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S 1. Photon Flux Values in Photometric Units
Fig. 1(a) in the main text shows the rate of growth in camera power consumption as a function of photon flux in photons per
second. Unfortunately, due to the complications involved in direct conversion of radiometric photon flux into photometric
quantities, it is not possible to provide exact numbers (in lux) for the photon flux. For some intuition on the real-world
lighting conditions that these photon flux values correspond to, we provide “back of the envelope” estimates in terms of lux
levels using the following relationship:

illuminance (lux) ≈ hc

λ

Kϕ

A

where h = 6.626 × 10−34 is the Planck’s constant, c = 3 × 108 is the speed of light in vacuum, λ is the nominal visible
wavelength of light which we assume is 555 nm at which the luminous efficacy of an ideal monochromatic light source is
K = 683 lm/W, ϕ is the incident photon flux (adjusted for the SPAD pixel’s non-ideal quantum efficiency of 20%), and
A is the effective pixel area (assuming a pixel pitch ∼ 4 µm and fill factor of 10%). Plugging in the range of photon fluxes
103 − 106 gives a range of lux levels from < 1 lx to over 1000 lx. These lux levels are approximately denoted by icons along
the x-axis in Fig. 1(a) as < 1 lx for a moonless night, ∼ 1− 10 lx for twilight, ∼ 100 lx at sunrise or sunset, and >∼ 1000 lx
on a clear sunny day outdoors.

S 2. Power consumption estimates
Since we do not have a hardware prototype of our own, we make a very rough estimate here based on previously published
works. From Fig. 4.15 on pg. 97 of Andrei Ardelean’s thesis [2], computations in the UltraPhase imager effectively
use ∼ 0.21 mW to constantly perform ”MAC operations with data in registers” in a tight loop (= 1.19 mW total − 0.98
mW ”standby” power use). Since UltraPhase has 12x24 = 288 pixels, this comes out to about 729 nW per pixel. Energy
consumption by avalanches is estimated in [19] as 11.6 pJ/avalanche, for a different SPAD sensor (not the SwissSPAD2).
This suggests that we should come out ahead if we can inhibit at least 729nW

11.6pJ/detection = 62,845 detections/sec. Under the
parameters of Sec. S1 above, an example of this would be going from 90,000 det./sec. (∼230 lux, mapping to daylight or
office light) to 25,000 det./sec. (effectively ∼30 lux, around dusk) — still enough for a reasonable image with a SPAD sensor.
Therefore there exists a very plausible application setting where inhibition can make an impact.

The numbers above are clearly not specific to our sensor and computations. The UltraPhase processing is reconfigurable
and has a 32-bit wide arithmetic logic unit; whereas, inhibition processing would use fixed logic with smaller bit widths. As
such we expect the above to be an over-estimate of the computation power. We would also need to measure the avalanche
energy expenditure of the SwissSPAD2 sensor instead of re-using the estimates from [19].

S 3. Spatio-temporal Policies for Static Imaging
S 3.1. Simulation Implementation Details

In this section, the methods for the simulations of Section 6 of the main manuscript are described. Images from the BSDS500
dataset [1] were used to simulate binary-frames (specifically 20 images were randomly selected from the official test set). This
dataset was chosen due to the availability of ground truth edge maps. Images were gamma-decompressed using the sRGB to
CIE XYZ transformation (γ ≈ 2.2) and converted to grayscale using the OpenCV color space conversion function (cvtColor
with COLOR BGR2YUV) to create a reference image. For each reference image, 1,000 binary frames were simulated using
Monte Carlo methods for each exposure time of interest and saved to disk. Exposure times are reported in units of the average
number of photon arrivals per pixel (ppp), since absolute radiometric quantities are not available.

For static imaging, inhibition policy simulations were run for each exposure time separately. Once inhibition patterns are
found for each frame index t, the cumulative detections and measurements are calculated for each frame index. This approach
allows for extraction of performance metrics and images at a continuous range of average detections per pixel by selecting
the number of accumulated binary frames. For exposure bracketing simulations an HDR reconstruction was generated at
each frame index using SNR2 weighting [9]. Metrics of SSIM [23] and mean squared error (MSE) were calculated on binary

2



rate images for the accumulated binary frames with and without inhibition at each frame index using the original image as
the reference.

S 3.2. Assessing Inhibition

Pixels that are inhibited are known at the beginning of a frame. An inhibited pixel is insensitive to photon arrivals and, as
such, does not consume (avalanche) power when a photon converts. Inhibition is expected to be implemented by lowering
or keeping the pixel SPAD bias below the threshold voltage for an avalanche. A pixel that is not inhibited measures either a
’0’ (if no photons arrived) or a ’1’. The avalanche energy is assumed the same for one and more than one photon in a single
frame, which has been demonstrated in hardware [15]. To assess the energy efficiency, measurement efficiency, and energy
reduction enabled by inhibition we track the number of measurements (W ) at each pixel and total measurements (WT ), and
similarly the number of detections (D) for each pixel and total detections (DT ). These quantities are defined as follows:

W (i, j) =

t=N−1∑
t=0

(1−M(i, j, t)) (S1)

WT =
∑
i,j

W (i, j) (S2)

D(i, j) =

t=N−1∑
t=0

F (i, j, t) =

t=N−1∑
t=0

(1−M(i, j, t))Y (i, j, t) (S3)

DT =
∑
i,j

D(i, j), (S4)

where N denotes the number of binary frames. Measurements W (i, j) are the total number of frames during which pixel
(i, j) was not inhibited (i.e., the inhibition pattern M(i, j) = 0). The number of measurements may correlate with the readout
energy if an unconventional readout architecture, such as token passing [7] or asynchronous event readout [3], is combined
with the inhibition pattern. Detections D(i, j) are the total number of frames during which a photon was detected by pixel
(i, j) when enabled. The number of detections tracks the total avalanche energy consumed by that pixel. Suppl. Table 1
summarizes relevant parameters used for evaluating different inhibition policies.

