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Abstract. We present Scalable Interpolant Transformers (SiT), a family
of generative models built on the backbone of Diffusion Transformers
(DiT). The interpolant framework, which allows for connecting two dis-
tributions in a more flexible way than standard diffusion models, makes
possible a modular study of various design choices impacting generative
models built on dynamical transport: learning in discrete or continuous
time, the objective function, the interpolant that connects the distribu-
tions, and deterministic or stochastic sampling. By carefully introducing
the above ingredients, SiT surpasses DiT uniformly across model sizes on
the conditional ImageNet 256× 256 and 512× 512 benchmark using the
exact same model structure, number of parameters, and GFLOPs. By ex-
ploring various diffusion coefficients, which can be tuned separately from
learning, SiT achieves an FID-50K score of 2.06 and 2.62, respectively.
Code is available here: https://github.com/willisma/SiT

1 Introduction

Contemporary success in image generation has come from a combination of
algorithmic advances, improvements in model architecture, and progress in
scaling neural network models and data. State-of-the-art diffusion models [24,48]
proceed by incrementally transforming data into Gaussian noise as prescribed
by an iterative stochastic process, which can be specified either in discrete or
continuous time. At an abstract level, this corruption process can be viewed
as defining a time-dependent distribution that is iteratively smoothed from the
original data distribution into a standard normal distribution. Diffusion models
learn to reverse this corruption process and push Gaussian noise backwards
along this connection to obtain data samples. The objects learned to perform
this transformation conventionally predict either the noise in the corruption
process [24] or the score of the distribution that connects the data and the
Gaussian [59], though alternatives of these choices exist [27, 51]. While diffusion
models originally represented these objects with a U-Net architecture [24, 49],
recent work has highlighted that architectural advances in vision such as the
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Table 1: Scalable Interpolant Transformers. We systematically vary the following
aspects of a generative model: time discretization, model prediction, interpolant,
and sampler. The resulting Scalable Interpolant Transformer (SiT) model, under
identical training compute, consistently outperforms the Diffusion Transformer (DiT)
in generating 256×256 ImageNet images. All models employ a patch size of 2. In this
work, we ask the question: What is the source of the performance gain?

Model Params(M) Training Steps FID ↓

DiT-S 33 400K 68.4
SiT-S 33 400K 57.6

DiT-B 130 400K 43.5
SiT-B 130 400K 33.0

DiT-L 458 400K 23.3
SiT-L 458 400K 18.8

DiT-XL 675 400K 19.5
SiT-XL 675 400K 17.2

DiT-XL 675 7M 9.6
SiT-XL 675 7M 8.3

DiT-XL (cfg=1.5) 675 7M 2.27
SiT-XL (cfg=1.5) 675 7M 2.06

Vision Transformer (ViT) [20] can be incorporated into the standard diffusion
model pipeline to improve performance [45].

Orthogonally, significant research effort has gone into exploring the structure
of the noising process, which has been shown to lead to performance benefits [32–
34,55]. Yet, many of these efforts do not move past the notion of passing data
through a diffusion process with an equilibrium distribution, which is a restricted
type of connection between the data and the Gaussian. Recently-introduced
stochastic interpolants [2] lift this constraint and introduce more flexibility in the
noise-data connection. In this paper, we systematically explore the effect of this
flexibility on performance in large scale image generation.

Intuitively, we expect that the difficulty of the learning problem can be related
to both the specific connection chosen and the object that is learned. Our aim
is to clarify these design choices, so as to simplify the learning problem and
thereby improve performance. To understand where potential benefits arise in
the learning problem, we start with Denoising Diffusion Probabilistic Models
(DDPMs) and sweep through adaptations of: (i) which object to learn, and (ii)
which interpolant to choose to reveal best practices.

In addition to the learning problem, there is a sampling problem that must
be solved at inference time. It has been acknowledged for diffusion models that
sampling can be either deterministic or stochastic [58], and the choice of sampling
method can be made after the learning process. Yet, the diffusion coefficients
used for stochastic sampling are typically presented as intrinsically tied to the
forward noising process, which need not be the case in general.
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Fig. 1: Selected samples from SiT-XL models trained on ImageNet [50] at 512× 512
and 256× 256 resolution with cfg = 4.0, respectively.
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Fig. 2: SiT improves FID across all model sizes. FID-50K over training iterations
for both DiT and SiT. All results are produced by a Euler-Maruyama sampler using
250 integration steps. Across all model sizes, SiT converges much faster.

