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Fig. 1: Instant Digital Humans. Our method provides detailed and accurate 3D
mesh and renderable Gaussian Splats instantly in 15 seconds of training time, from a
monocular video. In contrast, the existing methods Anim-NeRF and GART
provide lower quality mesh and rendered images, even after using more training time
and compute. Input video (left) and rendered poses around the recovered meshes.

Abstract. Personalized 3D avatars require an animatable representa-
tion of digital humans. Doing so instantly from monocular videos offers
scalability to broad class of users and wide-scale applications. In this
paper, we present a fast, simple, yet effective method for creating ani-
matable 3D digital humans from monocular videos. Our method utilizes
the efficiency of Gaussian splatting to model both 3D geometry and ap-
pearance. However, we observed that naively optimizing Gaussian splats
results in inaccurate geometry, thereby leading to poor animations.

This work achieves and illustrates the need of accurate 3D mesh-type
modelling of the human body for animatable digitization through Gaus-
sian splats. This is achieved by developing a novel pipeline that benefits
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from three key aspects: (a) implicit modelling of surface’s displacements
and the color’s spherical harmonics; (b) binding of 3D Gaussians to the
respective triangular faces of the body template; (c) a novel technique
to render normals followed by their auxiliary supervision. Our exhaus-
tive experiments on three different benchmark datasets demonstrates the
state-of-the-art results of our method, in limited time settings. In fact,
our method is faster by an order of magnitude (in terms of training time)
than its closest competitor. At the same time, we achieve superior ren-
dering and 3D reconstruction performance under the change of poses.
Our source code will be made publicly available.

Keywords: Digital Humans- Gaussian Splats - Surface reconstruction

1 Introduction

Instant and accurate creation of personalized 3D avatars is highly sought-after
for digital human representation, to enable vast applications in virtual reality
(VR), augmented reality (AR), gaming, and telepresence. A key component in
this regard is the animatable representation [12,[19,[56]. On the other hand,
reconstructing animatable digital humans instantly from monocular videos can
immediately facilitate wide-scale applications serving a broad class users. Most
of the existing monocular video based methods focus on either the real-time
rendering solutions [1] (using long training/reconstruction time), or only mesh-
level reconstruction without the possibility of realistic re-rendering under the
change in pose. These solutions eventually hinder the broad-scale applicability,
which we aim to address in this paper by developing a novel method for instant
and accurate modelling of animatable digital humans from monocular videos.
In recent year, building on the re-
markable success of representing radi- st avate 1 i
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dering in the NeRF-based methods creates a major bottleneck for
the aimed instant animatable digitization. Therefore, some very recent meth-
ods have been developed by leveraging the rendering efficiency of
the Gaussian Splats . However, these methods do not meet some or all of the
required criteria in capturing (i) from monocular videos; (ii) in instant manner;
(iii) animatable avatar; and (iv) high quality re-rendering under change in pose
v) get mesh representation.

In this paper, we propose an efficient pipeline to convert a monocular video,
with known pose, to animatable digital humans instantly (training time on par
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with that of capture) in few seconds, using Gaussian splats based modelling.

Doing so faithfully is particularly challenging primarily due to the difficulty of
(1) inaccurate initialization of the Gaussian splats and (ii) ensuring the animat-

able nature of the output. Our proposed method addresses the challenges by
introducing contributions on three aspects: (a) implicit modelling of surface’s

displacements and the color’s spherical harmonics; (b) binding of 3D Gaussians

to the respective triangular faces of the body template; (c) a novel technique to

render normals followed by their auxiliary supervision. The proposed method is

intuitive, simple, fast, yet effective. The qualitative and quantitative benefits of
our method are highlighted in Figure [I] & [2] respectively.

The main contributions of this paper are:

— We propose a complete pipeline to obtain accurate 3D mesh bound Gaussian

splats suitable for avatar animation, from monocular videos in instant manner.

— The proposed technical contributions involve; implicit representation, binding
of gaussians to triangular faces, normal derivation for the auxiliary supervision.

