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Abstract. Existing methods attempt to improve models’ generalization
ability on real-world hazy images by exploring well-designed training
schemes (e.g ., CycleGAN, prior loss). However, most of them need very
complicated training procedures to achieve satisfactory results. For the
first time, we present a novel pipeline called Prompt-based Test-Time De-
hazing (PTTD) to help generate visually pleasing results of real-captured
hazy images during the inference phase. We experimentally observe that
given a dehazing model trained on synthetic data, fine-tuning the statis-
tics (i.e., mean and standard deviation) of encoding features is able to
narrow the domain gap, boosting the performance of real image dehaz-
ing. Accordingly, we first apply a prompt generation module (PGM) to
generate a visual prompt, which is the reference of appropriate statis-
tical perturbations for mean and standard deviation. Then, we employ
a feature adaptation module (FAM) into the existing dehazing mod-
els for adjusting the original statistics with the guidance of the gener-
ated prompt. PTTD is model-agnostic and can be equipped with various
state-of-the-art dehazing models trained on synthetic hazy-clean pairs
to tackle the real image dehazing task. Extensive experimental results
demonstrate that our PTTD is effective, achieving superior performance
against state-of-the-art dehazing methods in real-world scenarios. The
code is available at https://github.com/cecret3350/PTTD-Dehazing.
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1 Introduction

Hazy images often suffer from low contrast, poor visibility, and color distor-
tion [44], imposing a negative impact on the downstream high-level vision tasks,
such as object detection, image classification, and semantic segmentation. Ac-
cording to the atmospheric scattering model (ASM) [36, 37], the hazing process
is commonly formulated as:

I(x) = J(x)t(x) +A(1− t(x)), (1)
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Fig. 1: Different frameworks and their results on real-world hazy images. (a) Directly
apply model trained on synthetic data to real hazy images (e.g ., AECRNet [45]); (b)
Use synthetic and real data together to train the model and then apply it to real hazy
images (e.g ., PSD [10], DAD [41]); (c) Our proposed PTTD; (d) A real hazy image; and
(e-h) Processing results of state-of-the-art (SOTA) methods (AECRNet [45], PSD [10],
DAD [41]) and our proposed PTTD (by adopting pre-trained AECRNet [45]). It can
be observed that AECRNet-PTTD achieves very promising results.

where I(x) is the observed hazy image and J(x) denotes the clean image of the
same scene. A and t(x) are the global atmospheric light and the transmission
map, respectively.

Image dehazing aims to recover the haze-free image from corresponding hazy
input, which is a highly ill-posed problem. Early approaches tend to solve this
challenge by introducing various priors, such as Dark Channel Prior (DCP)
[21, 22], Non-Local Prior (NLP) [6], Color Attenuation Prior (CAP) [55], etc.
However, real-world hazy images do not always satisfy the priors and artifacts
may be introduced under this condition.

With the rise of deep learning, researchers have proposed a series of single
image dehazing methods based on convolutional neural networks (CNNs). Most
of them try to estimate the t(x) and A [8, 29, 40] in Eq. (1) or directly learn
the latent haze-free image (or haze residual) [13, 24, 38, 45, 54]. The former then
utilizes the estimated t(x) and A to derive the haze-free image via ASM.

Recently, existing deep learning based dehazing methods are devoted to im-
proving performance by training sophisticated architectures on synthetic datasets
[11, 54]. Though breakthrough progress has been made in the past decade, the
processing results on real-captured hazy images are still unsatisfactory (as shown
in Fig. 1 (e)), and it is mainly caused by the domain shift. How to bridge the gap
between synthetic and real-world data is a hot research topic among the com-
puter vision community. In order to improve the models’ generalization ability on
real-world hazy images, researchers start exploring CycleGAN based [41,47] and
prior loss based [10,18] methods. However, either CycleGAN based or prior loss
based methods demand very complex training procedures to guarantee the per-
formance. Moreover, the former tends to produce results with artifacts, whereas
the latter is negatively influenced by the inherent deficiencies of physical priors
(Fig. 1 (f) and (g)).
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Fig. 2: (a) is a real hazy input; (b) is the processing result of AECRNet [45], which
is trained on synthetic data; (c) and (d) are the results by fine-tuning the mean µ; (e)
and (f) are the results by fine-tuning the standard deviation σ. In this experiment, the
perturbation ∆ is set to a small constant, i.e., ∆ = 0.005.

We experimentally find an interesting phenomenon that some statistical in-
dicators (e.g ., mean and standard deviation) may significantly affect the model’s
output, as shown in Fig. 2. Taking pre-trained AECRNet [45] as an example,
by fine-tuning the mean and standard deviation (only a small perturbation) of
deep features extracted by the encoder, the predicted image reconstructed via
the decoder is able to manipulate the haze distribution.

