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Abstract. Optic deconvolution in light microscopy (LM) refers to re-
covering the object details from images, revealing the ground truth of
samples. Traditional explicit methods in LM rely on the point spread
function (PSF) during image acquisition. Yet, these approaches often fall
short due to inaccurate PSF models and noise artifacts, hampering the
overall restoration quality. In this paper, we approached the optic decon-
volution as an inverse problem. Motivated by the nonstandard-form com-
pression scheme introduced by Beylkin, Coifman, and Rokhlin (BCR),
we proposed an innovative physics-informed neural network Multi-Stage
Residual-BCR Net (m-rBCR) to approximate the optic deconvolution.
We validated the m-rBCR model on four microscopy datasets - two sim-
ulated microscopy datasets from ImageNet and BioSR, real dSTORM
microscopy images, and real widefield microscopy images. In contrast
to the explicit deconvolution methods (e.g. Richardson-Lucy) and other
state-of-the-art NN models (U-Net, DDPM, CARE, DnCNN, ESRGAN,
RCAN, Noise2Noise, MPRNet, and MIMO-U-Net), the m-rBCR model
demonstrates superior performance to other candidates by PSNR and
SSIM in two real microscopy datasets and the simulated BioSR dataset.
In the simulated ImageNet dataset, m-rBCR ranks in the second-best
place (right after MIMO-U-Net). With the backbone from the optical
physics, m-rBCR exploits the trainable parameters with better perfor-
mances (from ∼30 times fewer than the benchmark MIMO-U-Net to
∼210 times than ESRGAN). This enables m-rBCR to achieve a shorter
runtime (from ∼3 times faster than MIMO-U-Net to ∼300 times faster
than DDPM). To summarize, by leveraging physics constraints our model
reduced potentially redundant parameters significantly in expertise-oriented
NN candidates and achieved high efficiency with superior performance.
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1 Introduction

Light microscopy plays a vital role in examining biological specimens. The optical
lens system captures sample information as images through the optic convolution
operation [34,40]. This process is mathematically expressed as I(x) = A(t)∗o(x).
o denotes the object information. I represents the microscopy images and the
operator A stands for the convolution operator specific to the optical physics
model. The convolution kernel, commonly referred to as the Point Spread Func-
tion (PSF ) in LM [3], plays a crucial role in image acquisition. A more specific
representation of A is denoted as A(PSF (t)). In reality, hardware limitations
and operational variances introduce disruptive elements ε during imaging. This
revises the model into I(x) = A(PSF (t)) ∗ o(x) + ε. The ultimate goal is to
extract the true sample information o(x) from the microscopy image I. This
process is formally defined as optic deconvolution. [43].

Deconvolution is critically important to reveal detailed information in mi-
croscopy images. Several previous approaches have explored optic deconvolution
from physics perspectives [1, 27, 34, 40]. The deconvolution process hinges on
the physical model of the PSF . Traditional deconvolution methods, like the
Richardson-Lucy model, require an explicit formulation of the PSF . Yet, these
methods face challenges arising from inaccurate physical models of the PSF
and disturbances during image acquisition, such as noise and artifacts. In many
cases where PSF information is unavailable, blind deconvolution becomes es-
sential [1, 32].

Currently, data-driven approaches like Deep learning (DL) show promise in
many microscopy applications, such as target segmentation [38], super-resolution
microscopy [23] and 3D microscopy [30]. In the realm of resolution enhancement,
DL models, such as CARE [46], DnCNN [51], Noise2Noise [29], MIMO-U-Net
[14], RCAN [52], MPRNet [49], U-Net [38], DDPM [25] and ESRGAN [44], al-
low recovering of high-resolution details from low-resolution inputs. Even though
deblurring/denoising does not precisely replicate optical convolution, these mod-
ules achieve good performance in microscopy use cases. Yet, the majority of deep
learning models for deconvolution neglect the physical texture of the problems.
This leads to an increase in the model size in pursuit of improved performance. A
few approaches have attempted to tackle data-driven blind deconvolution with a
backbone of physical models. Kenig and colleagues [27] proposed a blind decon-
volution method using traditional machine learning. They utilized specially de-
signed Principal Component Analysis (PCA) to learn the PSF space. The model
then sampled an appropriate PSF during deconvolution. Lim and colleagues [32]
designed a convolution neural network (CNN) model embedded with the PSF
information inside the model.