— We conduct exhaustive experiments for comparisons, where our method achieves
superior representation quality with an order of magnitude faster training speed.

2 Related Work

Mesh based reconstruction methods. Most methods that represent the human
body as a mesh make use of SMPL [43] or other parametric body models 11150}
55|. Methods in this category predict the parameters for the parametric body
model either by regression [25,49,54] or by optimization [7]. Kolotouros et al. [31]
and similar methods 39|46 directly regress the 3D vertices. Although the out-
put meshes here can be animated they do not contain the clothing details and
personalized facial features. Methods which extend the parametric body model
with a deformation layer [245] can model clothing as well but are unable to
accurately model personalized geometric details.

Implicit functions based approaches. Implicit functions based reconstruction
methods [44}45,52,|68|[78] use an MLP to learn an implicit function such as
occupancy, signed distance fields or density fields to describe geometry. They
can represent and render the geometric details of static scenes but suffer from
high training time. Anim-NeRF [8] and other similar methods |9}/10}/16,18}[19}21}
23),37},40,56},58,/69.|71},73| extend NERF to dynamic scenes by using SMPL [43]
guided deformations between the observed space and a static canonical space
allowing for explicit control. Instant Avatar [22] and similar approaches [24,/83]
use [66] to speed up the training time but still have high memory requirements.

Gaussian Splat based approaches. Recently introduced 3D gaussian Splatting(3D-
GS) |28] uses 3D Gaussians and its projections to represent a static scene. 3D-GS
achieves significantly faster training and rendering time over NERF-based ap-
proaches. Recent works [201/30,(33}/3638}/47./51,/60L/86] extend 3D-GS to represent
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dynamic scenes using SMPL guided deformations. They produce an animatable
representation of the human body at faster speed compared to previous methods.
However, the Gaussians obtained from the standard 3D-GS optimization pro-
cess are unstructured and may not correspond to the surface, thus the Poission’s
reconstruction [26] does not result in accurate geometry. A 3D-GS extension,
SuGaR [17] introduces an approach to align Gaussians to the surface geome-
try. Consequently, a mesh can be extracted using Poission’s reconstruction |26].
Other methods [67], [59] use a mesh prior to initialize the 3D Gaussians to obtain
well structured 3D Gaussians. Binding Gaussians to the mesh surface produces
better geometry than approaches that only use 3D Gaussians but they still do
not capture surface details. [61}74475] use normal maps to capture high frequency
details. However, [61}/74,|75] uses a single image to infer geometry, thereby re-
sulting in relatively less accurate geometry. Our method uses Gaussians that are
binded to the surface of a mesh as well as a novel normal guidance to produce
animatable mesh of the human body while capturing body details.

3 Method

Provided a monocular video sequence with a dynamic human and the body
poses, our goal is to generate a personalized colored mesh 3D model of a subject
consisting of body shape, hair and clothing geometry, and underlying skeleton.
Given an n frame video sequence (I;)7_; of a single subject in front of a fixed
camera (camera pose and intrinsics), along with the respective body poses {6;}
we output a personalized animatable representation of the human subject. The
keyword ‘animatable’ implies that we should be able to render the underlying
representations in novel body poses {;}. Additionally, we want to complete the
challenging training process in seconds, in favor of scalability.

We achieve our goal of obtaining an animatable 3D human using 3D Gaussian
Splatting (3D-GS) [17,27]. Below we explain the 3D-GS and its deformations as
preliminaries in We then introduce our iHuman representation and describe
the details of our method. iHuman initializes 3D-GS in the canonical SMPL pose,
see §3:2] We bind each 3D Gaussian to a triangle face as described in §3.3] We
then proceed onto deforming the 3D-GS consistent to the posed space, corre-
sponding to the real image in Taking advantage of explicit 2D Gaussians
embedded in 3D [17}|67], we encode normal for each Gaussian in

3.1 Preliminaries

3D Gaussian Splatting. 3D Gaussian Splatting (3D-GS) has recently become
the state-of-the-art tool for novel view synthesis. Important for our applica-
tion, different from NERF, 3D-GS also uses explicit 3D representation using
anisotropic 3D Gaussians.