Considering this, we propose an effective remedy, called Prompt-based Test-
Time Dehazing (PTTD), which attempts to avoid training process and generate
visually pleasing results during the inference phase. Specifically, we first apply
a prompt generation module (PGM) to create a visual prompt image, which is
later employed to obtain the appropriate values of the statistics. Similar to style
transfer [25], the visual prompt accepts a haze-free image as input and inherits
the haze distribution from the real hazy image via the operation of image-level
normalization (ILN). Then, we employ a feature adaptation module (FAM) into
the encoder of a pre-trained model (PTTD is a plug-and-play pipeline, and
can take various dehazing models as its backbone) for adjusting the statistics.
The adjusting values are calculated by taking prompt and real hazy input into
consideration, and the adjustment is realized by the operation of feature-level
normalization (FLN). Both of ILN and FLN are derived from adaIN [25], which
is used to align statistics of the content with those of the style in feature space.
We hope the dehazing results of the real hazy images can better fit human’s
perception. To achieve this ultimate goal, the ILN is further revised to avoid
color distortion and the FLN adapts features with some effective and mandatory
restrictions. Figure 3 shows the overall architecture of proposed PTTD.

As shown in Fig. 1, we apply the proposed PTTD to AECRNet [45] by
slightly revising original structure (add PGM, FAM). We denote it as AECRNet-
PTTD. The AECRNet-PTTD recovers clearer textures, more accurate color, less
artifacts than the alternatives, demonstrating the superiority of proposed PTTD.
Our main contributions can be summarized as follows:

– A novel dehazing pipeline called Prompt-based Test-Time Dehazing (PTTD)
is proposed, which can adapt models pre-trained on synthetic data to real-
world images during test-time. To the best of our knowledge, this is the first
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attempt to tackle the real image dehazing task with NO training process
(including training and test-time training).

– PTTD aims to narrow the domain gap between synthetic and real by fine-
tuning the statistics of encoding features extracted by models pre-trained
on synthetic data. PTTD is the first method to explore the correlation be-
tween feature statistics and the dehazing effect without modifying the CNN
architecture, envisioning an innovative research direction.

– We design a Prompt Generation Module (PGM) to obtain a visual prompt
via color balanced image-level normalization (CBILN). The prompt pro-
vides suitable perturbations for the Feature Adaptation Module (FAM) to
adjust the statistics via feature-level normalization (FLN). PGM and FAM
constitute our PTTD pipeline, which is simple (no training process), flexible
(model-agnostic) and effective (SOTA performance) for real image dehazing.

2 Related Work

2.1 Single Image Dehazing

Pioneers of image dehazing [6, 15, 16, 22, 44, 55] estimate the key components
of ASM (i.e., transmission map and atmospheric light) by leveraging handcraft
priors induced from statistics of haze-free images, and then perform image de-
hazing. Although prior-based methods achieve impressive dehazing performance,
their effectiveness is constrained to hazy scenes which happen to satisfy the as-
sumption they made.

With the rapid development of deep learning, learning-based methods have
dominated the image dehazing domain. Early CNN-based methods [8,29,40,53]
utilize CNNs to estimate transmission map and atmospheric light. However,
the inaccurate estimation of intermediate parameters will introduce the accu-
mulated error. To avoid this, recent CNN-based and transformer-based meth-
ods [11, 13, 14, 20, 23, 24, 34, 38, 43, 45, 49, 54] discard the physical model and
generate dehazing results or their residuals via the end-to-end paradigm. While
learning-based methods demonstrate superior dehazing performance in synthetic
domain, they usually suffer from performance degradation on real-world hazy
scenes.

2.2 Real Image Dehazing

Recently, an increasing number of works have noticed the domain gap between
synthetic domain and real domain, and tried to improve real-world dehazing
performance. One category of these methods utilize real hazy images to reduce
the domain gap [10, 17, 18, 27, 31–33, 41, 52]. DAD [41] employs CycleGAN for
the translation between the synthetic domain and the real domain. PSD [10]
fine-tunes pre-trained dehazing models on the real domain by establishing an
unsupervised prior loss committee. However, due to the absence of paired data
in real-world scenarios, complicate training strategies (e.g ., CycleGAN, prior
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Fig. 3: (a) The overall architecture of our Prompt-based Test-Time Dehazing (PTTD);
(b) The proposed prompt generation module (PGM).

loss) and their corresponding limitations are introduced. The other category
aims to improve generalization performance of dehazing by exclusively utilizing
synthetic images [42,46,47]. For example, Wu et al . [46] propose a new degrada-
tion pipeline to better align the synthetic domain with the real domain. Despite
these efforts, without the aid of real hazy images, domain shift remains [46]. In
order to avoid the inherent limitation of complicate training strategies and lever-
age the advantages of large-scale synthetic dataset, we propose a novel pipeline
to perform feature adaptation on pre-trained models during only test-time. Tra-
ditional test-time adaptation (TTA) methods [19, 33, 48, 52] in low-level vision
adapt models to unlabeled data by updating model parameters. Unlike these
works, our method exploits the correlation between intermediate features and
the model output, thus eliminating the need for parameter updating.