In this work, we formulate deconvolution as an inverse problem [7, 8] for
solving an integral operator. Based on the wavelet representation proposed by
Beylkin, Coifman, and Rokhlin (BCR) [9, 18], we approximate the inverse pro-
cess with a physics-informed Neural Network (PINN) model. Our proposed
multi-stage residual BCR net (m-rBCR) is grounded in physical insights for
deconvolution operation. Validated on four datasets (two simulated microscopy
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images datasets and two real microscopy datasets), the m-rBCR model demon-
strates superior performance with significantly fewer trainable parameters (up
to ∼210 times) and shorter run-time (up to ∼300 times) compared to the other
state-of-the-art models (RL, U-Net, DDPM, MIMO-U-Net, Noise2Noise, CARE,
DnCNN, ESRGAN, MPRNet and RCAN).

2 Related work

2.1 Optical Models for Microscopy

In a more specific form, Eq. 1 [40] denotes the previously mentioned optic con-
volution process. O(x) describes the object, h(x− t) represents the convolution
kernel (PSF in LM). The convolution produces an image I(x). The convolution
operator equals an integral operator in the 3D image space [40], denotes as in R3.
In contrast to an ideal convolution, real microscopy image acquisition involves
noise and artifacts from measurements, hardware, or inaccurate physical models.
They are denoted as the term ε.

I(x) =

∫
R3

O(x)h(x− t) dt+ ε (1)

The convolution kernel h(x− t) relates to the wavelength of the light during
imaging. Depending on the optical models, it varies between different microscopy
techniques. The Arnison-Sheppard optical model [6] modeled the optic convolu-
tion as Eq. 2. In the context of fluorescence microscopy within this study (e.g.,
widefield microscopy), both the excitation lights wavelength uλex and emission
lights wavelength uλem contribute to the PSF [37]

h (x, y, z) = |uλex (x, y, z)|2 |uλem (x, y, z)|2 (2)

2.2 Inverse Problem

Signal measurement models can be reformulated as inverse problems eg. tomog-
raphy imaging [20], geodesic measurement [28], and Magnetic Resonance Imag-
ing [42]. Eq. 3 describes the general form of the imaging acquisition system. The
u is the true signal. A is defined as the forward operator (e.g. the PSF in this
work) and b represents the measured signal. The ε accounts for the disturbing
during measurements.

b = A(u) + ε (3)

Solving the inverse problem refers to recovering the signal u from the noisy
measurements b. Assuming a measurable Hilbert space Rn, it is equipped with a
scalar product and normalization. Define two distributionsX and Y in this space,
the measurements satisfy the relation b ∈ Y and u ∈ X. Inversion of the forward
operator A refers to computing a mapping Y → X [24]. In most cases, the
nonlinear property of the forward operator A and the disturbing term ε introduce
the bias in the mapping. It renders the solution of inverse problems neither
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unique nor stable, which is defined as the ill-posed inverse problem [26, 36].
Instead of directly seeking the mapping Y → X, a more intuitive approach is to
compute the optimization objective min |A(u)−b|2. To mitigate the solution bias,
a practical method involves adding regularization terms ϕ(u) to narrow down
the search space during computations. This reshapes the optimization process
as follows in Eq. 4.

min ∥A (u)− b∥2 + ϕ (u) (4)

The term ϕ(u) imposes constraints on the solution space, enhancing the robust-
ness of solutions. Depending on the distinct physical background, regularization
methods range from the sparsity regularizer [11, 12] and the Tikhonov regular-
izer [22] to the total variation regularizer [10, 47]. The evolution of NN models
also spurred research into the data-driven regularizers [33].