A 3D Gaussian can be written in terms of its full 3D covariance matrix
¥ € R3%3, ¥ > 0 and position in space y € R3 along with center x € R3.

G(y) = exp (—;(y—x)TE‘l(y—w))- (1)
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Fig. 3: Our method represents the human body in canonical space with gaussians
parameterized by 3D gaussian centers x, rotations ¢, scales S, opacity a,, colors SH,
skinning weight w and its associated parent triangle i,. It takes body pose 8; of t'"
frame as input and applies forward linear blend skinning to transform v’ to posed space
vp. We compute gaussian center x from the posed space vertices vy, of i;. The normal
of parent triangle i, is encoded to SH; and rasterized to obtain the normal map I5.
Then, we apply photometric loss and normal map loss to recover both geometry and

color. The GT normal map ([3) is obtained from monocular RGB image (I,,) using
pix2pixHD network.

Kerbl et al., however represents each 3D Gaussian to be splatted by the
Gaussian 3D center position 2 € R3, color ¢ € R3, opacity a € R, its orientation
parametrized by a 3D rotation written as a quaternion ¢ € R*, and anisotropic
3D scaling factor s € R3 . Instead of directly assigning a color value ¢, we
use the Spherical Harmonics function, denoted as SH to model appearance on
the projection ray originating from x. Thus the representation can be denoted
as,

g:{z,QaSaOémSH}- (2)

Note that Eq. can be used with compact sets by approximating Gaussians
with ellipsoids, thus simplifying both rendering and optimization . Nonethe-
less, equivalence between the two exists where X' can be written explicitly in
terms of the scale s and orientation R(q) € SO3 as

Y =RSSTRT. (3)

In order to project the 3D Gaussians onto the camera for rendering, given
a viewing transformation W, the covariance matrix X’ in camera coordinates is
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given as follows:

S =IwEw T, (4)
where, the Jacobian J is the affine approximation of the projective transforma-
tion.

Finally, the projected Gaussians are depth sorted and rasterized. During the
process of rasterization, each Gaussian contributes to the pixel color through an
opacity value a and coefficients ¢ which encapsulate the color information. The
resulting volumetric rendering equation that each Gaussian adds to the pixel is
represented as follows:

C = Z Ci(;, (5)
ieN
where, C' is the final pixel color and N is the number of Gaussians (ellipsoids)
projected on to the pixel.

3.2 Gaussian Human Template Model

Our iHuman approach uses a Gaussian template model on the canonical pose of
the standard SMPL shape [43]. We denote this canonical mesh as M composed
of vertices Ve = {wg,v1, ..., } and triangles F = {i,}, thus M = (V¢, F). We
then bind the Gaussians in 3D to the canonical mesh M as described in Eq. .
This process is described in §3.3] where each Gaussian is tied to a specific face,
i.e., triangle i,,. We thus obtain the Gaussian Splat representation for the subject
in the canonical SMPL pose by extending Eq. as follows:

gskinned = {I,q,S,OZ,SH,U/,(gz,’L'm}. (6)

In contrast to Eq. , in Eq. @, each Gaussian center x is in fact the centroid of
a triangle i,. Additionally, we introduce new parameters where w is the skinning
weights obtained from the standard parametric body model [43]. Importantly,
&y is the vertex displacement for the canonical shape vertex v to the clothed
subject shape v’

v =v+d,. (7)

The displacement vectors 4, are obtained vertex-wise from a continuous Hash
Encoder whose output is fed to a 3-layer MLP (multi-linear perceptron). We
denote this as:
oy = f5 (h(v)) (8)
where f is a 3-layer MLP and h(.) is the hash encoder similar to the instant
NGP [66].
After the displacements, we bind the 3D Gaussians to the parent triangle i,
by centering it on the centroid of the face i, at x. The rotation ¢ and scale S
are 2D rotation and scale as explained in [3:3] Each triangle center z for i, is

obtained as,
T w2 4
z = lal ]“w?EH“[?’]. (9)
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In order to obtain the new Gaussian representation of Eq. @, we need to
obtain the set of parameters {q, S, «, SH,d,}. Using Figure |3, we now explain
how we obtain these quantities.

