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In this supplementary material, we begin by presenting the implementation
details of our method by first explaining about the use of Multi-Resolution Hash
Encoder as Displacement Encoder and Spherical Harmonics Encoder in detail in
§1.1. We then provide more mathematical details on how we bind 3D Gaussians
to mesh surface in §1.2. Our stage wise training strategies are explained in §1.3.

We present more qualitative restuls and comparision on PeopleSnapshot [1]
and in-the-wild UBC-Fashion [12] dataset in §2. Then, we show challenging cases
in §3. Finally, we show use of GART as template model for iHuman in §4 that
handles clothing deformation better.

1 Implementation Details

1.1 Hash Encoding

A single scene reconstructed using 3D gaussian splatting contains a very large
number of gaussians. Backpropagating the gradients to every gaussians in every
iteration results in poor performance due to which we need an efficient sampling
strategy is needed to select only a few gaussians to be updated every iteration.
Inspired by [9] we encode the color and displacement for each gaussian using a
multi-resolution hash encoder.
The color and displacement encoder include a hash encoder followed by a fully-
fused MLPs implemented using the tiny-cuda-nn framework [10]. The imple-
mented hash encoder has 16 levels, hash table size of 217 with 4 features per
entry in the table with a base resolution of 4 and resolution growth factor of 1.5.
The fully fused MLPs consist of 2 hidden layer with 64 neurons per layer and
uses relu as the activation function. Both the color and displacement encoder
take the gaussian position as input and produce a color and displacement value
of the same dimension as the input.

1.2 Binding Gaussian To Mesh Surface

As we explained in Section 3.3, we bind Gaussians at the centroid of the trian-
gular face. Given face ix, the centroid is given by:

x =
ix[1] + ix[2] + ix[3]

3
. (1)

Through this equation, we always maintain the position of Gaussian at the
centroid of the face ix. And, we can directly optimize the vertices Vc of canonical
mesh M = (Vc, F ).

Similar to SuGaR [5], we parameterize the 3D rotation of the Gaussians
with only 2 parameters by encoding the rotation in complex 2D rotation form
with (x+ iy). We limit their rotation to local 2D triangular face plane. We now
explain how we convert the local 2D complex rotation to 3D rotation required
for Gaussian Rasterizer.
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Consider a set of face normals ni for each face i of the mesh. We first nor-
malize these normals to obtain a primary direction vector R0:

R0 =
ni

∥ni∥
. (2)

The second direction vector R1 is calculated using the difference between
the first two vertices of the triangle, yielding the edge vector e12, which is then
normalized:

R1 =
e12
∥e12∥

. (3)

The third direction vector R2 is produced by the cross product of R0 and
R1, ensuring orthogonality:

R2 =
R0 ×R1

∥R0 ×R1∥
. (4)

To incorporate the parameterized 2D rotation defined by complex number of
2 parameters for each Gaussians, we apply them to the base vectors R1 and R2

to obtain the rotated axes.
Finally, the rotation matrix R for each Gaussian distribution is constructed

by combining the normalized primary, secondary, and tertiary direction vectors:

R = [R0,R1,R2]. (5)

These rotation matrices R are used to orient the Gaussians so that they
follow the orientation of the mesh surface.

As scaling parameter S, we use:

S = (s1, s2, s3) (6)

where, s1 = ϵ, s2 and s3 are learnable parameters. s1 corresponds with the
normal vector. In practice, we set ϵ = 1mm.

1.3 Training

For the PeopleSnapshot [1] and Multi-Garment Dataset [3], we use the same
hyper parameter across all the subjects. We use Adam [7] optimizer for parameter
optimization. Each 3D Gaussian is defined by a center (x), scale (S), opacity
(α), rotation (q), spherical harmonics (SH) and blend weights (w). We don’t
optimize α, q and w. We keep α = 1. We optimize the joints position (J) of
the canonical skeleton. For learning good geometric details, the number of 3D
Gaussians should be enough to model the geometry. We use template mesh of
about 220K triangular faces and same number of 3D Gaussians are initialized
for PeopleSnapshot and Multi Garment Dataset.

We divide the training into three stages where we prioritize learning geomet-
ric information in the earlier stage and color information in the later stages. The
first stage lasts till 4th epoch, then the second stage starts from 4th epoch and
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ends at the 10th epoch and the final stage starts from 11th and lasts till the 20th

epoch. We use the same scale learning rate of 5e-3 and SH encoder learning rate
of 5e-4 throughout the training process. We use a joints learning rate of 5e-4 for
the first and second stage and do not optimize the joints location in the final
stage. We use learning rate for displacment encoder of 1e-4 in the first and final
stage and 8e-4 in the second stage. We keep the normal and photometric loss
weight of 1 and normal consistency loss weight of 0.01 throughout the training
process. For UBC-Fashion Dataset, we add a pose optimization step where we
also optimize the body pose, global orientation and translation parameters of
the SMPL body model by using a common learning rate of 1e-4 for all three
parameters.

To obtain the ground truth normal, we use pretrained pix2pixHD network by
PIFuHD [11]. In Nvidia RTX 4090, normal maps can be obtained for 20 images
in less than a second. So, getting normal-map doesn’t add any significant time
bottleneck in data pre-processing step.