Description Variable Values / Units
Photon flux ϕ(i, j, t) photons/s
Binary frame exposure time T s
Exposure H(i, j, t) = ϕ(i, j, t)T photons
Inhibition pattern (disabled = 1) M(i, j, t) 0/1
Incident binary frame Y (i, j, t) ∼ Bernoulli(1− e−H(i,j,t)) 0/1
Binary frame (after inhibition) F (i, j, t) = Y (i, j, t) · (1−M(i, j, t)) 0/1
Binary rate estimate Ŷ (i, j) =

∑
t

F (i,j,t)
M(i,j,t) [0,1]

Explicitly inhibited photons I(i, j, t) = Y (i, j, t) ·M(i, j, t) 0/1
Total photon detections DT =

∑
t
D(i, j) =

∑
t
F (i, j, t) photons

Fraction of (possible) photons inhibited IF =
∑

I(i,j,t)∑
Y (i,j,t) [0,1]

Suppl. Table 1. Relevant quantities for assessing inhibition policies. Pixels are indexed by i and j while t = 0, 1, ..., N − 1 is the discrete
frame number. Explicitly inhibited photons are due to the inhibition pattern itself and not clocked recharge policy.

S 3.3. Details of Imaging Policies

Sec. 5 and Figures 5, 6 in the main text describe static inhibition policies that use spatio-temporal information to compute
inhibition patterns. The aggressiveness of these policies is controlled through two parameters η and τH : lower values of η
and higher values of τH can be used to reduce the number of measurements, and hence reduce the total avalanche energy
consumption. The policies shown below are the best performing combinations of η and τH on exposure bracket captures
shown in Fig. 7 (main text) for each of the four spatial policies presented. Policies are designed so that multiplications can
be implemented using bit shifts (powers of two) for ease of future in-pixel hardware implementation.
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Pcr : Ks =

1 1 1
1 8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 12, τH = 32; “Center + ring”

PL : Ks =

1 1 1
1 −8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 24, τH = 4; “Laplacian”

Pavg : Ks =

1 1 1
1 1 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 6, τH = 32, “Average”

Ps : Ks =

0 0 0
0 1 0
0 0 0

 , KT =
[
1 1 1 1

]
, η = 2, τH = 32; “Single pixel”

The policies described below (and annotated with a ′) are the best performing combinations of η and τH on single-exposure
time captures in Fig. 7 (sub-figures f and g) of the main manuscript for each of the four spatial policies presented.

P′
cr : Ks =

1 1 1
1 8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 12, τH = 4; “Center + ring”

P′
L : Ks =

1 1 1
1 −8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 24, τH = 4; “Laplacian”

P′
avg : Ks =

1 1 1
1 1 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 12, τH = 4; “Average”

P′
s :, Ks =

0 0 0
0 1 0
0 0 0

 , KT =
[
1 1 1 1

]
, η = 2, τH = 8; “Single pixel”

Inhibition policies for static imaging were studied by simulations at parameters values of η = [2, 6, 12, 24] and τH =
[4, 8, 16, 32]. A more extensive search was not attempted due to computation time and disk usage.
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S 3.4. Additional Static Image Simulation Results

Suppl. Figs. 1, 2, and 3 expand upon the results of Fig. 5 of the main text to show inhibition patterns and resulting images at
three levels of average detections per pixel using the Pcr policy described above with η = 12 and τH = 32.
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Suppl. Fig. 1. Power-efficient static single-photon imaging via inhibition. A reference image (BSDS500: 393035) displayed in the top
left is captured using a bracket of three exposure times with 1,000 binary frames for each exposure time. The second column displays the
resulting average inhibition patterns for each exposure time. The top most pattern from the shortest exposure time modestly inhibits and
does so at the brightest pixels only. The inhibition pattern of the longest exposure time allocates most measurements to the darkest areas of
the scene (in the shadows to the right of boat in the the foreground). The bottom chart summarizes the inhibition patterns using smoothed
curves of the inhibition percent versus the flux of each pixel for each of the three exposure times (Lowess filter with a fraction of 1/5).
The right-most columns show binary rate images using gamma compression (γ = 0.4) without (left) and with (right) inhibition at equal
average detections per pixel. Detections increase moving down with averages of 5, 12, and 30 detections per pixel shown. Image quality
metrics versus detections per pixel are summarized in the center and bottom of the left most column.
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Suppl. Fig. 2. Power-efficient static single-photon imaging via inhibition. A reference image (BSDS500: 179084) displayed in the
top left is captured using a bracket of three exposure times with 1,000 binary frames for each exposure time. The second column displays
the resulting average inhibition patterns for each exposure time. The top most pattern from the shortest exposure time only modestly
inhibits and does so at the brightest pixels only (maximum of ∼60% inhibition, primarily in the sky). The inhibition pattern of the longest
exposure time allocates most measurements to the darkest areas of the scene (the hilltop and the dark areas of the helicopter). The bottom
chart summarizes the inhibition patterns using smoothed curves of the inhibition percent versus the flux of each pixel for each of the
three exposure times (Lowess filter with a fraction of 1/5). The right-most columns show binary rate images using gamma compression
(γ = 0.4) without (left) and with (right) inhibition at equal average detections per pixel. Detections increase moving down with averages
of 5, 12, and 30 detections per pixel shown. Image quality metrics versus detections per pixel are summarized in the center and bottom of
the left most column.
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Suppl. Fig. 3. Power-efficient static single-photon imaging via inhibition. A reference image (BSDS500: 130066) displayed in the
top left is captured using a bracket of three exposure times with 1,000 binary frames for each exposure time. The second column displays
the resulting average inhibition patterns for each exposure time. The top most pattern from the shortest exposure time only modestly
inhibits and does so at the brightest pixels only. The inhibition pattern of the longest exposure time allocates most measurements to the
darkest areas of the scene (the dark stripes of the zebra). The bottom chart summarizes the inhibition patterns using smoothed curves of the
inhibition percent versus the flux of each pixel for each of the three exposure times. (Lowess filter with a fraction of 1/5). The right-most
columns show binary rate images using gamma compression (γ = 0.4) without (left) and with (right) inhibition at equal average detections
per pixel. Detections increase moving down with averages of 5, 12, and 30 detections per pixel shown. Note the improved contrast of the
image captured using an inhibition policy in the bottom row (30 D./pix). Image quality metrics versus detections per pixel are summarized
in the center and bottom of the left most column.
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Suppl. Fig. 4 shows the average percent change from no inhibition to inhibition in detections (top row) and measurements
(bottom row) at equal image quality versus two parameters of the Pcr proposed inhibition policy. These charts demonstrate
the balance of detection efficiency and measurement efficiency. Efficiency improvements via inhibition correspond to nega-
tive values. For the exposure bracket scenario, the improvement in detection efficiency by more aggressive inhibition (τH ↑)
shown in (c) increases the measurements, and hence degrades measurement efficiency (d). As seen in (e, f, g, h) a single
exposure time policy performs best with less aggressive inhibition (τH = 4) since frames with a shorter exposure time are not
available to fill in missing information for the brightest and aggressively inhibited pixels. Yet, single exposure time policies
still reduce detections by nearly 15%.