For each mesh face i,, rotation ¢, scale values S and Gaussian opacity «
are optimized as free variables. We further use optimization for the rotation ¢
and SH coefficients for appearance rendering. Similarly, the SH coefficients are
optimized as a function of h(v).

3.3 Binding Gaussians To Mesh Surface

In the original works, the Gaussian splats are initialized on the point clouds out-
put by a Structure-from-Motion (SfM) method such as COLMAP [62]. A recent
work SuGaR [17] proposes using surface aligned Gaussians for the optimization,
such that one of the axes of the Gaussian covariance X is aligned to the surface
normal n;, with the corresponding scale as 0. In iHuman, we have the advantage
of mesh initialization through the SMPL canonical model. Therefore, we propose
to align all Gaussians according to the following steps:

1. Compute the surface normal n; for each face i,.

2. For each Gaussian, assign n; as one of the directions of its covariance matrix
X, with the corresponding scale in S, i.e., S3 = e. In practice we keep
€ = Imm, an extremely small value.

3. Assign the other two directions according to the major directions of the
triangular face.

As a consequence of having a 2D Gaussian, we further reduce the learnable
parameters required for obtaining the posed as well as canonical human mesh.
For each Gaussian we can directly set S5 = € and the quaternion is reduced to
a complex number of a single degree of freedom in order to keep the Gaussian
aligned with the triangle.

3.4 3D Gaussian Deformation

Together with the Gaussian binding and the template model described in §3.2]
§3.3] we are able to precisely represent a human surface in the canonical pose.
In this section, we deform the Gaussian Splat model in order to represent any
pose of a human subject. Given the input pose 6;, we achieve the deformation
using forward linear blend skinning [34].

Thus, we compute the transformation of each vertex v’ in posed space with
blend skinning w(6;). The transformation of each point v is calculated with blend
skinning w(#) and target bone transformation B(6;) = {B1(6:),...,Bn,(0:)}.
The skinning weight field is defined as:

w(ve) = {w1,...,wp, } (10)

where v’ is a point in canonical space and ny is the number of bones.
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Target bone transformations B; = {B}, ..., B;"*} in frame ¢ can be calculated
from the input poses and the corresponding skeleton as follows:

S, J, Ty — By, (11)

where S; = {w}, ...,w;"" } refers to the rotation Euler Angle of each joint in frame
t (world rotation for w} and local rotation for the rest), T} is the world translation
in frame ¢, and J = {Ji, ..., J, } is the local position of each joint in canonical
space. We transform a vertex in canonical space to posed space:

ny
vp:Zwi-Bf-U’ (12)
i=1

where v, represents the direct mapping of v’ in posed space. From v, we calculate
the 3D Gaussian center = as given in Eq. @D and 3D rotation ¢ from the 2D
rotation as explained in

3.5 Normal Map from 3D Gaussian

Gaussian Splats are generally optimized using RGB photometric loss |27} [59].
However, we note that this approach results in a poor mesh, low on details. Our
goal is to compute details of human surface, e.g., facial attributes, wrinkles and
hair [See Supp|. To that end, we take advantage of two crucial facts:

1. We have explicit representation of vertices(v;) and faces (i,) available for
each Gaussian to obtain its normal without ambiguity from Eq. .

2. SOTA methods like ECON [61L|74}75] rely on normal map prediction from
RGB to produce SOTA results.

One can therefore use the depth gradient VDepth in order to compute the
surface normals. However, such measurements tend to inherently noisy as it relies
on the alpha blending of the gaussians which can introduce noise [see Supp|. On
the other hand, the normal image I; should also equal to the aligned normals
obtained from the posed vertices {v,}. We first compute the mesh/Gaussian

normals using Eq. .

__(wplix[1]] = vp[ix[0]]) X (vp[ix[2]] — vp[ix[0]])
[(p i [1]] = vp[iz[0]]) X (vplia[2]] — vp[iz [0]))]]

where vp[i,[j]] refers to the j-th posed vertex of the triangle in the face i,.