3 Methodology

Let DS = {xi
s, y

i
s}

Ns
i=1 denote synthetic hazy-clean pairs and DR = {xi

r}
Nr
i=1

indicate a collection of real-world hazy images, where Ns and Nr denote the
number of synthetic and real-world samples, respectively. A dehazing network
N trained on DS often fails to generalize well to real data DR, which can be
attributed to the domain gap between DS and DR. Our PTTD aims to bridge
the gap during the inference phase.

3.1 Observation and Motivation

Comparing a hazy image with a haze-free image, the difference is mainly ob-
served in terms of luminance and contrast. We argue that these two image-level
statistics are correlated closely with feature statistics, i.e., mean µ and stan-
dard deviation σ. Adjusting the values of µ and σ in feature space can in turn
affect the luminance and contrast of the reconstructed image, achieving haze
removal effect. To validate this hypothesis, we firstly employ a dehazing model
N which is pre-trained on only synthetic hazy-clean pairs (without loss of gen-
erality, AECRNet [45] is adopted here) to perform dehazing on a real hazy input
xr. As shown in Fig. 2 (b), AECRNet achieves unsatisfactory dehazing result.
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Then, we apply a subtle perturbation ∆ on µ and σ of the extracted features
through AECRNet’s encoder. Let fxr

denotes the features, we adjust σ(fxr
) to

σ(fxr )+∆/σ(fxr )−∆ via a linear transformation. As shown in Fig. 2 (e) and (f),
σ(fxr ) +∆ strengthens N ’s dehazing effect, and σ(fxr ) −∆ makes the reverse
optimization. Similar results can be observed in terms of µ(fxr

).
Motivated by this, we argue a possible solution which can narrow the domain

gap is to adjust the statistics of fxr (with suitable perturbations) to make the
features align with the synthetic domain. So the weight-fixed decoder of N can
reconstruct haze-free predictions.

3.2 Pipeline Overview

As illustrated in Fig. 3 (a), PTTD contains two major parts: pre-processing
part and feature transformation part. In the pre-processing part, we employ a
prompt generation module (PGM) to produce a visual prompt p, whose extracted
features fp are the target domain for guiding the adaption of fxr

. As the key
of our PTTD, feature transformation part can adopt most dehazing models as
the backbone. In the feature transformation part, the feature adaption module
(FAM) is employed into the encoder of N to conduct the adaptation process for
narrowing domain gap. We denote the new model with FAM as N †. N † takes
xr and p as inputs and outputs the reconstructed result Ĵ .

3.3 Prompt Generation Module

Prompt generation module (PGM) is the key component of the pre-processing
part. The goal of PGM is to generate a visual prompt p, which can guide the
adjustment of statistics inside the FAM (offer appropriate values of mean µ and
standard deviation σ). To fulfill this objective, the prompt p must meet two
criteria: (1) it should be similar to the synthetic domain, so the encoder part of
a certain pre-trained model can correctly extract the features. (2) it must have
similar haze distribution with xr, so the adaption could be stable to avoid the
collapse of the whole pipeline. These principles incline us to sample a haze-free
image ys from DS , and then synthesize similar haze as xr on ys. For simplicity,
the ys is randomly chosen from the clean images of synthetic hazy-clean pairs.

Adaptive instance normalization (adaIN) [25] tries to enable arbitrary style
transfer by aligning the channel-wise mean and variance of the content features
with those of the style features. Accordingly, we adopt adaIN by taking xr and
ys as the style input and content input, respectively. We denote it as image-level
normalization (ILN) by aligning µ and σ of ys with those of xr:

p = ILN(ys, xr) = σc(xr)
ys − µc(ys)

σc(ys)
+ µc(xr), (2)

where µc(·) ∈ RC and σc(·) ∈ RC are mean and standard deviation, computed
across the spatial dimensions for R,G,B channels.
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(b) (c) (d) (e)(a)

Fig. 4: (a) A real hazy image xr; (b) A haze-free image ys; (c) Prompt via direct ILN
(adaIN); (d) Prompt via ILN with partition; (e) Prompt via CBILN with partition.