(a)

Brackets Single Exposure Time

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Suppl. Fig. 4. Inhibition tuning parameters tradeoff detections and measurements. For the Pcr (exposure brackets, left) and P ′
cr

(single exposure, right) policies percent change in detections (D) and measurements at SSIM=0.7 with one parameter varied. (a) D%
(as compared to without inhibition) versus the inhibition threshold η at a constant holdoff time (τH = 32). A negative value, as in (a),
indicates that the inhibition policy required fewer detections for equal SSIM. Notice in (b) how measurements (as % of total possible)
increase (measurement efficiency degrades) at more aggressive inhibition thresholds (smaller η). (c) Shows the impact of the holdoff time
(τH ) at a constant threshold of η = 12. (e, f, g, h) show the same for a single exposure time capture. For (e, f) τH = 4 and for (g, h)
η = 12.
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S 3.5. High Dynamic Range Simulation Results

Score-based inhibition: We also assessed the impact of scored-based inhibition to high dynamic range images from the
Laval indoor HDR dataset [8]. Suppl. Figs. 5 and 6 summarizes the results from the Pcr policy described above with η = 12
and τH = 32. To accommodate the wide range of illumination in these images the simulations used five logarithmically
spaced exposure times (in steps of ×10). Before simulation, the images were reduced in size by ×4 along both dimensions
using openCV resize with the default bilinear interpolation method to decrease the time required for simulation. When
capturing high dynamic range scenes, inhibition allows for a wide range of exposure times to efficiently measure bright and
dim pixels with a reduced increase in avalanches at the brightest pixels. For these experiments the exposure time sequence
was not carefully explored. Future work could optimize the sequence of exposure times in concert with the inhibition policy
while using a more holistic energy cost model.
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Suppl. Fig. 5. Power-efficient static single-photon imaging via inhibition. A reference image (9C4A0599; 143.5 dB dynamic range) is
captured using a bracket of five exposure times with 1,000 binary frames for each exposure time. The second column displays the resulting
average inhibition patterns for each exposure time. The top most pattern from the shortest exposure time modestly inhibits and does so at
the brightest pixels only. The inhibition pattern of the longest exposure time allocates most measurements to the darkest areas of the scene.
The bottom chart in the leftmost column summarizes the allocations of measurements using smoothed curves of the inhibition percent
versus the flux of each pixel for each of the three exposure times (Lowess filter with a fraction of 1/5). The right-most columns show binary
rate images using gamma compression (γ = 0.4) without (left) and with (right) inhibition at equal average detections per pixel. Detections
increase moving down with averages of 5, 12, and 30 detections per pixel shown. Image quality metrics versus detections per pixel are
summarized in the leftmost column.
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Suppl. Fig. 6. Power-efficient static single-photon imaging via inhibition. A reference image (AG8A7597; 173.6 dB dynamic range) is
captured using a bracket of five exposure times with 1,000 binary frames for each exposure time. The second column displays the resulting
average inhibition patterns for each exposure time. The top most pattern from the shortest exposure time modestly inhibits and does so at
the brightest pixels only. The inhibition pattern of the longest exposure time allocates most measurements to the darkest areas of the scene.
The bottom chart summarizes the allocation of measurements using smoothed curves of the inhibition percent versus the flux of each pixel
for each of the three exposure times (Lowess filter with a fraction of 1/5). The right-most columns show binary rate images using gamma
compression (γ = 0.4) without (left) and with (right) inhibition at equal average detections per pixel. Detections increase moving down
with averages of 5, 12, and 30 detections per pixel shown. Image quality metrics versus detections per pixel are summarized in the leftmost
column.
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Saturation look-ahead inhibition: We estimated the benefits of saturation look-ahead inhibition analytically using the 10
images with the widest dynamic range in the Laval indoor HDR dataset (up to 178 dB DR) [8]. The specific policy uses an
exponential bracketing scheme with 5 exposure times scaled as Tn+1 = 5Tn, and 10 measurements are taken with each one.
The thresholds to inhibit subsequent exposures under the saturation look-ahead policy were set as D = {6, 6, 6, 6}, to ensure
that on average, the flux range crossing them has a probability of photon detection of 0.99 or greater in the next (longer)
exposure, representing (near) saturation. That is to say, taking T1 < T2, the detection rate Y1 at the exposure time of T1 that
corresponds to a near-saturating detection rate of Y2 at exposure time T2 is computed as:

Y1 = 1− e
T1
T2

log(1−Y2) = 1− e0.2×log(1−0.99) ≊ 0.60 = 6/10. (S5)

The analytical results calculated using a subset of pixels from each of the images show that exposure brackets inhibit 90.6%
of detections as compared to a minimum exposure time of equal observation length. The saturation look-ahead policy further
reduces detections by an average of -38.4% as compared to bracketing alone. In total, averaged over the 10 images, look-
ahead inhibition with exposure bracketing inhibits 94.0% of the detections. The images studied were 9C4A6135, AG8A3343,
AG8A2979, AG8A5920, AG8A7597, AG8A6813, 9C4A3821, 9C4A3335, 9C4A1696, and 9C4A0599.