>

(13)

In order to obtain the normal map image from the estimated normals of
Eq. , we again make use of the Gaussian splatting rasterizer. In order to
preserve smoothness and accuracy, the Gaussian Splatting rasterizer already
provides a highly efficient approach for normal map computation. For that pur-
pose, we encode the normal 7 into a second spherical harmonics function SHj of
degree 0 by representing the components of the normal as: 7., 7y and 7, related
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to the rgb values of the rasterizer. The Spherical harmonics again operates on
the hash encoding of the vertices {v,} for efficiency and can be evaluated as:

1
Var

Thus we obtain the final normal prediction I; using another pass of the
Gaussian rasterizer with SHy. The final normal loss is therefore obtained as:
Loormai = I — I,. We obtain the ground truth normal map directly using a
pre-trained pix2pixHD [70] network in order to obtain (I) for every frame t.

Ay
SH;, = g (14)
p

3.6 Training

Given a set of training images and input poses, we learn our Gaussian Human
Template Model iHuman by optimizing the following objective function:

L= Ergb + Lnormal + ACreg (15>

where L, g, is the photometric loss, Lyormar is the normal map loss and L,.q
is the 3D regularization term for normal consistency. We employ a combination
of £; and D-SSIM term Eq. for both the L,4 and the L,ormar, With the
hyperparameter A = 0.2:

L= (1 — /\)£1 + )\‘CDSSIM‘ (16)

4 Experiments

4.1 Implementation Details

We use PyTorch [53] for the implementation and we choose Adam [29] as the
optimizer. We conduct all experiments on a single NVIDIA RTX 4090. We use
standard skinned human body template model, SMPL [43| as initial mesh tem-
plate and also use its blend skinning weights. We upsample the mesh to obtain
165K faces in order to initialize our model. To obtain the ground truth normal
maps for normal supervision, we use same pix2pixHD [70] network as used in
PIFuHD [61]. Our method runs at 20 iterations per second (optimization on 20
images in 1 second for 1 epoch) during training with > 100 fps during inference.

4.2 Datasets and Baselines

Datasets. We conduct experiments on 3 different datasets.

PeopleSnapshot [3]. It comprises of various monocular RGB videos of differ-
ent subjects recorded in natural settings. In these videos, individuals assume
an A-pose and rotate in place facing a stationary camera. We follow the same
evaluation protocol as Instant Avatar [22] by training our model with the pose
parameters optimized by Anim-NeRF [8]. We keep the poses frozen throughout
training for a fair comparison.
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UBC-Fashion [81]. PeopleSnapshot |3] contains tight clothings and all subjects
assume an A pose. In order to evaluate our method on in-the-wild long clothing
variations, we use videos from UBC-Fashion. As shown in Fig. [6] the subjects in
UBC Fashion [81] turn around in-front of a stationary camera in loose clothing.
We use the SOTA 3D human pose estimator ReFit [72] to obtain the SMPL
poses. As the obtained poses can be misaligned, we enable pose optimization
during training with our method.

Multi-Garment dataset [6]. Due to lack of high-quality geometry data of human
body in general clothing, we synthesize several sequences from Multi-Garment
Network (MGN) [6] dataset. The MGN dataset features 3D scanned models
of the human body complete with textures, along with corresponding SMPL-
D models that are registered for use in animation. For the creation of the
videos, we chose 4 human body models of different body types and clothing
variations. These models were animated based on motion sequences from the
People-Snapshot dataset |3, where subjects rotate in an A-pose.

The synthetic data from the MGN dataset are mainly used to evaluate the
quality of the 3D reconstructions. PeopleSnapshot is used for quantitative eval-
uation of novel view synthesis. Finally we use both PeopleSnapshot and UBC-
Fashion for qualitative evaluation of novel view synthesis and 3D reconstructions.