For imaging systems, previous work [19, 21, 39] formulated an approxima-
tion of the inverse problem below. This approximation contains two operators
KT and

(
KTK + εI

)−1. The KT is defined as a forward operator, represent-
ing a cluster of math convolutions. The operator

(
KTK + εI

)−1 characterizes a
pseudo-differential operator (Eq. 5). The u denotes the pseudo restoration target
of the true signal u.

u ≈ u =
(
KTK + εI

)−1
KT b (5)

Resolving deconvolution entails calculating the inverse mapping for the oper-
ator A between images and the ground truth. The inverse operator is denoted as
A−1. Given the ill-posed properties, defining explicit equations for inverse map-
ping proves challenging. However, Eq. 6 proposed a reasonable approximation
for the restoration.

A−1 ≈
(
KTK + εI

)−1
KT . (6)

2.3 Beylkin, Coifman, and Rokhlin (BCR) Representation

Wavelets have been studied for a long time to represent integral and differ-
ential operators effectively, e.g. pseudo-differential operators [5] and Calderon-
Zygmund operators [35]. Due to the vanishing moment [15], direct representation
grapples with sparsity issues [16]. This results in computationally intensive op-
erations up to O (N logN). The high computational cost diminishes its practical
applicability in real-life scenarios. To tackle this issue, Beylkin, Coifman, and
Rokhlin (BCR) [9] introduced a cost-effective solution with a nonstandard form
of wavelet, reducing the complexity to O(N).

In the wavelet decomposition theory, a signal can be represented through
multi-level decompositions in the space v1. Each decomposition comprises the
scaling element and corresponding wavelet coefficient elements (the mother func-
tion). For the Daubechies wavelet [16], the scaling function is denoted by Eq. 7.

φ
(l)
k (x) = 21/2φ

(
2lx− k

)
, l = 0, 1, . . . (7)
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The coefficient function is denoted as below (Eq. 8).

ψ (x) =
√
2
∑
i∈Z

giφ (2x− i) , gi = (−1)
1−i

h1−i (8)

Given a function V (x), its scaling and wavelet coefficients can be denoted as
Eq. 9 and 10.

v
(l)
k :=

∫
v (x)φ

(l)
k (x) dx, l = 0, 1, . . . (9)

d
(1)
k :=

∫
v (x)ψ

(l)
k (x) dx, l = 0, 1, . . . (10)

The graph in Eq. 11 below illustrates the recursive relation between decom-
position levels.

(11)

In practical applications, the process truncates the chain at L = L0 before
the wavelet and scaling functions begin to overlap. This truncation also ensures
computationally efficient operations within an affordable range.

Expanding the application to a double integration operator A for the inte-
gration operation u = A∗v, the recursive relation for double dimension can be
denoted as follows in Eq. 12. Di represents complicated integral operators for
φ
(l)
k and ψ(l)

k . Wi are orthogonal operators derived from the identity matrix. For
specific definitions and proof, refer to the work [18].

(12)

the recursive relation on the integral operator between decomposition level
l + 1 to l can be denoted as in Eq. 13

(13)

Till now, we have the decomposition form of the integral operators based
on the BCR wavelet theory. To be noticed, all the matrices here are band ma-
trices due to the nonstandard form pre-conditions. For the pseudo-differential
operator, we can reshape it to a similar form as in Eq. 14. It owns a structure
akin to the integral operator [19, 48]. Therefore, the approximation for pseudo-
differential operators can be achieved using the same method as well. For a
clearer understanding, Fig.1 visually depicts the matrix operation during the
BCR decomposition.

(Av) (x) =

∫
eixξσ (x, ξ) v̂ (ξ) dξ =

∫
a (x, y) v(y), dy (14)
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Fig. 1: BCR-based decomposition. a) presents the decomposed operator [18] in Eq.
12 at one resolution l with Beylkin, Coifman, and Rokhlin (BCR) wavelet theory. b)
illustrates a simple multi-level decomposition based on a). All matrices shown here are
band matrices with only values on the green lines.