S 3.6. Details of Edge Detection Policies

A high performing edge detection policy is presented in Section 6.2 and Fig. 6 of the main manuscript. This policy calculates
a score from the 3×3 Laplacian (S1) and a 3×3 average filter (S2). The final inhibition decision is the Boolean operation of
these scores as ((η1<S1<η2) ∧ (S2 > η3)) ∨ (S2 > η4). The thresholds for the Laplacian score S1 are η1 = −12, η2 = 12
which detects regions of minimal spatial variation. To inhibit based on minimal spatial contrast, we additionally require that
the average score exceeds a modest threshold, η3 = 4, so that dim neighborhoods are not inhibited. Finally, independent of
the Laplacian calculation, the pixel is inhibited if the average score is excessive, η4 = 16. For this policy, τH = 16. As in the
policies for static imaging, the temporal kernel was KT =

[
1 1 1 1

]
.
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S 4. Photon Efficiency and Metrics
S 4.1. Oracle Measurement Allocation

Avg. D/pix. Allocation method MSE↓ SSIM↑ equal MSE: D % equal SSIM: D %

5 Uniform 5.23×10−3 ± 2.89×10−3 0.696 ± 0.117
MSE optimal 4.47×10−3 ± 2.64×10−3 0.724 ± 0.116 -10.0 ± 7.8 -13.7 ± 6.87

12 Uniform 2.18×10−3 ± 1.21×10−3 0.815 ± 0.084
MSE optimal 1.86×10−3 ± 1.10×10−3 0.837 ± 0.081 -10.0 ± 7.8 -13.4 ± 7.09

30 Uniform 8.71×10−4 ± 4.82×10−4 0.905 ± 0.048
MSE optimal 7.45×10−4 ± 4.40×10−4 0.918 ± 0.046 -10.0 ± 7.8 -12.8 ± 7.44

100 Uniform 2.61×10−4 ± 1.32×10−4 0.967 ± 0.018
MSE optimal 2.23×10−4 ± 1.45×10−4 0.971 ± 0.017 -10.0 ± 7.8 -12.2 ± 7.43

Suppl. Table 2. Average results from simulations of 20 images using an oracle allocation policy that is optimized for MSE as compared
to a uniform distribution of pixel measurements. In alignment with the main manuscript, the last two columns show the percent change
in detections for equal MSE and SSIM enabled by the oracle allocation policy as compared to a uniform allocation of measurements. ±
indicates the standard deviation over the 20 images simulated.

This supplemental section motivates the assertion that an optimal measurement allocation that minimizes image MSE
allocates measurements in proportion to

√
1− Y . Photon inhibition enables an unequal distribution of measurements among

the pixels of the sensor. To guide the design of inhibition policies presented in the main manuscript we considered two
questions. How should a fixed number of detections be allocated among pixels of a single-photon sensor to optimize the
image mean squared error (MSE)? By what amount can image metrics be improved by measurement allocation policies
when total detections are constrained?

The variance of the binary rate estimate of pixel i with binary rate Yi and allocated Wi measurements is

σ2
Yi

=
1

Wi
Yi(1− Yi). (S6)

The MSE is the sum of the variances over all pixels P . A minimum of the MSE is found by differentiating with respect to

Wi and constraining the total detections to DT =
P∑
i

YiWi. The optimal measurements allocated to pixel i for this minimum

MSE is then

W ∗
i =

DT√
Yi


√

Yi(1− Yi)
j=P∑
j=1

Yj

√
1− Yj

 . (S7)

Equation (S7) shows that when constrained by total detections, total image MSE is minimized when measurements are
allocated in proportion to

√
1− Y . This analytical approach requires perfect knowledge of the photon flux at each pixel, a

non-causal “oracle”, and is thus an upper bound on the improvements enabled by photon inhibition. Similar optimal allocation
policies may be developed for a scenario with a constraint on measurements rather than detections. These allocations were
derived separately and then later very similar allocations were found in the work of Medin et al. which derives optimal
stopping rules for active imaging systems designed to estimate Bernoulli parameters [14].

To validate Eq. (S7) we simulated the same 20 BSDS500 images as used in the main manuscript at a single effective
exposure time of an average of 1 photon per pixel. To prevent unbounded allocations, pixels were forced to a minimum rate
of Y = 0.01 and a maximum rate of Y = 0.99. The variance of each pixel was calculated as Eq. (S6) and the image MSE
was evaluated as the average of the variances of all pixels. Two measurement allocations were evaluated. The first approach
allocated measurements equally between all pixels (“Uniform”); the second approach allocated measurements as defined
in Eq. (S7) (“MSE optimal”). With the image variance calculated from the ground truth binary rate and the measurements
allocated to each pixel, a noise corrupted image was generated by adding noise from Gaussian distributed samples at each
pixel to the ground truth image. The noise image was then clipped to between [0,1]. This noise image was used to assess
image quality metrics, such as SSIM, by comparison to the reference image. Supp. Table 2 demonstrates these simulated
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results using the oracle “MSE optimal” measurement allocations. The simulations suggest that the inhibition policy results
presented in the main manuscript (∼15% detection reduction) approach the limits established by an oracle allocation for these
specific images. Potential sources of discrepancy include that an analytical allocation was only available for image MSE and
because the oracle simulations added Gaussian distributed noise.

A Generalized Formulation

A binary quanta sensor artificially “squeezes” noise in the high-flux regime [6], and therefore one may say that exposure-
referred noise is a more appropriate objective than the binomial mean-squared error (MSE) considered so far.

To accommodate a more general analysis we define the following image-space loss function

Lim. :=
∑
i

1

Wi
Ei, (S8)

where Ei is an arbitrary per-pixel normalized loss which is subsequently driven down by averaging Wi measurements. Ei

is therefore assumed to be a function of Hi (or equivalently, Yi). We maintain the same constraint on the total number of
detections: ∑

i

WiYi = DT . (S9)

Applying the method of Lagrange multipliers to the loss function L := Lim. + λ (
∑

i YiWi −DT ), yields the optimal
allocation

W opt.
i = DT

( √
Ei/Yi∑

j Yj

√
Ej/Yj

)
∝
√

Ei

Yi
. (S10)

It can be verified that on setting Ei = Yi(1− Yi), the
√
1− Y weighting of Eq. (S7) is recovered.