Baselines. We use the recent works GART [33], Anim-NeRF [§] and Instant-
Avatar [22| as our baselines. GART represents the human body in canonical
pose represented by the 3D Gaussian parameters and is therefore relatively
fast. Anim-NeRF [8] utilizes a multi-layer perceptron (MLP) based Neural Ra-
diance Fields (NeRF) [45] to represent human features in a canonical domain
and therefore naturally requires longer to optimize. Finally, Instant- Avatar [22]
also employs NeRF [45] based method that improves the speed of Anim-NeRF.
They achieve this speed up by the use of Instant-NGP [66] for radiance field
representation and rendering, Fast SNARF [9] for articulation and by the use of
occupancy grid for empty space skipping.

4.3 Evaluations

3D Mesh reconstruction. SOTA 3D human mesh reconstruction based meth-
ods such as vid2Avatar [16], selfRecon |21] requires more than 1 day of training
for a single avatar reconstruction. In contrast, our iHuman is orders of times
faster (15 seconds of training time) and uses lower memory. In our experimental
setup, we limit the running time of all methods to hard limit of 5 minutes.
So, we compare our method with current radiance-field based methods; GART,
Anim-NeRF with relatively faster training time and from which meshes can be
extracted. Specifically, we use marching cubes [|41] for mesh extraction from
Anim-NeRF and poisson reconstruction [26] on the point cloud obtained from
GART to obtain the meshes.

Metrics. We use bi-directional vertex to vertex (v2v) distances (in mm) cal-
culated by uniformly sampling the predicted and the ground truth mesh on
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Fig. 4: Qualitative results: we obtain fully rigged colored mesh using iHuman since the
reconstructed mesh share the same topology with SMPL body model. The obtained
meshes are watertight and accurate.

the MGN dataset. Following standard evaluation protocols, our first step in-
volves aligning the centers of the meshes and fixing their scales. Following this
alignment process, vertex-to-vertex (v2v) computations are conducted while the
meshes are in the canonical T-pose configuration. We also report normal consis-
tency for surface reconstruction comparison.

Subject Ours Anim-NeRF GART

v2v. NC PSNR LPIPS|v2v NC PSNR LPIPS| v2vn. NC PSNR LPIPS
Subject-1{11.15 0.0309 30.50 0.0172 |71.22 0.3294 23.16 0.0745 |147.81 0.0401 35.24 0.0140
Subject-2|12.81 0.0327 29.18 0.0267 |84.62 0.3795 24.24 0.0744 |138.37 0.0457 35.72 0.0160
Subject-3{11.78 0.0301 31.63 0.0159 |70.41 0.3310 24.21 0.0691 |134.43 0.0429 36.27 0.0146
Subject-4(13.12 0.0302 31.58 0.0178 [68.52 0.3428 24.04 0.0667 {152.99 0.0370 35.66 0.0162
Table 1: Numerical evaluation on MGN. We report v2v error (mm), mesh normal

consistency (NC), PSNR and LPIPS by our method, Anim-NeRF [§8] and GART .

Comparisons. The quantitative results are shown in Tab. [l Our method achieves
significantly better results on surface reconstruction compared to GART and
Anim-NeRF demonstrating the superiority of our approach in producing accu-
rate geometry.

In Fig. 5] we show side by side comparison of the ground truth subject and
the predicted mesh of our method along with the v2v error heatmap. Our iHu-
man robustly handles mesh reconstruction for different clothing and body types
for different subjects. In Fig. [f] we show some example reconstructions on Peo-
pleSnapshot dataset and MGN dataset. We show more qualitative results along
with comparison in Fig. [7} In only 15s, our method recovers high frequency
details such as face structures while other methods struggle with coarse body
geometry. For evaluation on more in-the-wild dataset, we show reconstruction
on UBC-Fashion dataset in Fig. [f] We provide more evaluations in the supple-
mentary.

Novel View Synthesis. We quantitatively evaluate our method on novel view
synthesis and report PSNR, SSIM, and LPIPS metrics on the test frames of
PeopleSnapshot. We note that all of our baselines require masked input image
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Fig. 5: Results on MGN dataset @: We compare the ground truth shapes (green) and
prediction (yellow) along with corresponding error heatmaps with respect to ground
truth shapes (blue represents errors < 1 cm and red represents errors > 3 cm).