2.4 Neural network approximation

In a crucial prior study [18], the authors connected the BCR decomposition with
specific neural network (NN) structures to approximate the linear forward op-
erator A. In correspondence with the matrix operation in the recursive chain,
the neural network operator conv[2, 2p, 2](ξ) can replace the multiplication with(
W (l)

)T
. The multiplication with the matrix of A(l) is approximated with local

convolution operators LC[2, nb, 1](ξ). In this context, nb serves as a hyperparam-
eter determining the truncated bandwidth of the band matrices. It represents
the entries of local convolution operations in NN. The truncation u (L0) can be
represented as dense connection Dense2 [1, 1]

(
V L0

)
.

At the specific decomposition level l, the original BCR theory can be de-
noted by the NN structure in Fig. 2.c without concatenation. This configuration
demonstrates robustness in approximating linear systems. Prior studies [19, 20]
employed this structure to approximate the tomography physics process. How-
ever, the linearity requirements of BCR theory result in the sensitivity of such
structure to disturbances during approximation. Given the corrupted microscopy
images in this work, the original structure fails to address the strongly non-linear
challenges during optic deconvolution.

3 Methods

3.1 Residual BCR Network

The optical model in Eq. 1 describes microscopy imaging as a convolution opera-
tor in R3. This can be simplified as I(t) = A∗o(t)+ε. In Eq. 2, the deconvolution
process is formulated as computing the inverse mapping I (t) → O (t). Due to
ill-posed properties, the inverse operator in Eq. 4 requires regularizers to ensure
robustness and address challenges related to uniqueness.

As explained in Eq. 14, the inverse operator of an integral can be formulated
as a pseudo-differential operator (A−1). This can be represented as an approxi-
mation using BCR theory. At resolution level l, the convolution is decomposed
as I(l) = A(l)o(l)+ϵ(l). For simplicity, we assume the noise term ϵ(l) as a constant
ε0 at all levels. Thus, we can describe the deconvolution as Eq. 15.

o(l) =
(
A(l)

)−1 (
I(l) − ε(l)

)
=

(
A(l)

)−1

I(l) + ε0 (15)
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Introduce the recursive relation in Eq. 13 into Eq. 15, the integral operator then
can be denoted as Eq. 16

(16)

We adopted the Eq. 5 as the backbone of our models. The deconvolution
process is then described as Eq. 17. To be noticed, the first I indicates the
identity matrix from Eq. 13. The second i is a microscopy image in this work in
Eq. 15.

o ≈ o =
(
KTK + εI

)−1
KT i (17)

The KT represents a cluster of convolutions in a neural network (NN), and
B = (KTK + εI)−1 approximates a pseudo-differential operator. Nevertheless,
the model exhibits sensitivity to noise. Since noise and artifacts are common in
microscopy image acquisition, the original NN structure is extremely unstable
for microscopy deconvolution. As indicated by Eq. 4, this model requires addi-
tional regularization to stabilize the learning process. The continuous residual
NN structure has shown strength in providing robustness in optimization [13]
in previous computer vision work [53]. To enhance the model’s robustness by
nonlinear problems, we proposed the BCR sub-module with the residual dense
structure [53] in Fig. 2.c. It concatenates the images to the output and introduces
constraints to regularize the learning. The recursive relation is then reshaped as
o(l+1) = (A−1)(l+1)(I(l+1)|I(l)). Based on this, we propose a vanilla demo Single-
Residual BCR Net (s-rBCR) in Fig. 2.a. Till now, both operators in Eq. 13 in a
strongly nonlinear microscopy system can be approximated from the structures
in Fig. 2.b and Fig. 2.c.

