs [10] and CNNs [24].

Although white-box attacks can be effective, they are considered impractical
due to their access assumptions. Black-box and gray-box attacks have been pro-
posed as more practical alternatives. Existing black-box attacks rely on querying
the target model and examining the predictions according to different property
values, such as examining the difference in accuracy between samples belonging
to different property values [24] and setting a performance threshold that distin-
guishes between property values [24]. Gray-box attacks also rely on querying the
target model, yet require additional partial knowledge about the target model.
In particular, the existing gray-box EIL attacks assume access to the training
set collection space [6,17]. In both attacks, the attacker inserts poisoned samples
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into the training set to increase the correlation between the examined property
and a specific label learned by the model. Then, the attacker trains substitute
models on different property distributions using the poisoned samples and trains
a meta-classifier on the substitute models’ confidence scores. Finally, the attacker
uses the target model’s confidence scores to infer its property value. The two at-
tacks differ in the meta-classifier’s training data - Mahloujifar et al . used the
raw confidence scores and Chaudhari et al . used normalized confidence scores.

Most of the EIL attacks assume impractical attacker assumptions: i) white-
box attacks assume complete access to the target model; ii) gray-box attacks
require access to the training data collection space or access to inject new samples
into the training set; and iii) the black-box threshold test attack [24] requires
training over 100 substitute models, leaving the loss test attack [24] as the only
practical EIL attack. In our evaluation, we compared AdversariaLeak to the loss
test and the threshold test attacks under realistic assumptions - the threshold
test using two substitute models and the loss test in its original form.

AdversariaLeak utilizes adversarial evasion attacks to perform an EIL attack.
Although it is the first to do so, several works utilized adversarial attacks for
privacy-related tasks, such as a membership inference attack [7], a model ex-
traction attack [29], and defending against attribute inference attacks [14]. For
additional background and related work see supplementary material.

3 AdversariaLeak

In this section, we introduce AdversariaLeak’s components and structure (il-
lustrated in Fig. 1). Given an external dataset and access to query the target
ML model, an attacker can use AdversariaLeak to infer the property value that
best characterizes the target model’s training data, i.e., the property distribution
which is the closest to the target model’s training set distribution. Adversari-
aLeak is composed of four main phases: 1) the attacker uses the external dataset
to train substitute models, each of which is trained on a different extreme prop-
erty distribution, resulting in one substitute model per property value; 2) the
attacker leverages an adversarial evasion attack to craft adversarial samples for
each of the substitute models; 3) for each substitute model, the attacker selects
unique adversarial samples that mislead solely that model; and 4) the attacker
queries the target model with the unique samples and infers the property value
according to the model’s behavior. By using unique adversarial samples that
mislead only a specific substitute model, the attacker obtains a unique repre-
sentation of each substitute model’s behavior. Since the substitute models only
differ in the property distribution of their training set, that representation can
be considered unique to the property distribution characterizing the training set.

The notation used is as follows: Let ST ∼ DST be the set of face image pairs
used to train target model T , which was derived from identity distribution DST .
Let P be the examined property and {v0, v1, ..., vn, vT } ∈ Pvalues be P ’s possible
values, where vT is the value that characterizes most of the samples in ST . Let
SA ∼ DSA be a set of face image pairs collected by the attacker and derived
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from identity distribution DSA. Note that there is a clear separation between the
identities in DST and DSA, i.e., the datasets SA and ST are mutually exclusive.

3.1 Phase 1 - Attacker’s Substitute Models

In this phase, the attacker uses the external dataset SA to train several substi-
tute models, each of which corresponds to a different property value. First, the
attacker forms several data subsets from SA, where each subset SA0 ∪SA1 ∪ ...∪
SAn ⊂ SA corresponds to a different property value. For example, in the case in
which P is “gender", the attacker would form two subsets SAmale

∪SAfemale
⊂ SA,

where SAmale
only includes pairs comprised of male identities, and SAfemale

only
includes pairs comprised of female identities. Each subset SAi ⊂ SA is then
used to train a substitute model MAi. In the example mentioned above in which
P is “gender", the attacker uses SAmale

to train MAmale
and SAfemale

to train
MAfemale

. As a result, the attacker obtains several substitute models, each mod-
ulating the target model’s expected behavior in the case it was trained on an
extreme property value distribution (0% and 100%), i.e., the decision boundary
of each substitute model is an estimation of the target model’s decision boundary
in the case it was trained on an extreme property value distribution.