]

Reconstructed Mesh

Tnput Anim-NeRF GART Ours View 1 View 2

Fig.6: View Synthesis and 3D
Mesh Reconstruction on challenging

Fig.7: Qualitative results of 3D
Mesh reconstruction on Peo-

UGB-Fashion dataset. Faithful recon-
struction on UBC-Fashion shows robust-
ness of our method on variety of clothing
and poses.

pleSnapshot . Our method produces
high fidelity mesh even capturing subtle
facial details like hair, ear in 15 seconds
of computational budget.

sequences and the corresponding SMPL pose parameters, which are costly to
obtain. Thus, iHuman benefits greatly by requiring less video frames in two
ways: 1) less amount of pre-processing ii) faster training. In this experiment, we
limit the training time budget to maximum of 5 minutes for all the methods.

In Tab [2] we show novel view synthesis results for the proposed method and
the baselines under different number of views. Our iHuman method achieves
better LPIPS compared to all the baselines and report second best PSNR.

In Fig. |8] we show novel view and novel pose synthesis on PeopleSnapshot.
The ability of our method to accurately model surface geometry helps in bet-
ter novel poses without artifacts. For evaluation on more in-the-wild setting,
we show results on UBC-Fashion in Fig. [} As SMPL template based defor-
mation model cannot account for loose clothing deformation, we can replace
SMPL template with any flexible model that supports i) forward skinning and
ii) has faces and vertices information like GART template model to handle
clothing deformations. This flexible architecture of our method allows for easy
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Methods male-3 male-4 female-3 female-4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Anim-Nerf(6 views, 5 mins) 22.01 0.9211 0.0810 22.60 0.9285 0.0826 22.18 0.9370 0.0686 24.44 0.9372 0.0524
Instant Avatar(6 views, 5 mins) 15.21 0.8228 0.2653 16.61 0.8035 0.3010 16.30 0.8210 0.2693 21.88 0.9221 0.0880
GART(6 views, 100 secs) 27.28 0.9593 0.0393 25.84 0.9527 0.0543 23.30 0.9440 0.0548 27.18 0.9593 0.0339
Ours(6 views, 6 secs) 25.27 0.9483 0.0301 22.64 0.9283 0.0525 22.44 0.9368 0.0426 25.08 0.9471 0.0332
Anim-Nerf(12 views, 5 mins) 23.81 0.9847 0.0624 23.10 0.9333 0.0789 22.38 0.9384 0.0623 25.87 0.9466 0.0463
Instant Avatar(12 views, 5 mins) 22.24 0.9226 0.1017 17.31 0.8152 0.2774 21.75 0.9265 0.0783 19.19 0.8789 0.1598
GART(12 views, 105 secs) 29.58 0.9733 0.0315 25.79 0.9540 0.0572 25.15 0.9597 0.0429 28.89 0.9664 0.0327
Ours(12 views, 12 secs) 26.84 0.9586 0.0219 24.93 0.9455 0.0372 23.22 0.9444 0.0359 26.01 0.9549 0.0281
Anim-Nerf(20 views, 5 mins) 23.46 0.9288 0.0680 23.14 0.9340 0.0798 23.91 0.9491 0.0568 24.92 0.9408 0.0494
Instant Avatar(20 views, 5 mins) 26.68 0.9531 0.0333 24.14 0.9383 0.0568 22.52 0.9306 0.0784 26.25 0.9516 0.0238
GART(20 views, 110 secs) 29.99 0.9760 0.0327 27.07 0.9635 0.0537 25.60 0.9623 0.0427 28.78 0.9711 0.0321
Ours(20 views, 20 secs) 27.48 0.9616 0.0196 25.67 0.9506 0.0337 23.58 0.9478 0.0330 27.20 0.9631 0.0244

Table 2: Qualitative Comparison with SoTA on the PeopleSnapshot [3]
dataset. We report PSNR, SSIM, and LPIPS between real images and the images
generated by Anim-NeRF [8], InstantAvatar [22] and GART [33| with computational
budget of maximum 5 minutes. We compare all three methods and ours at different
number of inputs sequences (views). The best and second best methods on each
metrics are marked on the table.

extension to benefit from better deformation handling models. We show example
in supplementary material.