The original BCR theory truncated decomposition levels to L0 for compu-
tational efficiency, resulting in an accumulated loss during deconvolution. To
address this, we reintegrate the input as posteriors at each resolution level using
Multi-stage learning [41] [50]. Fig.3 illustrates our proposed multi-stage residual
BCR net (m-rBCR). In m-rBCR, Pseudo-differential operators with posteriors
are denoted as

(
B1|KT

1 ,K
T
2

)
and

(
B2|KT

2 ,K
T
3

)
.

The pseudo-code in Algorithm 1 and 2 illustrates the NN structure for the
single-stage residual BCR Net. Based on Eq. 17, the deconvolution consists of
two parts: the forward operator KT and the pseudo-differential operator B =(
KTK + εI

)−1.
For the hyperparameters of KT in Algorithm 1, nb represents the bandwidth

of the truncated matrix [18], also the entries of the local convolution in NN. L
and L0 stand for the decomposition level and truncation level in Eq. 11. RDN
represents the depth number of the residual dense block (RDN). We recast the
input as a posterior to regularize the learning at code line 15. Algorithm 2
illustrates the pseudo-differential operator B =

(
KTK + εI

)−1. αi and wi stand
for the configuration of the NN structure. Li represents the recovery level in the
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Fig. 2: Single stage residual BCR Net. a) indicates the structure of the NN model for
microscopy deconvolution. it consists of the Sequence Convolution Block (SCB) in b)
as KT and pseudo-differential operator from sub-units of c) and d). c) illustrates the
regularised BCR decomposition through the residual structure.

previous theory. RDN represents the depth. The residual block complies with
the structure proposed in Fig. 2.b. The m-rBCR model derives from the base
structure s-rBCR. As in Fig.3, We added the feature fusion from other resolutions
and current inputs to recover the truncated signal.

3.2 Simulated Dataset for Benchmarking

Based on the optical model above, we adopted the widefiled microscopy simula-
tion model (BioSR and ImageNet as the ground truth) from other works [31]. The
model contains PSFs with physically plausible ranges for microscopy hardware
parameters: the numerical aperture ranged between 0.4 and 1.0, the excitation
wavelength between 450 nm and 490 nm, and the emission wavelength between
450 nm and 600 nm. The Pinhole size was set to 0.1 µm for the confocal mi-
croscopy and 1000 µm to simulate the absent (open) pinhole situation for the
widefield microscopy in the dataset. The refractive index was fixed at 1.33, cor-
responding to the water refractive index. These diverse PSFs were then utilized
for convolution. We took two datasets: a biological dataset BioSR [2] and Ima-
geNet [17]. We augmented the generated images by adding Gaussian noise (with
σ ranging from 0.01 to 0.05) and Poisson noise (with λ ranging from 0.01 to
0.05) to enhance comparability to real microscopy images. All image values were
rescaled to the [0, 1] range. The dataset consists of over 57k images. We split it
into training/validation/test with the widely used ratio 0.8/0.1/0.1.
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Fig. 3: Multi-Stage Residual BCR Net (m-rBCR). The m-rBCR model reintegrates
the input image from other resolutions as posterior for the pseudo-differential operator
B =

(
KTK + εI

)−1.

4 Experiments

In our experiments, we compared 10 optical deconvolution models (Tab.1). The
Richardson-Lucy (RL) model relies on the explicit definition of the PSF, while
the rest are NN-based. For the NN-based models, this work covers most of
the state-of-the-art models of denoising/deblurring. Specifically, the U-Net [38],
CARE [46], DnCNN [51], Noise2Noise [29], MIMO-U-Net [14], RCAN [52], MPR-
Net [49], ESRGAN [44] and DDPM [25] with U-Net as denoising substructures.
Notably, our s-rBCR and m-rBCR are specifically designed for inverse convolu-
tion in microscopy optical models. For each experiment, we report the number
of parameters, runtime in seconds, peak signal-to-noise ratio (PSNR), and struc-
tural similarity index (SSIM).