As shown in Fig. 4 (c), simply adopting the adaIN scheme would fail to
transfer the daze distribution from xr to ys, since light-haze and dense-haze re-
gions may compromise each other and generate average results. We argue that
µ and σ are global statistics, and the haze distribution (e.g ., density) is incon-
sistent across the whole image. Therefore, we uniformly crop xr and ys into
small patches without overlap 3 and apply ILN on patches. With this partition
strategy, our ILN can effectively transfer the haze distribution from xr to ys.
Fig. 4 (d) shows the generated prompt, sharing very similar haze with xr.

The criterion (2) is definitely satisfied under this setting. We surprisingly
find that criterion (1) is also met. We reveal that ILN with partition strategy
can be viewed as the process of haze simulation based on ASM. By comparing
Eq. (1) and Eq. (2), if the transmission map t(x) is assumed to be a constant,
both equations can be regarded as the linear transformation. With a sufficient
number of partition regions, the transmission map t(x) of a certain patch can
be approximately described as a fixed value, which satisfies the key assump-
tion. In this situation, prompt generated via ILN with partition shares the same
characteristics with the synthetic domain, since the prompt strictly follows the
ASM.

Inspired by [32], we also take intra-domain gap (i.e., varicolored hazy scenes)
into consideration to calibrate the color distortion. As illustrated in Fig. 4, the
real hazy image is often varicolored (i.e., bluish here) and the generated prompt
via ILN has similar color distribution. We argue that the prompt must be color
balanced to avoid introducing color distortion in the predicted haze-free image.
There have been many methods developed to provide color constancy, for exam-
ple, the widely used gray world assumption [7,39] hypothesizes that the average
scene captured in an image is gray. We accordingly modify the ILN into color
balanced ILN (CBILN) by replacing µc(xr) and σc(xr) with corresponding mean
values among R,G,B channels, i.e., µ = mean(µc(xr)) and σ = mean(σc(xr)).

p = CBILN(ys, xr) =


ILN(ys, xr), MOS(xr) ≥ τ (3a)

σ
ys − µc(ys)

σc(ys)
+ µ, otherwise (3b)

Following [26], we utilize the measure of the spread of hue space (MOS) as
our criteria to indicate whether a hazy region (which is determined by haze
3 In practice, the resolutions of xr and ys may be different, we first resize ys to the

resolution of xr to improve the flexibility.
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Algorithm 1: Feature-level normalization - FLN
Input: fp, fxr

Output: f̂xr ; // f̂xr = FLN(fxr , fp)
1 compute µc(fp), µc(fxr ), σc(fp), σc(fxr ) ;

/* mean adaptation */
2 if µc(fp) · µc(fxr ) > 0 then µc(fp, fxr )← min(µc(fp), µc(fxr )) ;
3 else µc(fp, fxr )← µc(fxr ) ;

/* std adaptation */

4 if σc(fp)−mean(σc(fxr ))

std(σc(fxr ))
< α then σc(fp, fxr )← max(σc(fp), σc(fxr )) ;

5 else σc(fp, fxr )← σc(fxr ) ;
6 f̂xr ← σc(fp, fxr )

fxr−µc(fxr )

σc(fxr )
+ µc(fp, fxr )

density d computed via DCP) is varicolored or not. Smaller MOS value means
this image tends to be varicolored and CBILN should be adopted, and vice versa.
As illustrated in Fig. 3 (b), we utilize a threshold τ = 0.005 for choosing Eq. (3a)
or Eq. (3b) to generate the prompt.

3.4 Feature Adaptation Module

As stated before, our PTTD can be easily applied on dehazing models pre-
trained on synthetic data. Typically, we adopt the encoder-decoder-like archi-
tecture which is quite prevalent among the pre-trained models [11,13,45]. In the
feature transformation part, we keep the decoder part unchanged and modify
the encoder part by inserting the feature adaptation module (FAM) after the
basic blocks in every level (different spatial sizes indicate different levels). Tak-
ing the generated prompt p and a real hazy image xr as inputs, the encoder
part of a certain pre-trained dehazing model N extracts corresponding features
of different levels, denoted as f l

p and f l
xr

. We omit the level indicator for sim-
plification, and one-level case is presented in this section. It is not laborious to
extend to multiple levels. According to the key observation in Fig. 2, a naive
idea is to align the channel-wise statistics of fxr

with those of fp (we denote this
as feature-level normalization - FLN), meanwhile make sure the σc(fp) is larger
than σc(xr) and the µ+

c (fp)/µ−
c (fp) is smaller than µ+

c (xr)/µ−
c (xr). However,

since the visual prompt p is derived from a selected image, the values of σc(fp)
and µc(fp) may fluctuate. We need to add some restrictions on the statistical
calculation of fp, and the FLN can be formulated as:

FLN(fxr , fp) = σc(fp, fxr )
fxr − µc(fxr )

σc(fxr
)

+ µc(fp, fxr ), (4)

where µc(fp, fxr ) and σc(fp, fxr ) calculate the statistics of the target domain,
providing appropriate perturbations for haze removal. The calculations are de-
scribed by the pseudo code (see in Algorithm 1).