3.2 Phase 2 - Craft Adversarial Samples

In this phase, the attacker crafts adversarial samples for each substitute model
MAi. First, the attacker selects pairs of images that belong to the same identity
(labeled as “the same person") and were correctly labeled by MAi. This dataset,
denoted as SAadv

, is selected from the samples that remained in SA after per-

forming phase 1, i.e., SAadv
= SA \

n⋃
i=1

SAi, where \ is the operation of sets

subtraction. Then, the attacker uses the samples of SAadv
to craft a set of adver-

sarial samples for each substitute model MAi, i.e., samples that mislead model
MAi to believe that the images in the pair belong to two different identities (pre-
dict “not the same person"). The adversarial sample set for each model MAi is
crafted by applying the optimization process used in existing adversarial evasion
attacks on SAadv

. During this optimization, an adversarial noise is optimized so
that when it is added to the pair’s pixels, they remain as close to the original
values as possible while causing MAi to output the wrong prediction (“not the
same person"). This objective is optimized by minimizing a cost function. The
general adversarial optimization process is presented in equation 1:

p̂airi = pairi + εopt(∇pairiL(pairi, y)) (1)

where pairi ∈ SAadv
is an image pair, opt is the optimization function, and

∇pairiL(pairi, y) are the derivatives of cost function L with respect to pairi
and the true prediction y. The adversarial attack used by AdversariaLeak is
empirically selected. The adversarial sample set crafted for model MAi is denoted
as SAiadv

. By crafting a set of adversarial samples for each substitute model,
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the attacker can obtain a more comprehensive representation of the behavior
of each extreme property distribution. The crafted adversarial samples rely on
the gap between the true decision boundary and the model’s decision boundary,
i.e., the difference between the truth and the model’s prediction. Since each
substitute model MAi is trained on a different training set (with a different
property distribution), those gaps would differ between the different substitute
models, i.e., different adversarial samples would be crafted. In contrast, when
considering a different model (denoted as Mj) trained on the same distribution
as MAi, the two models would most likely have similar decision boundary gaps,
i.e., some of the adversarial samples crafted for MAi would mislead Mj as well.

3.3 Phase 3 - Select Unique Samples

In this phase, the attacker selects the unique adversarial samples from each
adversarial set SAiadv

obtained in phase 2, i.e., the adversarial samples crafted for
MAi that mislead only MAi and not mislead other substitute models. To obtain
the unique adversarial samples for each substitute model MAi, the attacker first
handpicks SAiadv

+, which is the subset of SAiadv
that succeeds in misleading

MAi. Then, the attacker selects the unique samples from SAiadv
+ by performing

the process presented in equation 2:

SAiuq
= {x ∈ SAiadv

+ |∀j ̸= i,MAi(x) ̸= MAj(x)} (2)

where x is an adversarial sample from the SAiadv
+ set, MAi(x) is the prediction

of MAi for sample x (the incorrect prediction), and MAj(x) is the prediction
of a different substitute model that is not MAi. By filtering the unique adver-
sarial samples of each substitute model, the attacker emphasizes the behavioral
differences between the different substitute models. The handpicked unique ad-
versarial samples mislead MAi by using the decision boundary gaps that are
unique for MAi, i.e., unique for the property distribution that MAi was trained
on. Therefore, these samples are expected to cause models that were trained on
a similar distribution as MAi to incorrectly classify the samples as “not the same
person", and other models to correctly classify them as “the same person".

3.4 Phase 4 - Inferring the Property Value

In this phase, the attacker queries the target model with the unique samples
and infers the property value. First, the attacker queries the target model T
with each of the unique samples sets SAiuq

. Then, the attacker aggregates T ’s
predictions into a single score for each SAiuq . The aggregated score is the fraction
of adversarial samples that mislead the target model (denoted as FMS, which is
the fraction of misleading samples) and is presented in equation 3:

FMS(SAiuq
) =

|{x ∈ SAiuq |T (x) = 0}|
|SAiuq

|
(3)
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where x ∈ SAiuq
is a unique adversarial sample crafted for model MAi, T (x)

is the target model’s prediction for x, and 0 denotes the class “not the same
person". By examining the FMS scores, the attacker can determine which SAiuq

was the most successful in misleading target model T , i.e., which substitute
model MAi has the decision boundary most similar to T . The property value
that characterizes the training set of the substitute model with the highest FMS
score is chosen by the attacker as the property value that best characterizes the
training set of the target model T .