Table 1: Models evaluation. Test on two simulated widefield datasets (BioSR and
ImageNet) and two real widefield datasets (widefield-confocal(W-C) and dSTORM).
Parameters in units million and runtime in seconds. Sim. indicates simulated dataset.

Model Params.(↑) Runtime BioSR(sim.) ImageNet(sim.) W-C(real) dSTORM(real)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR

RL N/A 0.0835 13.39 0.48 12.74 0.78 N/A N/A N/A
s-rBCR 0.086 (ours) 0.0019 20.28 0.59 20.84 0.83 17.67 0.57 19.55
m-rBCR 0.237 (ours) 0.0036 24.89 0.78 21.41 0.86 23.10 0.70 20.13
CARE 0.333 0.0039 22.15 0.65 18.47 0.74 21.53 0.66 19.62
DnCNN 0.556 0.0056 21.41 0.70 19.70 0.84 19.34 0.63 17.46
Noise2Noise 1.227 0.0068 16.07 0.57 16.24 0.60 15.07 0.57 18.06
MIMO-U-Net 6.807 0.0087 23.95 0.78 22.35 0.88 19.17 0.67 18.91
U-Net 7.780 0.0241 21.89 0.73 19.23 0.75 18.17 0.63 19.62
RCAN 15.334 0.0281 21.71 0.64 19.78 0.91 20.51 0.58 19.26
MPRNet 20.127 0.0173 21.44 0.63 20.12 0.83 21.53 0.55 18.54
DDPM L2 23.988 1.0968 21.85 0.65 20.22 0.78 22.27 0.73 17.46
ESRGAN 49.841 0.0147 19.82 0.59 18.95 0.76 21.17 0.59 19.93
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Algorithm 1: The forward opera-
tor KT

Input : input, α, nb,K, L, L0, RDN
Output: Feature map umap

1 x-in = input, depth = RDN ;
2 v = [None], v[L] = x-in ;
3 x = [None] ;
4 for l from L− 1 to L0 − 1 by -1 do
5 x[l] = Residual-Dense-Block(v[l+

1],depth, nb);
6 v[l] = x[l][..., α]

7 u = [None] * (K + 1) ;
8 u[0] = v[L0] ;
9 for k from 1 to (K + 1) by 1 do

10 u[k] = Dense− 2D(u[k − 1])

11 for l from L0 to L do
12 y = x[l] ;
13 y = Residual-Dense-Block(v[l +

1], nb)v[l] ;
14 for k from 0 to K do
15 z =

LocallyConnected-2D(y) ;

// recap posterior
16 Fusion = Concatenate(z, u[l]) ;

17 umap = Reshape(Fusion)

Algorithm 2: The
pseudo-differential operator
B =

(
KTK + εI

)−1

Input : Feature, α1, α2, w1, w2,
L1, L2, RDN

Output: deconvolution Ideconv

1 x-in = Featuremap ;
2 depth = RDN ;
3 x = x-in ;
4 for l in L1 do
5 x = Conv − 1D(α1, w1)(x);

6 for l in (L2) do
7 x = Residual-Dense-

Block(α2, w2, depth)(x);

8 Ideconv = Reshape(x) ;

As depicted in Tab.1, the BCR family models are notably slimmer compared
to the other models. ESRGAN, the largest model, surpasses our model m-rBCR
net by a factor of 200 times. The MIMO-U-Net, the current benchmark in image
deblurring, is approximately 30 times larger than m-rBCR. The RL model is
deterministic and does not contain trainable parameters. An inherent advantage
of lightweight models is the efficiency of runtime testing. We evaluated all the
models on the BioSR test dataset of 500 images. The s-rBCR demonstrated the
highest speed, while the m-rBCR exhibited the second-fastest performance. The
m-rBCR surpassed the benchmark MIMO-U-Net by 3 times speed improvement.