In step 2 and 3, the computed µ is less than or equal to µc(fxr
). The µc(fp) ·

µc(fxr
) ≤ 0 situation means these two items belong to different quadrants, and
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in this situation, we abort the feature adaptation from fxr
to fp to achieve more

natural dehazing results.
In step 4 and 5, the computed σ is larger than or equal to σc(fxr

). Although
applying a positive perturbation +∆ on σ can yield positive gains for hazy
regions, it may be overly aggressive if there is a significant magnitude of difference
between the σc(fp) and mean(σc(fxr

)). The condition σc(fp)−mean(σc(fxr ))
std(σc(fxr ))

< α

avoids significant fluctuation, restricting the distance from the mean of σc(fxr
).

In our implementation, the hyper-parameter α is set to 2.

4 Experiments

4.1 Experimental Configuration

Datasets. Our proposed PTTD pipeline is a test-time approach and model-
agnostic, which can be regarded as a basic module to be plugged into most state-
of-the-art dehazing models. Therefore, we don’t need training data, and PTTD
is free of training. Moreover, we adopt total six real-world datasets for evalua-
tion. Four datasets with ground truths (O-HAZE [3], I-HAZE [5], NH-HAZE [2]
and Dense-Haze [1]), and two datasets without ground truths (RTTS [30] and
Fattal’s [16]). O-HAZE, I-HAZE, NH-HAZE and Dense-Haze consist of 45, 35,
55 and 55 pairs of real hazy and corresponding haze-free images captured in var-
ious scenes. RTTS contains over 4000 real hazy images with diverse scenes, and
haze-free images are not provided. In addition, Fattal’s dataset with 31 classical
real hazy images is also included for evaluation.
Implementation Details. We select three state-of-the-art models pre-trained
on synthetic data as the backbone to comprehensively show the flexibility of our
PTTD pipeline, including a CNN-based (i.e., AECRNet [45]), a transformer-
based (i.e., Dehazeformer [43]), and a general image restoration model (i.e.,
NAFNet [9]). For fair comparisons, we re-train these three models on the same
data built by Wu et al . [46] 4, and apply the proposed PTTD to narrow the
domain gap from synthetic to real (We also perform experiments on their
original models in our supplementary materials). Typically, we traverse
the haze-free images in Wu’s dataset [46] (take it as ys) and calculate the PSNR
values (of AECRNet-PTTD model) on exclusive NH-HAZE2 dataset [4] to search
the top-performing ys

5. The chosen ys is illustrated in Fig. 4 (b). In PGM, we
cropped square patches from resized ys by setting side length to W

10 , where W
denotes the width of the real hazy input xr. Another hyper-parameter is the α
in Algorithm 1, and we set α = 2.

4 The models re-trained on Wu’s dataset [46] outperform the original.
5 NH-HAZE2 dataset is adopted in the famous New Trends in Image Restoration and

Enhancement (NTIRE) competition [4], and has no intersection with the testing
datasets (including NH-HAZE).
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Fig. 5: Dehazing results of various methods on O-HAZE. We choose AECRNet-PTTD
to compare with SOTA dehazing methods. Please zoom in on screen for a better view.

Table 1: Benchmark results of various dehazing methods on O-HAZE, I-HAZE, NH-
HAZE, and Dense-Haze datasets. Bold numbers indicate that the proposed PTTD
profile can successfully help boost the performance.

Method O-HAZE I-HAZE NH-HAZE Dense-Haze
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

(TIP’20) DeepDCP 16.92 0.6789 14.92 0.7171 13.04 0.4603 11.37 0.4505
(IJCV’21) YOLY 15.83 0.6640 15.21 0.6870 12.37 0.4561 11.60 0.4534
(CVPR’21) Zero-Restore 16.65 0.7536 16.56 0.7909 11.29 0.5151 12.29 0.4411

(CVPR’20) DAD 18.36 0.7484 18.02 0.7982 14.34 0.5564 13.51 0.4627
(CVPR’21) PSD 11.66 0.6831 13.79 0.7379 10.62 0.5246 9.74 0.4311
(CVPR’22) D4 16.96 0.7229 15.64 0.7294 12.67 0.5043 11.50 0.4500
(CVPR’23) RIDCP 16.52 0.7154 16.88 0.7794 12.32 0.5341 9.853 0.4525