4 Evaluation

All the experiments were performed using three cross-validations, with 15, 32,
and 42 as the random seeds. In total, AdversariaLeak was evaluated in 420
different experiments: 1) 360 different experiments on the CelebA dataset [15]:
3 cross-validations * 2 backbones * 3 properties * 5 distributions * 2 evasion
attacks * 2 attack scenarios; and 2) 60 different experiments on the MAAD-Face
dataset [25]: 3 cross-validations * 2 backbones * 1 property * 5 distributions *
2 evasion attacks * 1 attack scenario. Additional evaluation details, as well as
AdversariaLeak’s code, can be found in the supplementary material.

4.1 Datasets

To properly evaluate AdversariaLeak, the datasets used should have: i) a large
number of identities; ii) a large number of images per identity; and iii) implicit
property annotations. We used the CelebA [15] and MAAD-Face [25] datasets,
which fulfill these requirements. Note, other datasets were explored but did
not meet the research requirements (see supplementary material). The CelebA
dataset [15] (based on celebrity images) consists of 202,599 images of 10,177
identities, with annotations for 40 properties, including age, gender, and the
presence of a 5 o’clock shadow (a day-old beard). The MAAD-Face dataset [25]
is an enhanced version of the VGGFace2 dataset [4] (based on Google Image
Search), utilizing different property annotations for each image, including the
gender property. To ensure enough images per identity to create pairs of “the
same person", we removed the dataset’s identities which had only one image.

The datasets were divided into three separate sets: i) 50% of the identities
were used as the target model’s training sets; ii) 25% of the identities were used
as the attack evaluation set, which was used to train and evaluate the substitute
models; and iii) 25% of the identities were used as the attack crafting sample
set, which was used to craft the adversarial samples used by AdversariaLeak.
Note, we ensured that identities in the target model’s dataset will not appear in
the attacker datasets. Therefore, these datasets are not of the same distribution.

Since the target model’s task is face verification, the images in all the sets
were paired and labeled, where “the same person” is denoted as one, and “not the
same person” is denoted as zero. The attack evaluation set and crafting sample
set are both balanced with respect to the examined property.
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To perform the evaluation on target models with different property distribu-
tions (100%, 75%, 50%, 25%, and 0%), only part of the target model’s training
set was used in each evaluation. To create a training set with a specific prop-
erty distribution, the following steps were performed: (1) all the samples of the
identities from the least common value were selected, i.e., those identities that
fall under a property value that has the lowest occurrence compared to other
property values (e.g ., if the property is gender and there are 500 males and
300 females identities, then, female is the least common value). (2) a portion
of the identities from the other property value is added based on the property
distribution required.