All models were trained on simulated datasets with explicit PSF informa-
tion to master optical deconvolution. Subsequently, we tested them across four
datasets: simulated BioSR, simulated ImageNet, real widefield-dSTORM mi-
croscopy image pairs [2], and real widefield-confocal image pairs [37]). In the
two real microscopy datasets, we utilized the dSTORM images and confocal mi-
croscopy images as the ground truth. For evaluations, we computed the PSNR
and SSIM on the test results.

4.1 Benchmark on a Simulated Dataset

Fig. 4 presents part of the results from the deconvolution by the BioSR test
set. Despite the strong blur observable in the widefield microscopy input im-
ages, our m-rBCR model effectively restored detailed information. Notably, the
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m-rBCR successfully recovered high-frequency information without introducing
additional artifacts in the region indicated by the arrow (Fig. 4). Table 1 pro-
vides a comprehensive evaluation of the models’ performance on the BioSR test
set. Despite utilizing an explicit PSF, the RL model achieved the lowest rank-
ings (PSNR: 13.39, SSIM: 0.48) attributable to noise disturbance. Among blind-
deconvolution models, our m-rBCR outperformed (PSNR: 24.89, SSIM: 0.78) the
others, while MIMO-U-Net ranked on second place (PSNR: 23.95, SSIM: 0.78).
To MIMO-U-Net, m-rBCR utilizes 30 times fewer parameters and completes the
runs 3 times quicker, serving as the performance upper bound.

Fig. 4: Test results on the simulated widefield microscope dataset from BioSR. Our
m-rBCR model successfully restored comparable details to the benchmark MIMO-U-
Net, demonstrating efficiency with fewer parameters and a shorter runtime.

Fig. 5 illustrates the results on the ImageNet test set. While the DDPM
model provides the sharpest restoration, it introduces a strong noisy background
texture. In contrast, the deconvolution by the MIMO-U-Net and m-rBCR mod-
els exhibits significantly fewer artifacts while successfully restoring rich details.
The complete evaluation is outlined in Table 1. The m-rBCR model attains the
second-best performance (PSNR: 21.41, SSIM: 0.86), following the benchmark
MIMO-U-Net (PSNR: 22.35, SSIM: 0.88).

4.2 Deconvolution of Experimental dSTORM Microscopy Data

We validated our models on real dSTORM microscopy images in Fig.6 This
publically available dataset contains widefield microscopy images and the corre-
sponding super-resolution Direct Stochastic Optical Reconstruction Microscopy
(dSTORM) dataset [4]. Due to the lack of ground truth in real microscopy, the
dSTORM serves as the pseudo-ground truth. Since the PSF is not available, we
could only perform blind deconvolution without the RL method. As illustrated
in Fig.6.a, during real microscopy data collection from two different microscopy
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Fig. 5: Test results on the simulated widefield microscope dataset from Imagenet.
Multi-stage residual BCR Net (m-rBCR) restores the most details without introducing
additional artifacts due to noise.

techniques, the sample drifted and distorted. Yet, the application of SSIM re-
quires the input signals to be properly aligned [45]. Thus, we did not evaluate
SSIM to avoid bias by analysis. The assessment results are presented in Table 1.

The performance of MIMO-U-Net declined (PSNR: 18.91 dB), whereas the
m-rBCR outperformed the rest in this test set (m-rBCR: 20.13 dB). Notably,
both m-rBCR and s-rBCR uniquely restored pixels from extremely weak inputs
(arrow indicates). A possible reason is that while expertise-oriented NN mod-
els demonstrate solid performance in resolution enhancement, they neglect the
physics texture of the process. Without the physical constraints, the models
learned features irrelevant to the deconvolution process. This makes the restora-
tion of these models by real microscopy unstable and tends to generate artifacts
from those features.