Suppl. Table 3. Optimal measurement allocations and expected number of detections for four loss functions. SNRH/D is defined as√
SNR2

H/D = H
√
1−Y
Y

, and similarly SNRH/W :=
√

SNR2
H/W = H

√
1−Y√
Y

.

Metric name Ei W opt.
i E[Di]

opt. = YiW
opt.
i

Binomial MSE Yi(1− Yi) ∝
√
1− Yi ∝ Yi

√
1− Yi

Exposure-referred MSE
(

dHi

dYi

)2
· Yi(1− Yi) ∝ 1√

1−Yi
∝ Yi√

1−Yi

= Yi

1−Yi

Relative exposure-referred MSE 1
H2

i
·
(

dHi

dYi

)2
· Yi(1− Yi) ∝ 1

Hi

√
1−Yi

=
SNRHi/Di

SNR2
Hi/Wi

∝ Yi

Hi

√
1−Yi

= 1
SNRHi/Di

(≡ 1
SNR2

H
) = 1

H2
i

Yi

1−Yi
= 1

Yi SNRHi/Di

SNRH/W -tracker 1
Yi

SNR2k
Hi/Wi

∝ 1
Yi

SNRk
Hi/Wi

∝ SNRk
Hi/Wi

k ∈ {1, 2, . . .}
For k = 2 SNR2

Hi/Di
·SNR2

Hi/Wi
∝ 1

Yi
SNR2

Hi/Wi
= SNR2

Hi/Di
∝ SNR2

Hi/Wi

Suppl. Table 3 shows three other possible loss functions with the optimal allocations obtained using the process above.
The binomial MSE has already been discussed. “Exposure-referred MSE” transfers the error to the linear radiance domain,
for which the optimal allocation is proportional to 1√

1−Y
. This loss function has a potential problem: the optimal allocation

diverges for very high flux (Yi → 1). Further, this metric generally encourages measurements to be spread more densely
over bright pixels – the opposite of the binomial MSE discussed previously. Images acquired under this allocation do have
slightly more detail (less noise) in highlights compared to both a uniform spread as well as weighting by

√
1− Y , but at the

cost of almost complete loss of detail in dark regions (Suppl. Fig. 7).
The problem with exposure-referred MSE is partially compensated by defining a relative version, which normalizes it by

the squared radiance – minimizing this is equivalent to maximizing SNRH directly. The optimal allocation is now propor-
tional to 1

H
√
1−Y

. Images acquired under this allocation do preserve much more detail in dim regions (Suppl. Fig. 7) –

13



perhaps excessively so, in fact, since the allocation now diverges for H → 0 as well! This is particularly a problem under
high dynamic range: while we can reasonably assume a finite upper bound on flux, there is no obvious lower limit of flux.

The issues with exposure-referred error measures stem from the under-specified nature of the problem so far. A simple
approach to addressing the issue of diverging allocations is to regularize the problem: clamping the detection rate Y to
the range [0.01, 0.99] can be considered one form of this. Another principled alternative would be to formally include
the several forces limiting the total number of measurements allowed: the amount of camera and scene motion, readout
bandwidth and power consumption, and the latency-sensitivity of the vision task. Placing explicit inequality constraints on
total measurements results in a more complex optimization problem which does not have a closed-form solution. This is an
important question which we do not explore further here and leave for future work.

The fourth row of Suppl. Table 3 places the saturation look-ahead policy of the main paper in the current context. In
Fig. 4 of the main paper, the expected number of detections E[Di]

opt. tracks the SNRH/W plot in log-log space, which
suggests a power-law relation (at least approximately). Working backwards from that result to the loss function for which
that allocation is optimal, provides insight into the behavior of the policy (which was definitely not designed with any formal
optimization problem in mind, only to yield adequate performance and be practically feasible – see Suppl. Sec. S 7.2 for
related discussion). Focusing on the k = 2 case from the table, we see that the so-called “loss” function that the saturation
look-ahead policy appears to minimize is a sum of (powers of) SNRs, which does seem extremely counter-intuitive. A way
to make sense of this observation is to realize that if treated abstractly, the function SNR2

H/D ·SNR2
H/W is larger for dim

pixels, and therefore an allocation that favors dim pixels drives down the “loss” further. This is the essence of the behavior
we intuitively seek from an inhibition policy:

√
1− Y weighting does the same. However, this is by no means an ideal

metric, and tracking the SNRH/W curve precisely is not an absolute necessity. Even confining ourselves to the space of the
four choices considered in Suppl. Table 3, the allocation under binomial MSE appears to yield visually better images than
the SNRk

H/W -tracker, and so an inhibition policy that can practically realize it is likely to perform even better than saturation
look-ahead.

Is there a point to oracle-type analysis? These optimal allocations are derived assuming the pixel intensities are known
ahead of time. These oracle policies would not appear to be realistic, yet recent work on optimal spatially varying exposures
proposes a two-step capture sequence with the first step being a pilot image that guides configuration [18]. A similar pilot
image approach may be useful for practical implementation of the optimal measurement allocations discussed here.

S 4.2. Binary Rate Efficiency Metrics

The efficiency metrics developed in Sec. 4.1 of the main manuscript evaluate the SNR of the measurement of photon exposure
(H). An alternative representation of the scene is the binary rate (Y ). Exposure and binary rate are related by a nonlinear
transform of H = − ln(1 − Y ). Entropy is a possible alternative to SNR for single-photon image sensors [10] if the
application processes binary rate images. With a binary rate of Y the entropy is

S(Y ) = −Y log2(Y )− (1− Y ) log2(1− Y ) (S11)

with a maximum of 1 bit when Y = 0.5 [10]. Similar to the main manuscript, an entropy detection efficiency may be
defined as S(Y )2/Y . Like detection efficiency in the main manuscript, this metric also demonstrates that detections of
nearly saturated pixels are less informative and should be inhibited for energy-efficient single-photon imaging.