4.2 Experimental Settings

Evaluation Environment. All experiments were performed on the CentOS
Linux 7 (Core) operating system using 60 GB of memory and an NVIDIA
GeForce RTX 3090 GPU card. In addition, the experimental code was written us-
ing Python 3.9.15, Sklearn 1.0.2, NumPy 1.23.5, adversarial-robustness-toolbox
(ART) 1.12.2 and PyTorch 1.13.0.
Attack scenarios. We examined AdversariaLeak in two different attack sce-
narios. The first (scenario 1) is to examine AdversariaLeak when the head’s
architecture is identical for both the target and substitute models. It was eval-
uated only on the CelebA dataset [15] due to its less likely attacker knowledge.
The second (scenario 2) is to examine AdversariaLeak under stricter assump-
tions, in which the head’s architecture used for the target and substitute models
is different. Since this attack scenario is more likely, it was evaluated using both
the CelebA [15] and MAAD-Face [25] datasets.
FR Models. The target and substitute models used are composed of a back-
bone (IResNet1003 or RepVGG B0 [27]) and a head, as face verification models
typically are; additional information on the models and backbones can be found
in the supplementary material. Throughout the experiments, the heads, used for
both types of models, receive the subtraction (common approach in FR) of the
two embedding vectors, one for each face image, and output the probability that
the two images are of the same person. Two different head architectures were
used: 1) A head consists of two dense layers with 64 and 8 neurons respectively,
and the rectified linear unit (ReLU) activation function. 2) A head consists of
seven dense layers with 512, 256, 128, 64, 32, 16 and 8 neurons respectively,
and the rectified linear unit (ReLU) activation function. The final layer in both
heads consists of a single neuron and the sigmoid activation function. In attack
scenario 1 the first architecture was used whereas in attack scenario 2 the target
model used the second architecture and the attacker used the first. The weights
and biases for each layer were randomly initialized, and each head was trained
using the Adam optimizer with a batch size of 64 and a learning rate of 0.0001.
For CelebA [15], the first head was trained for 10 epochs; for MAAD-Face [25],
for 20 epochs; and the second head for 30 epochs in both datasets. When using
3 https://sota.nizhib.ai/pytorch-insightface/iresnet100-73e07ba7.pth
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the CelebA dataset [15], we used pre-trained backbones, i.e., we trained only
the head. However, when using the MAAD-Face dataset [25], we fine-tuned the
backbones’ weights to reach sufficient performance. This fine-tuning required an
additional 10 epochs, training both the head and backbone together.
Adversarial attacks. We examined AdversariaLeak by using two different ad-
versarial evasion attacks to craft the adversarial samples - Carlini-Wagner [5]
and the Projected Gradient Descent (PGD) attack [16] as implemented in the
ART framework [20]. For Additional specifications see supplementary material.
Tested Properties. We evaluated AdversariaLeak using three properties: (1)
5 o’clock shadow - whether an identity has a day-old beard or not; (2) young
- whether an identity is young or not; and (3) male - whether an identity is
male or not. ’Male’ and ’Young’ are commonly used properties in FR and EIL
domains; while ’5 o’clock shadow’ is more challenging due to its delicate physical
aspects. Note, 5 o’clock shadow and young properties were evaluated in the
CelebA dataset [15] evaluation; and male property was evaluated in both the
CelebA [15] and MAAD-Face [25] datasets evaluation. In the evaluation, five
different proportions of the positive property value were evaluated - 0%, 25%,
50%, 75%, and 100%. As all examined properties are binary, AdversariaLeak
was applied with two substitute models, i.e., one for each extreme distribution
(100% and 0%).
Compared Attacks. We compared AdversariaLeak to two state-of-the-art EIL
attacks - the loss test and threshold test attacks [24]. In the loss test attack,
we create two attacker sets with 0% and 100% property distributions. Then, we
query the target model with each set, evaluate its performance (using accuracy),
and select the property values of the set that achieved better performance. In
the threshold test attack, we used two substitute models with extreme property
distributions 0% and 100%, i.e., we adjusted this attack to realistic attacker as-
sumptions. Then, we create two data sets S0 and S1 with 0% and 100% property
distributions respectively, and identify which of them maximizes the performance
gap between the substitute models (denoted as Sk). Then, we find the threshold
λ that maximizes the ability to distinguish between models that were trained on
Sk and all others. Finally, we queried the target model with Sk and select Sk’s
property value if the performance received is higher or equal to λ.

5 Experimental Results

The results were obtained using RepVGG_B0 [8] and IResNet100 [3] backbones;
IResNet100 results are in the supplementary material due to space limits.

Attack Results All of the results presented were validated by three cross-
validations. Fig. 2 presents the results for AdversariaLeak on the CelebA dataset [15]
using the Carlini-Wagner (CW) [5] (plots (a)-(c) and (g)-(i)) and the Projected
Gradient Decent adversarial attack (PGD) [16] (plots (d)-(f) and (j)-(l)) with
a query budget of 3,000 samples at most. Each plot in Fig. 2 presents the re-
sults obtained for the 5 o’clock shadow (blue bars), denoted as 5OCS; young
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Fig. 2: Results of AdversariaLeak on the CelebA dataset [15].

(orange bars); and male (green bars) properties. The results are on attack sce-
nario 1 (plots (a)-(f)) and attack scenario 2 (plots (g)-(l)). Each plot presents the
fraction of adversarial samples that mislead the target model, denoted as FMS
(y-axis), for each target model trained on the five different property distribu-
tions (x-axis). For each target model, the FMS metric is presented for the unique
samples crafted for the two substitute models of AdversariaLeak: i) 0% property
value distribution (the lighter bar); and ii) 100% property value distribution (the
darker bar). According to AdversariaLeak, when the FMS of the 0% substitute
model (the lighter bar) is higher, the property value that best characterizes the
target model training set is the “0" value (e.g ., not 5 o’clock shadow, not young,
not male) and vice versa. Similarly, Fig. 3 presents the results for Adversari-
aLeak on the MAAD-Face dataset [25] using the Carlini-Wagner (CW) [5] (plot
(a)) and the Projected Gradient Decent adversarial attack (PGD) [16] (plot (b))
with a query budget of 3,000 samples at most.

Overall, it can be seen that AdversariaLeak succeeds in identifying the prop-
erty value that best characterizes the target model’s training set regardless of
the adversarial attack used, the attack scenario and the dataset, i.e., when the
target model is of the 0% and 25% distributions, the 0% substitute model has a
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Fig. 3: Results of AdversariaLeak on the MAAD-Face dataset [25].