Ablation To study the effectiveness of our mesh binding strategy, hash based
SH, displacement encoder and our novel normal map prediction on 3D recon-
struction and novel view synthesis, we conduct the following ablations: i) re-
moving the hash based SH Encoder ii) removing the hash based Displacement
Encoder iii) removing the mesh binding of the Gaussians and iv) removing the
normal map supervision.

Table 3: Ablation Study for Novel
View Synthesis. We evaluate novel view
synthesis by disabling key components.
The results are averaged on 3 subjects of

Table 4: Ablation Study for 3D Re-
construction. We evaluate 3D recon-
struction performance by disabling key
components of our method. The results

PeopleSnapshot [1]. are averaged on 4 subjects of MGN |6].

Methods LPIPS PSNR  Methods v2v. NC
Full 0.0271 26.08 Full 12.21 0.0310
w/o SH Encoder 0.0341 24.55  w/o SH Encoder 12.82 0.0311

w/o Displacement Encoder 0.0344 25.03
w/0 Mesh Binding 0.0463 24.68
w/o Normal Loss 0.0523 24.64

w/o Displacement Encoder 19.75 0.5918
w/0 Mesh Binding 27.51 0.7303
w/o Normal Loss 20.82 0.5725

We show 3D reconstruction results in Tab. [d} We observe that displacement
encoder helps in better geometric modeling as shown by the normal consistency
loss (NC). Without binding of Gaussians to the mesh, both the v2v error and
normal consistency degrades. As shown in Fig. [0 only binding Gaussians to
the mesh surface cannot produce accurate geometry of surface details with the
photometric loss. This highlights the importance of our approach to encode and
optimize normals in Gaussian Splatting [28]. In novel view synthesis, we achieve
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the best PSNR and LPIPS with our full method as shown in Tab. 3l The Hash
based SH Encoder improves convergence even for less number of views in Fig. [0]

(110 1\1\

) ()
,, v N
XXX AA M o
Fig. 9: Without normal supervision sur-

Fig.8: Results on PeopleSnapshot face details are not captured (left). With-
for 20 frames. Our method is ro- ©out Hash based SH Encoder, rendered col-

I n
Ours GART  Anim-NeRF oo Ours GART  AnimNeRF  y o

bust to poses as it does not contain arti- ~ OFS are inaccurate (right). Better viewed
facts even in novel poses. Better viewed Zoomed.
zoomed.

Number of Views The performance gain on 3D reconstruction saturates
around 50 number of input sequences. For the case of novel view synthesis, 20
views are enough to achieve PSNR of above 25 and very low LPIPS than any
other methods under same number of input views in Fig.

“Vv2v

LPIPS

150 Time

Time (seconds)

0

@Anim-Hert (LPIPS)

Alnstant Avatar (LPPS) | 0.1 125

-\‘\;~ 8 ¢ ©GART (LPIPS)
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Number of views Number of views

Fig. 10: Left: Performance on Novel View Synthesis of iHuman across different input
sequences. Right: Performance on 3D Human Mesh Reconstruction of iHuman and
training times for varying input views.

Limitations One major limitation of our method is ability to handle pose or
view dependent dynamic appearances. Another limitation is the requirement of
accurate 3D input poses for good quality reconstruction like other methods ,
, . With SMPL as template model, loose clothing can’t be modeled
accurately. So, better template model should be used.

5 Conclusion

In this work, we proposed a new method to obtain high fidelity animatable hu-
man model in record time. We obtain state-of-the-art performance in limited
computational budget. To that end, we used mesh binded Gaussians, explicit
normal rasterization and optimization through normal supervision providing fast
and accurate results. Through experiments, we also illustrate the need of accu-
rate surface representation, while using Gaussian splats, for faithful rendering
under the change in pose. Extending our method to model the per-frame defor-
mations for enabling fast monocular volumetric performance capture can be an
interesting frontier to explore.
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