14



1 3 10 50 150
(b)
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Relative

exposure-referred MSE SNRH/W tracking
2

Suppl. Fig. 7. Two example images simulated under optimal allocations for the metrics of Table 3, in bottom rows of (a) and (b). The
pseudo-color images in the top rows display the number of binary exposures allocated to each pixel by the expressions in the table (the
colormap is in log-scale) – the total expected number of detections is held constant for all allocations. The actual images are simulated
by rounding those expressions, and assuming a mean flux of 1.59 photons/pixel over the complete image for a single binary exposure (the
peak of the SNRH curve [4]). Pixels with zero measurements are replaced with either zero or the maximum flux of the true image, as
appropriate for each individual metric (the choice is independent of the image). The binomial MSE, the relative exposure-referred MSE,
and the SNRH/W -tracking loss function result in denser allocation towards dim pixels (and generally improved image quality), while the
plain exposure-referred MSE does the opposite in both aspects. The peaky nature of the allocation with relative exposure-referred MSE
can be seen through its strong highlights.
(The reader is requested to zoom in to observe finer details.)
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S 5. Background on Static Single-Pixel Inhibition Policies
Current single-photon sensor designs implicitly inhibit photons by setting a maximum count [16, 17] or lengthening the
exposure time [21] to limit detections and reduce avalanche energy. These architectures comprise a family of inhibition
policies that operate at the individual pixel level and do not adapt as a function of the history of photon detections. Below is
background on these already existing policies because our proposed inhibition policies build on top of these.

Suppl. Fig. 8 shows a subset of static single-pixel inhibition policies. SPADs require recharge after an avalanche-inducing
photon detection during which recording a subsequent photon is not possible (dead time, τD). This detector response of
asynchronous recharge with dead time inhibits photons at high exposure [11, 12], yet, power consumption is excessive when
the average inter-photon arrival interval is shorter than the SPAD dead time [15, 17]. Clocked recharge is an alternative that
establishes time windows, similar to a conventional exposure time, during which 0 or 1 photon may be detected [17, 21]. After
the first photon, any subsequent arrivals during the same predefined exposure window are inhibited. The average number of
inhibited photons is equal to

∑∞
k=2(k − 1)P(K = k;H) where P denotes the Poisson probability mass function. At the

measurement-limited SNR-optimal exposure H = 1.6 there is a Y = 0.80 chance of detecting a photon with an average of
0.83 photons inhibited per measurement. With H≫1 the average number of inhibited photons approaches H − 1 yet the
signal-to-noise ratio degrades because the pixel is nearly saturated. Clocked recharge considerably reduces power in bright
light as compared to asynchronous recharge [15, 21]. Because of this, our proposed policies typically maintain and extend
clocked recharge.

Clocked recharge with exposure brackets [5, 21], shown in Suppl. Fig. 8(c), is a static inhibition policy that uses multiple
exposure times to balance constraints on detections and measurements while maintaining SNR over a range of illumination
levels. Longer exposure times measure dim pixels with good SNR and limit the detections of bright pixels; short exposure
times measure bright pixels with good SNR. Suppl. Fig. 9 guides the tradeoffs between detections, inhibitions, and SNR
when selecting a single exposure time of a bracketing sequence. Suppl. Table 4 selects three specific exposure times of
an exposure bracket inhibition policy and tracks detections, inhibitions, and the contributions of each exposure time to the
HDR reconstruction. Due to near saturation, the detections by the brightest pixel at the longest exposure time(s) have a low
weighting for SNR-based HDR reconstruction [9] but still represent 10/25.7 = 38.9% of the total detections, suggesting a
clear opportunity for more advanced inhibition policies to reduce avalanche power.

(a)
Inhibit

Window

Photons

time

X

τD τD

X XX

τD

(b)
Inhibit

Window

Photons

time

T T T T

X X X

(c)
Inhibit

Window

Photons

time

T1 T1 T1 T2 T2 T3 T3

X X X X X

Suppl. Fig. 8. Single-pixel static inhibition policies without computations. Arrows represent incoming photons with an ’X’ for inhi-
bition. (a) Asynchronous recharge with dead time (τD). After a photon detection, the bias voltage of a SPAD must be recharged. During
this dead time (τD) photons are inhibited. (b) Clocked recharge. The recharge period of T sets a window in which 0 or 1 photons can
be detected. Subsequent photons within the window are inhibited. (c) Clocked recharge with exposure brackets. An extension of clocked
recharge with a sequence of different periods.
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T = 0.1/ϕ2 T = 1.0/ϕ2 T = 10.0/ϕ2 HDR
ϕ[ϕ2] wt. D I wt. D I wt. D I SNR

0.01 0.10 0.01 0.00 0.09 0.10 0.00 0.90 0.95 0.05 1.03
0.10 0.32 0.10 0.00 0.14 0.95 0.05 0.85 6.32 3.68 2.62
1.00 0.98 0.95 0.05 0.85 6.32 3.68 0.01 10.00 88.11 2.61

Total 1.06 0.05 7.37 3.73 17.27 91.83

Suppl. Table 4. Clocked recharge with exposure bracket results for three pixel fluxes with each exposure time using W = 10 of mea-
surements. Flux values are in units of the maximum flux ϕ2. wt. is the weighting for HDR reconstruction [9], D is detections, and I is
inhibitions. A bold value indicates an opportunity to improve detection efficiency by using a more advanced inhibition policy.

Suppl. Fig. 9. (left) The SNRH (black, −) versus the exposure time with the total sensing latency, TL, maintained by varying the number
of measurements (W = TL/T ) at three different flux levels. (right) The number of detections (red, −−) and the number of inhibitions
(blue, −·−). A vertical slice represents one exposure time of an exposure bracket policy.
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S 6. Details of Experiments on Dynamic Scenes
This section details the methods for Section 7 of the main text and motivates the sub-sampling ratio chosen for comparison
in Figure 7.