2 Additional Qualitative and Quantitative Results

2.1 Qualitative Results

3D Mesh Reconstruction. We show 3D mesh reconstruction of GART [8],
Anim-NeRF [4] and our method on our synthetic Multi-Garment Dataset in
Fig. 1. We show more qualitative results of mesh reconstruction of the proposed
method on PeopleSnapshot in Fig. 2.

In Fig. 4, we show reconstructed normal map image. The quality of normal
map image being close to the ground truth normal map also shows good quality
and fidelity of the reconstructed mesh.

We show some qualitative results of 3D Mesh reconstruction on UBC-Fashion
dataset in Fig. 3.

Novel View Synthesis. Compared to other SoTA methods, our method
achieves novel view with less artifacts in less time and less number of input
sequences 5.

As shown in Fig. 6, iHuman achieves good quality novel view synthesis even
being trained with only 6 number of views.

We show novel pose synthesis results in Fig. 7 on PeopleSnapshot [1] of the
subjects trained with only 20 input views.

2.2 Quantitative Results.

Instant Avatar with Test Time Pose Optimization
For fair comparison, Table 2 on the main paper shows metrics without test

time pose optimization. To represent the paper as faithfully as possible, we report
InstantAvatar [6] metrics on PeopleSnapshot with test time pose optimization in
Table 1 . For 20 views using test time pose optimization the metrics improves but
still for 6 views and 12 views, InstantAvatar [6] struggles to converge compared
to our method and GART [8].
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Fig. 1: Visualization of 3D reconstruction on Multi Garment. Mesh from
GART [8] and Anim-NeRF [4] suffers from heavy artifacts while our method pro-
duces high fidelity mesh. Better surface reconstruction than another 3D Gaussian based
method, GART can be attributed to our mesh binding and explicitly computed normal
map optimization.

3 Challenging Cases

UBC-Fashion dataset [12] contains subjects in long clothing that undergoes de-
formation. As shown in Fig. 8, with heavy clothing deformation, though the re-
constructed view looks good, there are some geometric implausible views. Even
with heavy deforming scene, the reconstructed mesh doesn’t contain floating
artifacts.

4 GART as Template Model in iHuman Pipeline

One limitations with SMPL template is modeling some clothing topology. Better
modeling of deforming clothes require better template models than SMPL. In-
deed, we use the blending weights, joints and, vertices and trianlges from SMPL
and create our own deformer that can be replaced with any forward LBS based
template model. iHuman is modular and the SMPL template can be replaced
trivially by another which supports i) forward skinning and ii) mesh model. In
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Fig. 2: More 3D reconstruction results of our method on PeopleSnapshot [2].
Our method accurately reconstructs surface details like shirt collar and cloths wrinkles.

Fig. 9, we replace SMPL with GART template and obtain better loose clothing
deformation. So, our method can benefit from better templates while we focus
more on obtaining mesh and better surface geometry from 3DGS. Note that we
use 40K to 200K vertices, and recommend over 200K vertices for loose clothing.
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Fig. 3: 3D Reconstruction on UBC-Fashion [12].

Methods male-3 male-4 female-3 female-4
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Instant Avatar(6 views) 15.24 0.8279 0.2624 16.51 0.803 0.3138 16.30 0.8316 0.2736 22.44 0.9292 0.0906
Instant Avatar(12 views) 23.10 0.9328 0.0931 17.63 0.8227 0.2769 24.08 0.9477 0.0693 19.73 0.8912 0.1544
Instant Avatar(20 views) 27.95 0.9604 0.0316 25.99 0.9484 0.0537 25.19 0.9511 0.0715 28.39 0.9619 0.0209
Table 1: Result of Novel View Synthesis of Instant Avatar with test time
pose optimization on PeopleSnapshot [2] dataset. We report PSNR, SSIM, and
LPIPS of InstantAvatar [6] with computational budget of maximum 5 minutes along
with test time pose optimization.
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Fig. 4: View Reconstruction and Normal Map Visualization on UBC-
Fashion [12]. (Left) View reconstruction on one subject of UBC-Fashion. (Right)
GT normal map and reconstructed normal map visualization.

Fig. 5: Qualitative Comparison of performance of Instant Avatar [6], Anim-
NeRF [4], GART [8] and Ours for different number of views in X pose.
Instant Avatar and Anim-NeRF fails to reconstruct the subject whereas GART has
artifacts around the arms and between legs. Our method is robust even for only 6
input sequences.
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Fig. 6: Qualitative results on View Synthesis on People Snapshot [1] on
different number of input sequences. Even with only 6 input views, our method
achieves good quality view reconstruction.

Fig. 7: Novel Pose Synthesis on PeopleSnapshot [1]. We can feed the SMPL
input pose to our iHuman Template Model to synthesize novel poses. Though trained
on only A-pose, our method stably renders new image under complex poses.
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Fig. 8: Challenging Case. Under heavy clothing with deformation, the view recon-
struction is shown (Left). 3D Mesh reconstruction is implausible for some view direction
(Right).

Fig. 9: Reconstruction accuracy: GART vs. SMPL as iHuman’s template for loose
clothing.
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