Throughout this paper, we explore how the design of the interpolant and the
use of the resulting model as either a deterministic or a stochastic sampler impact
performance. We gradually transition from a typical denoising diffusion model to
an interpolant model by taking a series of orthogonal steps in the design space.
As we progress, we carefully evaluate how each move away from the diffusion
model impacts the performance. In summary, our main contributions are:

– We systematically study the SiT design space through the combinations
of the four key components: time discretization, model prediction,
interpolant, and sampler.

– We provide theoretical motivation for the choice of each component and study
how they lead to improved practical performance.

– We exploit the tunability of the diffusion coefficient of the stochastic sampler,
and show that its adaptation can tighten control of the KL-divergence between
the model and the target. We show how this leads to empirical benefits without
any additional re-training.
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– Combining the best design choices identified in each component, our SiT
model surpasses Diffusion Transformer(DiT) on both 256×256 and 512×512
image resolution, achieving FID-50K scores of 2.06 and 2.62, respectively,
without modifying any structure or hyperparameter of the model.

2 SiT: Scalable Interpolant Transformers

We begin by recalling the main ingredients for building flow-based and diffusion-
based generative models.

2.1 Flows and diffusions

Flow and diffusion models both utilize stochastic processes to gradually turn noise
ε ∼ N(0, I) into data x∗ ∼ p(x) for the generating task. Such time-dependent
processes can be summarized as follow

xt = αtx∗ + σtε, (1)

where αt is a decreasing function of t and σt is an increasing function of t.
Stochastic interpolants and other flow matching methods [2, 4, 38, 40] restrict the
process (1) on t ∈ [0, 1], and set α0 = σ1 = 1, α1 = σ0 = 0, so that xt interpolates
exactly between x∗ at time t = 0 and ε and time t = 1. By contrast, score-based
diffusion models [32, 34, 59] set both αt and σt indirectly through a forward-time
stochastic differential equation (SDE) with N(0, I) as its equilibrium distribution,
i.e. xt converges to N(0, I) only if t → ∞.

Despite the nuances in formulating the stochastic processes xt, common to
both stochastic interpolants and score-based diffusion models is the observa-
tion that xt can be sampled dynamically using either a reverse-time SDE or a
probability flow ordinary differential equation (ODE).

Probability flow ODE. The marginal probability distribution pt(x) of xt in (1)
coincides with the distribution of the probability flow ODE with a velocity field

Ẋt = v(Xt, t), (2)

where v(x, t) is given by the conditional expectation

v(x, t) = E[ẋt|xt = x],

= α̇tE[x∗|xt = x] + σ̇tE[ε|xt = x].
(3)

The correspondence between pt(x) and (2) and the formulation of (3) is derived
in Appendix ??. By solving (2) backwards in time from XT = ε ∼ N(0, I), we
can generate samples from p0(x), which approximates the ground-truth data
distribution p(x). We refer to (2) as a flow-based generative model.
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Reverse-time SDE. The time-dependent probability distribution pt(x) of xt also
coincides with the distribution of the reverse-time SDE [5]

dXt = v(Xt, t)dt−
1

2
wts(Xt, t)dt+

√
wtdW̄t, (4)

where W̄t is a reverse-time Wiener process, wt > 0 is an arbitrary time-dependent
diffusion coefficient, v(x, t) is the velocity defined in (3), and s(x, t) = ∇ log pt(x)
is the score. Similar to v, this score is given by the conditional expectation

s(x, t) = −σ−1
t E[ε|xt = x]. (5)

Again, the correspondence between pt(x) and (4) and the formulation of (5) is
derived in Appendix ??. Solving the reverse SDE (4) backwards in time from
XT = ε ∼ N(0, I) enables generating samples from the approximated data
distribution p0(x) ∼ p(x). We refer to (4) as a stochastic generative model.