S 6.1. Sub-sampling Factor Tradeoff

Sub-sampling a binary frame sequence is equivalent to setting a longer period for clocked recharge, but with the distinction
that the actual exposure duration for which the pixel is photo-sensitive is kept constant (the length of the original binary frame
exposures). Suppl. Fig. 10 shows example results for two real images with varying sub-sampling factors, evaluated on image
quality using SSIM [23]. For sub-sampling factors greater than 10× a large drop in SSIM can be seen, and similar behavior
was obtained with the images of Fig. 7 in the main paper.

S 6.2. Additional Results

A video of the entire sequence of Figure 7 of the main text is included as long HDR seq burst reconstructions.mp4.
Individual frames from the full video sequence result are provided in the folder individual output frames.

Average all frames

(N = 12,000)
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with all frames
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with all frames
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Brackets 

+ look-ahead inhibition
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S
S
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0
0
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0
0

1

1

SSIM: 0.89, 90% inhibitionSSIM: 0.94, 80% inhibitionSSIM: 0.97, 50% inhibition

SSIM: 0.96, 50% inhibition

SSIM: 0.80, 96% inhibition SSIM: 0.69, 98% inhibition

SSIM: 0.89, 77% inhibition SSIM: 0.87, 92% inhibition

SSIM: 0.84, 83% inhibitionSSIM: 0.88, 67% inhibition

SSIM: 0.88, 90% inhibition

From 2x sub-sampled data 5x sub-sampling 25x 50x

Bracketing only
Brackets 

+ look-ahead inhibition

2x sub-sampling 5x 25x 50x

SSIM: 0.92, 80% inhibition SSIM: 0.78, 96% inhibition SSIM: 0.65, 98% inhibition

Suppl. Fig. 10. Quality versus inhibition for a single image. For two separate sequences of 12,000 binary frames each, burst reconstruc-
tion [13] is performed first directly (with all photons), and then with various inhibition policies: (top) exposure bracketing, with and without
saturation look-ahead inhibition, and (bottom) sub-sampling by dropping frames. The binary frames were captured using the SwissSPAD2
sensor [22], similar to the main paper. The plots on the top-right measure the image quality relative to the reference (no-inhibition) result
using SSIM [23], versus the fraction of photons inhibited/dropped by the policy. Sub-sampling factors larger than 10× incur substantial
image quality loss for these two images: analogous results are expected for other scenes, possibly for different sub-sampling factors de-
pending on light levels. Separately, the saturation look-ahead policy provides significant inhibition on top of bracketing, with minimal loss
in image quality.
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S 7. Implementation of Proposed Policies
In Sec. S 7.1 we estimate the circuitry required to implement the proposed calculation-based inhibition policy (of Fig. 2). A
design assumption is that the implementation will be more constrained by area than computation latency — at 400MHz logic
clock frequency [2] 4,000 clock cycles are available for computation during a 10µs recharge period. Therefore, the approach
prioritizes minimization of the required in-pixel memory. We emphasize that these are “back of the envelope” estimates; we
have not fabricated a chip or created synthesizable digital logic yet. Sec. S 7.2 describes the bracketing-based saturation
look-ahead policy in terms of the computation and memory required, as well as the likelihood-maximization process used to
convert the bracketed measurements to an estimate of incident flux.

S 7.1. Calculation-based Inhibition

As a reminder from the main text, the inhibition score at each pixel is calculated as

S(i, j, t) = K ∗ [(2F (i, j, t)− 1) ·M(i, j, t)] (S12)

which applies a spatio-temporal filtering kernel, K, of dimensions L,H, T to a ternary representation of the pixel result (1,
0, or −1 for a detection, a disabled pixel, or a measurement that does not detect a photon, respectively). The kernel K can
typically be separated into spatial and temporal components as K = Ks ⊗Kt with dimensions L ×H × 1 and 1 × 1 × T ,
respectively. After each binary frame, the score is compared to a threshold η and the pixel is disabled for the subsequent τH
frames: M(i, j, t′) = 0 for {t′|t+ 1 ≤ t′ ≤ t+ 1 + τH} if S(i, j, t) > η. Suppl. Sec. S 3.3 shows the spatial and temporal
kernels (Ks and KT ) used in the simulations.

Suppl. Table 5 describes possible on-chip and in-pixel circuitry for the calculation-based inhibition policy. A subset of the
circuit elements must be independent for each pixel as indicated by an entry of “no” in the column titled “Share?”. However,
other computation circuitry could be shared among a local neighborhood of pixels and housed in a macropixel computation
unit [2, 11]. The circuitry is separated into subcircuits of:
1) SPAD control: directly controls the bias voltage of the SPAD and allows for enable/disable of the pixel.
2) Inhibition score: short-length memory for detection results and arithmetic circuits (adder and shift left) for spatio-temporal

computations.
3) Inhibition control: evaluates if the score, S, exceeds the inhibition threshold, η. If S > η, disables the pixel for a count of

τH clocked-recharge exposure periods.
4) Measurement results: in-pixel counters to record the number of detections and inhibitions. These results must be readout

to reconstruct the image.

(text continues after next page)
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Circuit
element

Description Subcircuit Notes Share?

PMOS
transistor

SPAD bias control SPAD
control

no

OR gate Logic to determine SPAD enable,
and drive PMOS gate

SPAD
control

no

Logic gate Converts SPAD detection and
SPAD enable state to two bit
ternary of 1, 0, -1.

Inhibition
score

no

Register[1:0]
×4

2-bit register to store signed de-
tection results. T copies arranged
as a shift register to create the
temporal filter.

Inhibition
score

Implements KT . Proposed has
T = 4 ⇒ 8 registers as KT =
[1, 1, 1, 1].

no

Adder Adds each of T detection results. Inhibition
score

Implements KT . Proposed al-
lows results from [-4, 4].

yes

Shift left Ks multiplications that are con-
strained to powers to 2.

Inhibition
score

Implements Ks. Must allow for
×(−1). Proposed needs max
shift of ≪ 3 (for ×8).

yes

Adder Adds pixel and nearest neighbor
pixels for a spatial convolution.

Inhibition
score

Implements Ks. Proposed results
from [-64, 64]. This result does
not need to be stored.

yes

Comparison S > η Inhibition
control

Proposed implementation has
common η among all pixels.

yes

Counter Count for holdoff period, τH ,
triggered by S > η. Counts
recharge periods and releases
SPAD disable.