Table 1: Results of AdversariaLeak (Our), loss test (LTA) and threshold test (TDTA)
attacks [24], on the CelebA [15] and MAAD-Face [25] datasets.

Property Scenario
Target Model Per Distribution

0% 25% 50% 75% 100%
LTA TDTA Our LTA TDTA Our LTA TDTA Our LTA TDTA Our LTA TDTA Our

5OCS
(CelebA [15])

1 Not 5OCS 5OCS Not 5OCS Not 5OCS 5OCS Not 5OCS Not 5OCS 5OCS Not 5OCS 5OCS 5OCS 5OCS 5OCS 5OCS 5OCS
2 Not 5OCS 5OCS Not 5OCS Not 5OCS 5OCS Not 5OCS Not 5OCS 5OCS 5OCS 5OCS 5OCS 5OCS 5OCS 5OCS 5OCS

Young
(CelebA [15])

1 Not Young Not Young Not Young Not Young Not Young Not Young Not Young Not Young Young Not Young Not Young Young Young Not Young Young
2 Not Young Not Young Not Young Not Young Not Young Not Young Not Young Not Young Young Not Young Not Young Young Not Young Not Young Young

Male
(CelebA [15])

1 Not Male Not Male Not Male Male Not Male Not Male Male Not Male Not Male Male Male Male Male Male Male
2 Not Male Not Male Not Male Male Male Not Male Male Male Not Male Male Male Male Male Male Male

Male
(MAAD-Face [25]) 2 Not Male Male Not Male Not Male Male Not Male Male Male Male Male Male Male Male Male Male

higher FMS, and when the target model is of the 100% and 75% distributions,
the 100% substitute model has a higher FMS. This success is statistically signif-
icant (see supplementary material). In addition, when examining the results on
the target model trained on a balanced distribution (the 50% distribution), it
can be seen that most of the gaps between the FMS of the two substitute models
(lighter and darker bars) are relatively smaller than those in other distributions
(Section 6). Furthermore, the standard deviation (the black line in each bar)
is less than 0.09 in most of the experiments, indicating that AdversariaLeak’s
results are consistent. Moreover, we note that the standard deviation slightly
increased from scenario 1 to scenario 2 in Fig. 2 (which is consistent with the
scenarios’ difficulty) with no noticeable changes in the FMS gaps.

Query Budget Effect Fig. 4 presents the results for AdversariaLeak on the
CelebA dataset [15] using the Carlini-Wagner [5] (plots (a)-(e) and (k)-(o)) and
the PGD [16] (plots (f)-(j) and (p)-(t)) attacks. The results are on attack sce-
nario 1 (plots (a)-(j)) and attack scenario 2 (plots (k)-(t)). Each plot in Fig. 4
presents the gap (y-axis) between the FMS of samples crafted on a substitute
model trained on 0% of the property and on a substitute model trained on
100% of the property (i.e., FMS0%−FMS100%), across different query budgets
(x-axis), which ranges between [1, 200], and different properties (colors) for each
target model trained on the five different property distributions (denoted as PD).
Note, the query budget represents the number of unique samples from both the
substitute models, i.e., query budget = unique_set_0% + unique_set_100%.
The percentage gap, presented on the y-axis, can reflect AdversariaLeak’s final
decision. When negative, the attacker infers that the target model training set
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Fig. 4: Query budget results of AdversariaLeak on the CelebA dataset [15].

mainly consists of the examined property (e.g ., 5 o’clock shadow, young, male),
and when positive, the attacker infers the opposite (e.g ., not 5 o’clock shadow,
not young, not male). To control the query budget used, the number of unique
adversarial samples taken from the unique sample sets to query the target model
was limited. This was done by selecting the unique samples that received the
highest confidence score from the substitute model they were crafted on, i.e., the
samples that mislead the substitute model the most. Similarly, Fig. 5 presents
the results for AdversariaLeak on the MAAD-Face dataset [25] using the Carlini-
Wagner [5] (plots (a)-(e)) and the PGD [16] (plots (f)-(j)) attacks. Overall, it
can be seen that AdversariaLeak succeeds in identifying the property value that
best characterizes the target model’s training set, regardless of the adversarial
attack used, the evaluated scenario and the dataset, by using a minimum of 24
queries to the target model in scenario 1 and 60 in scenario 2. This indicates
that AdversariaLeak outperforms existing attacks and reduces the query number
required to perform a successful EIL attack.
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Fig. 5: Query budget results of AdversariaLeak on the MAAD-Face dataset [25].