4.3 Deconvolution of Widefield/Confocal Microscopy Data

Finally, we evaluated our model on another real microscopy dataset [31] consist-
ing of widefield microscopy images with corresponding confocal images, which
were used as pseudo-ground truth. The detailed evaluation is presented in Table
1. As shown in Fig. 7, the restoration brought out previously unrecognizable
details in the input pixels. The m-rBCR took the lead with the highest PSNR
of 23.10 dB, followed by the DDPM with a PSNR of 22.27 dB. Notably in the
arrow-indicated area, m-rBCR recovers image details without introducing arti-
facts as in DDPM.
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Fig. 6: Test results on the experimental dataset from dSTORM. a) The drift and dis-
tortion during the measurements (widefield-dSTORM). Thus, the SSIM is suboptimal
to measure the deconvolution quality. b) Presents part of the results from different
deconvolution models. The m-rBCR (PSNR-20.13 dB) ranks at the top.

Fig. 7: The deconvolution on real widefield microscopy data. Confocal images serve as
pseudo-ground truth. The restorations of m-rBCR (PSNR: 23.10 dB) unveiled previ-
ously unrecognizable patterns in the widefield inputs).

4.4 Robustness analysis on hyper-params of m-rBCR

Built upon the foundation of explicit physical modeling, the physics-informed
m-rBCR model offers enhanced transparency for tuning. In the prior theory, K
signifies the wavelet approximation’s decomposition level, while truncation in
BCR theory happens at K = L0. Overestimating K leads to excessive decompo-
sition, causing wavelets and scaling functions to overlap. This results in increased
computational costs and performance degradation. In the residual structure, the
depth of the residual block RDN influences learning constraints. Intense con-
straints can greatly bulk up the model, hampering its overall learning ability
without performance gains. Thus, we performed numerical robustness experi-
ments regarding K and RDN in the algorithms 1 and 2 on the simulated BioSR
dataset. As shown in Fig.8, the performance peaks at the configurationRDN = 7
and K = 12. We adopt these parameters in this paper. It is important to note
that the configuration may vary depending on the disturbance ε0 in Eq. 15.
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Fig. 8: Robustness test on decomposition level K and residual block depth RDN in
algorithm 1 and 2. Performance peaks at K = 12, after which it starts to decline. Based
on these results, we adopted RDN = 7 and K = 12 for this work.

5 Conclusions & Discussion

In this study, we formulated optic deconvolution in light microscopy as an in-
verse problem and addressed it by solving a pseudo-differential operator. In-
spired by the BCR wavelet approximation theory, we introduce the multi-stage
residual BCR net (m-rBCR) to approximate the inverse operation. The m-
rBCR adapts to the strong non-linear properties in noisy restoration tasks of
microscopy. We validated our m-rBCR model on four test sets: two simulated
widefield microscopy datasets (Imagenet and BioSR) and two real microscopy
datasets (dSTORM and confocal datasets). To evaluate the performance, we
compared the PSNR and SSIM of the m-rBCR’s deconvolution results with
those from the classical Richardson-Lucy deconvolution model and the state-
of-the-art NN-based models by denoising/deblurring (DDPM, U-Net, CARE,
DnCNN, ESRGAN, RCAN, Noise2Noise, and MPRNet). Our m-rBCR model
secured the top position in performance across the simulated BioSR test set and
two real microscopy test sets. In the simulated ImageNet microscopy test set,
m-rBCR achieved the second-highest ranking, surpassing other candidates and
closely following the benchmark MIMO-U-Net. However, by leveraging the in-
verse problem framework and the optical model, the m-rBCR model requires 30
times fewer parameters compared to MIMO-U-Net while achieving comparable
performance. The direct benefits include m-rBCR demanding significantly fewer
computational resources and exhibiting a greatly shorter runtime(from ∼3 times
faster than MIMO-U-Net to ∼300 times than DDPM). This work showcases the
benefits of the use of physics models to exploit redundant parameters of NN
models and reach powerful performance by microscopy optic deconvolution.

6 Limitations

Currently, m-rBCR involves a straightforward pixel mixture from other resolu-
tion levels. In the follow-up to our work, the fusion strategies based on wavelet
theory could be explored. This could further improve the learning performance.
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