(TIP’23) Dehazeformer 15.23 0.7437 17.42 0.8184 11.78 0.5423 9.25 0.4425
(Ours) Dehazeformer-PTTD 17.84+2.61 0.7925+0.0488 17.98+0.56 0.8186+0.0002 13.26+1.48 0.5807+0.0384 11.99+2.74 0.4681+0.0256

(ECCV’22) NAFNet 18.16 0.7783 17.03 0.8095 13.17 0.5367 10.45 0.4514
(Ours) NAFNet-PTTD 19.63+1.47 0.8094+0.0311 17.94+0.81 0.8280+0.0185 14.08+0.91 0.5765+0.0398 13.23+2.78 0.4787+0.0273

(CVPR’21) AECRNet 17.24 0.7640 16.72 0.8098 12.65 0.5326 8.59 0.4325
(Ours) AECRNet-PTTD 20.23+2.99 0.8145+0.0505 18.47+1.75 0.8198+0.0100 14.54+1.89 0.5932+0.0606 13.67+5.08 0.4440+0.0115

4.2 Experiments on Real-captured Datasets with Labels

We first employ O-HAZE [3], I-HAZE [5], NH-HAZE [2] and Dense-Haze [1]
datasets to evaluate our PTTD profile. With the labels (i.e., haze-free images),
reference-based metrics PSNR and SSIM are utilized to measure the perfor-
mance. The quantitative comparisons on these four datasets are summarized in
Tab. 1. The model with PTTD is denoted with suffix ‘-PTTD’. We observe that
by employing PTTD, robust improvements can be achieved on selected models,
proving the effectiveness of this novel pipeline.

In addition, we also compare the models with ‘-PTTD’ suffix with some recent
real image dehazing methods (DAD [41], PSD [10], D4 [47], and RIDCP [46]),
an unsupervised method (DeepDCP [18]), and two zero-shot methods (YOLY
[31], Zero-Restore [27]). AECRNet-PTTD achieves state-of-the-art performance
on O-HAZE, I-HAZE and NH-HAZE. Specifically, compared with DAD [41],
AECRNet-PTTD achieves 1.87 dB and 0.0661 gains in terms of PSNR and
SSIM on O-HAZE. Note that, the same ys is utilized for all models and for all
datasets. We believe better performance can be achieved by searching optimal
ys for each model and each dataset.

We provide some qualitative comparisons of various methods on O-HAZE in
Fig. 5. Note that, there is still a significant amount of haze, remaining in the
predicted images of {PSD, Zero-Restore, D4, RIDCP, AECRNet}. DAD removes
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Table 2: Quantitative comparisons of various dehazing methods on RTTS dataset and
Fattal’s dataset. Bold numbers indicate the proposed PTTD profile can successfully
boost the performance.

Method RTTS Fattal’s dataset
FADE↓ BRISQUE↓ PAQ2PIQ↑ MUSIQ↑ FADE↓ BRISQUE↓ PAQ2PIQ↑ MUSIQ↑

Hazy Input 2.576 37.01 66.05 53.77 1.061 21.08 71.54 63.25
(CVPR’20) DAD 1.131 32.93 66.79 49.88 0.4838 29.64 71.56 58.64
(CVPR’21) PSD 1.044 22.22 70.43 52.80 0.4161 23.61 76.02 63.04
(CVPR’22) D4 1.406 34.52 66.84 53.57 0.4109 20.33 73.13 63.27
(CVPR’23) RIDCP 0.9180 21.38 70.82 59.38 0.4083 20.05 74.64 66.88

(TIP’23) Dehazeformer 1.047 21.62 69.90 58.46 0.4399 21.70 74.72 67.15
(Ours) Dehazeformer-PTTD 0.7905−0.2565 17.34−4.28 71.45+1.55 61.04+2.68 0.4164−0.0235 19.68−2.02 75.70+0.98 69.52+2.37

(ECCV’22) NAFNet 1.121 26.25 70.08 58.89 0.4183 19.80 74.12 65.91
(Ours) NAFNet-PTTD 0.8267−0.2943 22.72−3.53 70.97+0.89 59.79+0.90 0.4289+0.0106 18.75−1.05 74.65+0.53 66.98+1.07

(CVPR’21) AECRNet 1.285 23.97 70.07 58.30 0.4319 21.44 74.41 66.83
(Ours) AECRNet-PTTD 0.7120−0.5740 16.63−7.34 72.04+1.97 62.11+3.81 0.3825−0.0494 19.31−2.13 75.01+0.60 67.69+0.86

Hazy Input DAD PSD D4 RIDCP AECRNet-PTTDAECRNet

Fig. 6: Dehazing results of various methods on RTTS. We choose AECRNet-PTTD to
compare with SOTA dehazing methods. Please zoom in on screen for a better view.

the haze successfully. However, the overall predictions tend to be warm-toned and
some high-frequency information is also lost. Our proposed AECRNet-PTTD
restores images with clearer details and less color distortion, which are closer
to the ground-truths. More experimental results can be found in the
supplementary materials.