Comparison to EIL Attacks Table 1 presents the results of the loss test
(LTA) and threshold test (TDTA) attacks [24] and AdversariaLeak’s final re-
sults on the CelebA [15] and MAAD-Face [25] datasets. The presented LTA and
TDTA results were obtained by using the entire attack crafting sample set in
their benign form, i.e., before performing the adversarial sample crafting process.
Note, that the attack crafting samples set is not part of the training process of
the models and is used only to query the models in any of the compared meth-
ods. The attack crafting samples set of the CelebA dataset [15] contained about
7, 088, 14, 000, and 23, 405 images with a standard deviation of 209.08, 6, 922.65,
and 14, 454.51 in the 5 o’clock shadow, young, and male properties experiments
respectively. The attack crafting samples set of the MAAD-Face dataset [25]
contained about 656, 680 images with a standard deviation of 3, 413.99 in the
male property’s experiments.

From Table 1 we can see that in the experiments on the 5 o’clock shadow
property, TDTA failed in half of the experiments (the grey cells), whereas LTA
and AdversariaLeak achieved similar results, i.e., the final property value chosen
by the attacker is identical. In the experiments on the young and male properties,
AdversariaLeak outperformed LTA and TDTA, i.e., AdversariaLeak succeeded in
inferring the correct property value in all the examined experiments whereas LTA
and TDTA did not (the grey cells). Moreover, when examining both scenarios, we
can see that the LTA is less stable when the attack scenario is stricter (scenario
2). Furthermore, while the LTA and TDTA failed to infer the correct property
value in some of the experiments when using tens of thousands of queries to
the target model ,for example, using maximum query budget of 24,000 samples
in each experiment (for a complete query budget analysis see supplementary
material), AdversariaLeak succeeded in inferring the correct property value in
all of the experiments, with a minimal number of 24 to 60 queries.
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6 Discussion

Throughout the experiments, interesting attack behavior was discovered in the
experiments related to the target models trained on a 50% property distribution.
In those experiments, the gap between the FMS of the substitute model trained
on 0% of the property and the substitute model trained on 100% of the prop-
erty (i.e., FMS0% − FMS100%) should be close or equal to zero (inconclusive
decision). However, in most of those experiments on the CelebA dataset [15],
AdversariaLeak showed a clear preference for specific property values, i.e., not 5
o’clock shadow, young, and not male values. These tendencies to favor specific
property values can be explained by examining the only component that is not
affected by the property distribution in all target models trained on the CelebA
dataset [15], i.e., the pre-trained backbone that was used. The RepVGG_B0
backbone was trained on a clean version of the MS-Celeb-1M dataset [12], which
varied with respect to the identities’ age (there is no clear indication for a spe-
cific age distribution), yet it contains mainly female identities, which causes it to
have more identities without a beard. It can be seen that the gender distribution
(mostly female) and 5 o’clock shadow distribution (mostly without beard) of the
MS-Celeb-1M dataset leaks into AdversariaLeak’s results for the target models
with a 50% property distribution when the backbone is pre-trained. Contrary
in the MAAD-Face dataset [25] this phenomenon is not observed which can be
explained by the fact that we have fine-tuned the backbone. Those observations
indicate that the property distribution of the backbone’s training set may affect
the attack results (extended in the supplementary material).

To mitigate the risk posed by EIL attacks, several countermeasures can be
considered: adversarial training [16], differential privacy [9], fine-tuning with di-
verse datasets [28] and robust architectures with defensive distillation [21]. These
measures collectively improve model robustness and privacy, which could reduce
the vulnerability to EIL attacks (extended in the supplementary material).

7 Conclusion and Future Work

In this paper, we presented AdversariaLeak, a novel EIL attack for FR systems
that infers the property value that best characterizes the distribution of the
target model training set. AdversariaLeak uses a minimal number of substitute
models to craft and handpick a set of unique adversarial samples, which are
used to query the target model. The experimental results demonstrate that, in
contrast to existing attacks, AdversariaLeak is successful and suitable for real-
world attack scenarios due to its use of a minimal query budget of 24 to 60 queries
and practical attacker assumptions. The principles behind AdversariaLeak are
not limited to FR systems. Future work may include applying AdversariaLeak in
different domains such as tabular data domains; adjusting it to other computer
vision tasks, such as object detection; and estimating the exact target model’s
distribution.
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