Inhibition
control

Output combines with global
clock recharge to enable/disable
SPAD. The proposed parameters
in simulations require a maxi-
mum counter depth of 5.

no

Counter Count of detections. Depth set by
maximum number of frames.

Measurement
results

Readout to create the final pixel
intensity value. Simulations used
a maximum of 1,000 frames
which would require a 10 bit
counter.

no

Counter Count of inhibition starts. Depth
less than detection counter by
× log2(τH). For the best per-
forming imaging policy τH = 32
such that a 5 bit counter would be
required to count inhibition starts
(210/25 = 25).

Measurement
results

Only counting inhibition starts
reduces the required depth of the
counter. Readout to recreate final
pixel intensity value. End effects
will be observed if the composite
frame ends during a holdoff time.

no

Suppl. Table 5. Circuitry to implement the calculation-based inhibition policy. The SPAD control and detection counter is part of the
circuitry of a conventional SPAD pixel (for example, see Ota et al. [20]). The last column indicates whether computations may be shared
(time-multiplexed) among multiple pixels at a macropixel arithmetic unit. The order of implementation to store the single-pixel results
of the temporal filter (KT ) and then re-calculate Ks at the end of each exposure period is designed to to minimize the required in-pixel
memory (since the results of Ks span a wider range than KT ). The measurement results subcircuit is needed to recreate the total photon
rate after readout. This requires a count of the detections and a count of the number of exposures during which the pixel was active or
disabled. An approach that reduces the required circuitry counts only the inhibitions starts with the total number of disabled frame periods
as starts× τH .
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S 7.2. Saturation Look-ahead Inhibition

This policy is described with an example in Fig. 4a of the main paper.

Pseudo-code A MATLAB-like code listing describing the complete implementation is provided below.

1 function [B_LA, M] = bracket_LA(B, seq, policy)
2 % Look-ahead inhibition with exposure brackets:
3 % Input arguments:
4 % B: Nx1 binary vector (for single SPAD pixel)
5 % seq: Tx1 bracketing sequence (integer) lengths
6 % assumed sorted in non-decreasing order
7 % policy: (length(unique(seq))-1) x 1, integer
8 % Outputs:
9 % B_LA: Tx1 binary vector

10 % M: Nx1 "inhibition pattern" of line 299
11 % M[n] = 1 means the pixel is _enabled_.
12 B_LA = false([T 1]);
13 M = true([N 1]);
14 n = 1; sp = 0; Bsum_sp = 0; sat = false;

15 for s = 1:length(seq)
16 % Bracketing from binary SPAD frames
17 for ns = 1:seq(s)
18 B_LA(s) = B_LA(s) || (M(n) && B(n));
19 if ns < seq(s) % inh. within bracket
20 M(n+1) = M(n) && ˜B_LA(s);
21 n = n + 1;
22 % Look-ahead inhibition implementation
23 if (s == 1) || (seq(s) ˜= seq(s-1))
24 % new unique sequence length
25 sp = sp + 1; Bsum_sp = 0;
26 Bsum_sp = Bsum_sp + B_LA(s);
27 if sat || (Bsum_sp > policy(sp))
28 M(n) = 0; sat = true; % disable

Complexity The look-ahead inhibition policy is single-pixel and thus is expected to allow for a lighter-weight in-pixel
implementation than the calculation-based policies. For a bracketing exposure time sequence of T := {Ti}Ki=1, the measure-
ment results are represented by the binary sequence of detections BT := {bi}Ki=1 and the inhibition pattern MT := {mi}Ki=1,
where mi = 1 denotes the pixel being enabled during that exposure. The memory footprint of both BT and MT is already
relatively small, but further efficiency is realized by recognizing that for a given unique exposure time, the order of detections
with that setting is not important; instead just the sum of detections contributes to the flux estimate.

Furthermore, certain detection sequences are precluded by the inhibition policy. As an example, for the Fibonacci brack-
eting sequence [1, 1, 2, 3, 5, 8, 13, 21] used in the main text with the inhibition policy of [2, 1, 1, 1, 1, 1], only 15 unique
combinations of (BT ,MT ) are possible. Thus, inhibition may even result in greater efficiency than the standard exposures,
not less (at least in terms of memory and bandwidth use) — the original Fibonacci brackets have 192 possible unique mea-
surements. When multiple bracketing cycles are aggregated on-chip, it may be possible to map the binary detection sequence
to an index in a histogram via an encoding implemented on-chip, with only the histogram read out later.

Control signal flow. At the conclusion of each exposure time sequence within a bracketing sequence, the number of
detections must be compared to the threshold count in the inhibition policy. If the comparison triggers inhibition, this status
is stored and used to disable the SPAD, as in the implementation of S 7.1. At the end of a bracketing sequence a global signal
is required to reset the inhibition status of a pixel.

Maximum Likelihood Estimation (MLE) Computation for Exposure Bracketing

As above, the bracketing exposure time sequence is denoted by T := {Ti}Ki=1, and the inhibition pattern by MT := {mi}Ki=1.
After bracketing, every sequence of sum(T ) =

∑
i Ti binary measurements at the original rate is replaced with a binary

sequence BT := {bi}Ki=1.
The likelihood L is given as a function of incident flux ϕ:

L(ϕ) =

K∏
i=1

[
(1−mi) +mi ·

(
exp(−ϕTi)

1−bi · (1− exp(−ϕTi))
bi
)]

. (S13)

This expression does not have a closed-form expression for its maximum in ϕ. Therefore, we optimize ϕ numerically given
a particular combination of MT and BT , searching exhaustively over 2,000 uniformly spaced points in the range [0, 10]. For
a fixed bracket cycle T , the MLE may be found offline for all possible combinations of BT and MT and stored in a look-up
table (LUT) of maximal possible size 22×count(T ). But as stated above, only 15 sequences of detections are possible for the
Fibonacci bracketing sequence used in the main text when combined with saturation look-ahead inhibition. Therefore the
corresponding LUT is also extremely small in practice.
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