4.3 Experiments on RTTS and Fattal’s

We then employ RTTS [30] and Fattal’s [16] datasets to evaluate our PTTD
profile. Since there is no clean images in these two datasets, we embed some non-
reference metrics (e.g ., FADE [12], BRISQUE [35], PAQ2PIQ [50], and MUSIQ
[28]) to evaluate the quality of dehazing results without reference images [51].

The quantitative results are presented in Tab. 2. We also take the real image
dehazing methods {DAD, PSD, D4, RIDCP} into the comparison. With PTTD
profile, the selected models achieve robust performance improvements on RTTS.
When it comes to Fattal’s dataset, only NAFNet-PTTD fails to boost the per-
formance in terms of FADE. Note that, RTTS has relatively larger number of
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images than Fattal’s (4332 vs. 31). The metrics measured on latter tend to be
unstable and biased. AECRNet-PTTD achieves state-of-the-art performance on
RTTS dataset in terms of all non-reference metrics. Similarly, the same ys is
utilized for all models and for both datasets.

Figure 6 shows the qualitative comparisons on RTTS. When it comes to
varicolored scenes, all the comparative methods fail to eliminate color cast except
DAD. However, DAD suffers from undesired artifacts, which may cause some
distortions or color patches in certain regions. Only AECRNet-PTTD can restore
the visibility and tackle the color shift simultaneously. In addition, we notice that
our PTTD is capable of removing haze for faraway regions in the images, which
is usually hard for previous methods. More experimental results can be
found in the supplementary materials.

4.4 Ablation Study

Table 3: Ablation study of PGM and
FAM on O-HAZE. The metrics in ‘Random
Prompt’ are averaged on all involved ys.

PGM FAM Selected Prompt Random Prompt
ILN CBILN partition adaIN FLN PSNR↑ SSIM↑ PSNR↑ SSIM↑

- - - - - 17.24 0.7643 - -

① - - - ✓ - 16.70 0.7638 14.58 0.7272
② ✓ - - ✓ - 16.90 0.7777 13.92 0.7211
③ ✓ - ✓ ✓ - 18.28 0.7862 16.11 0.7501
④ - ✓ ✓ ✓ - 19.46 0.8068 17.81 0.7826

⑤ - ✓ ✓ - ✓ 20.23 0.8145 19.51 0.8008

In this section, we perform ablation
study to verify the effectiveness of (1)
PGM, and (2) FAM. We utilize pre-
trained AECRNet [45] as the back-
bone and measure the PSNR and
SSIM values on O-HAZE dataset.
Since the performance of our PTTD
correlates to the haze-free image ys
sampled from DS , we divide abla-
tion experiments into two groups: (1)
selected prompt: elaborately search
through the clean images in Wu’s
dataset [46] and evaluate the perfor-
mance on NH-HAZE2 dataset [4] to
determine the top-performing ys. The selected ys is then utilized for all ex-
periments. (2) random prompt: randomly select one clean image from Wu’s
dataset [46] and the experimental results are averaged on all involved ys.
Discussion on the selection of ys. The selection of the haze-free image is
technically unlimited. As shown in Tab. 3, though the model using the selected
ys performs better than that with random ys, the latter still reaches state-of-
the-art performance. As illustrated in Fig. 7, even the worst-performing ys from
the ‘Random Prompt’ achieves higher PSNR values than DAD and AECRNet.
By grouping 5% best-performing and 5% worst-performing clean images, we
find that images with rich textures (hierarchical depth information) will fit our
PTTD. When it comes to certain images with large homogeneous region (few
textures), the performance somewhat decreases. Different ys would lead to dif-
ferent results. It provides the possibility that the performance can be further
improved by searching optimal ys for every single input. More discussions
can be found in the supplementary materials. We also experimentally
find that by choosing varied ys, the final recovered results are very similar (see
in Fig. 8), though the intermediate results may be different. There is no doubt
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Fig. 7: We randomly choose a clean image in
Wu’s dataset [46] as ys, and plot the perfor-
mance scatter graph of each ys on O-HAZE
(using AECRNet-PTTD).

𝑦𝑦𝑠𝑠429

𝑦𝑦𝑠𝑠277

𝑦𝑦𝑠𝑠104

Similar

Random y𝑠𝑠 𝑝𝑝 = 𝑦𝑦𝑠𝑠 & adaIN 𝑝𝑝 = 𝑦𝑦𝑠𝑠 & FLN AECRNet-PTTD

Dissimilar

Hazy Input

AECRNet

Fig. 8: Visual results of a certain hazy
input with varied ys. The superscript of
yi
s denotes the index number of Wu’s

[46] dataset.

that the model with random ys works relatively well, indicating the robustness
of our proposed PTTD profile.

Effectiveness of PGM. The pre-trained AECRNet is regarded as the baseline
(the first row of Tab. 3). PGM is designed to generate a visual prompt, and
consists of image-level normalization (ILN), color balanced ILN (CBILN), and
partition strategy. To analyze the role of each part, four variants are adopted: (1)
PGM is not applied and p = ys; (2) p = ILN(ys, xr); (3) p = ILN(ys, xr) + par-
tition strategy; (4) p = CBILN(ys, xr) + partition strategy. The experimental
results are summarized in Tab. 3. Directly taking ys as p or simply adopting ILN
to generate p can not help the haze removal and may cause performance drop
(16.90 dB and 16.70 dB). Partition strategy can guarantee the haze distribution
of p to be consistent with xr and similar to synthetic domain, boosting the per-
formance of ILN to 18.28 dB. By taking the intra-domain gap into consideration,
CBILN pushes the performance forward to 19.46 dB.

(e) 𝛼𝛼 = 4(a) Hazy Input (b) AECRNet (c) 𝛼𝛼 = 0 (d) 𝛼𝛼 = 2

Fig. 9: Ablation study of different values of
α.

Effectiveness of FAM. The func-
tion of FAM is to adapt the features
fxr

and make them match with the
target domain (i.e., fp). We freeze the
design of PGM as CBILN with parti-
tion, and compare proposed FLN with
adaIN. The main difference is based
on the calculations of statistics of the
target domain. The experimental re-
sults are summarized in the bottom
two rows of Tab. 3. With more restric-
tions, FLN outperforms adaIN by 0.77 dB. In addition, we also conduct ablation
study on the hyper-parameter α, and the qualitative results are illustrated in
Fig. 9. The value of α and the haze removal effect are proportional to each other.
Over-enhanced results may be produced when α is greater than 2, and we can
obtain under-enhanced results if α is less than 2. We set α to 2 to balance the
removal effect and visual perception.
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Table 4: Inference time comparisons of various dehazing methods.

Method YOLY [31] DAD [41] PSD [10] RIDCP [46] AECRNet [45] AECRNet-PTTD

# Param. (M) 39.99 54.59 33.11 28.72 2.611 2.611
Runtime (ms) 21852 19.16 29.96 173.2 23.48 38.03

4.5 Inference Time

Table 4 demonstrates the inference time comparisons of various dehazing meth-
ods. The results are measured on color images with 512× 512 spatial resolution.
YOLY [31] is time-consuming, since it requires training procedure for every sin-
gle input. Due to the calculation procedures of PGM and FAM, PTTD profile
inevitably increases the inference time of the adopted backbone. It is worth men-
tioning that the increase in inference time of our AECRNet-PTTD against the
backbone (i.e., AECRNet [45]) is acceptable (around 60%).

5 Limitation and Conclusion

Hazy Input DAD PSD D4 RIDCP AECRNet-PTTDAECRNet

Fig. 10: An imperfect case with artifacts for our PTTD. Our pipeline fails to eliminate
the artifacts (e.g ., color patches on the building).

Limitation. While our PTTD is capable of generating clean images for distant
regions, it may produce artifacts in these areas. As shown in Fig. 10, all the
competitors fail to remove the dense haze covering the building, except our
AECRNet-PTTD. However, some artifacts degrade the quality of the recovered
result. Due to limited time, we leave the challenge here and hope future work
can address it well.
Conclusion. In this paper, we propose a PTTD pipeline to adapt models pre-
trained on synthetic data to real-world images during the inference phase. We
reveal that fine-tuning the statistics (with suitable perturbations) of encoding
features extracted by a certain pre-trained model can help narrow the domain
gap between synthetic and real. Accordingly, a PGM is employed to generate a
visual prompt by transferring the haze distribution from the real hazy image to
the haze-free image (via the operation of ILN), providing the perturbations for
subsequent features adaptation. Then we modify the encoder of a pre-trained
model by adding FAMs to adjust the statistics of extracted features (via the
operation of FLN). Extensive experimental results clearly show the superiority
of our PTTD.
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