Design choices. Score-based diffusion models typically tie the choice of αt, σt,
and wt in (4) to the drift and diffusion coefficients used in the forward SDE that
generates xt (see (10) below). The stochastic interpolant framework decouples the
formulation of xt from the forward SDE and shows that there is more flexibility
in the choices of αt, σt, and wt. Below, we will exploit this flexibility to construct
generative models that outperform score-based diffusion models on standard
benchmarks in image generation task.

2.2 Estimating the score and the velocity

Practical use of the probability flow ODE (2) and the reverse-time SDE (4) as
generative models relies on our ability to estimate the velocity v(x, t) and/or score
s(x, t) fields that enter these equations. The key observation made in score-based
diffusion models is that the score can be estimated parametrically as sθ(x, t)
using the loss

Ls(θ) =

∫ T

0

E[∥σtsθ(xt, t) + ε∥2]dt. (6)

This loss can be derived by using (5) along with standard properties of the condi-
tional expectation. Similarly, the velocity in (3) can be estimated parametrically
as vθ(x, t) via the loss

Lv(θ) =

∫ T

0

E[∥vθ(xt, t)− α̇tx∗ − σ̇tε∥2]dt. (7)

We note that any time-dependent weight can be included under the integrals
in both (6) and (7). These weight factors are key in the context of score-based
models when T becomes large [33]; in contrast, with stochastic interpolants where
T = 1 without any bias, these weights are less important and might impose
numerical stability issue (see Appendix ??).
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Model prediction. We observed that only one of sθ(x, t) and vθ(x, t) is needed to
be estimated in practice. This follows directly from the constraint

x = E[xt|xt = x],

= αtE[x∗|xt = x] + σtE[ε|xt = x],
(8)

which can be used to re-express the score (5) in terms of the velocity (3) as

s(x, t) = σ−1
t

αtv(x, t)− α̇tx

α̇tσt − αtσ̇t
. (9)

We include a detailed derivation in Appendix ??. Notably, given the simply linear
relationship posed by (9), we can also express v(x, t) in terms of s(x, t). We
will use this relation to specify our model prediction. In our experiments, we
typically learn the velocity field v(x, t) and use it to express the score s(x, t)
when using an SDE for sampling.

Note that by our definitions α̇t < 0 and σ̇t > 0, so that the denominator
of (9) is never zero. Yet, σt vanishes at t = 0, making the σ−1

t in (9) cause a
singularity1. This suggests the choice wt = σt in (4) to cancel this singularity,
for which we will explore the performance in the numerical experiments.

Time discretization. The objective functions specified above are defined over a
continuous time domain, as opposed to DDPM which couples the time grid used
in learning to that used in sampling. Learning in continuous time allows us to
specify a discretization used in sampling a posteriori, which allows for flexibility
in both sampling efficiency and performance.

2.3 Specifying the interpolating process

In Sec. 2.1 we present the general definition of interpolants (αt and σt) for both
stochastic interpolant and score-based diffusion. In this section we dive into more
details and specify the three choices of interpolants to explore in the experiments.

Score-based diffusion. We follow [59] and use the standard variance-preserving
(VP) SDE in forward-time

dXt = −1

2
βtXtdt+

√
βtdWt (10)

for some βt > 0, xt’s perturbation kernel pt(xt|x0) = N(αtxt, σ
2
t I) is defined by

SBDM-VP: αt = e−
1
2

∫ t
0
βsds, σt =

√
1− e−

∫ t
0
βsds. (11)

1 We remark that s(x, t) can be shown to be non-singular at t = 0 analytically if the
data distribution p(x) has a smooth density [2], though this singularity appears in
numerical implementations and losses in general.
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Increasing transformer sizes−−−−−−−−−−−−−−−−−−→

Fig. 3: Increasing transformer size increases sample quality. Best viewed zoomed-
in. We sample from all 4 of our SiT model (SiT-S, SiT-B, SiT-L and SiT-XL) after
400K training steps using the same latent noise and class label.

The only design flexibility in (11) comes from the choice of βt, as it determines both
αt and σt

2. For example, setting βt = 1 leads to αt = e−t and σt =
√
1− e−2t.

This choice necessitates taking T sufficiently large [24] or searching for more
appropriate choices of βt [16, 55,59] to reduce the bias. To be specific, such bias
comes from the mismatch between the condition ε ∼ N(0, I) used in practice for
sampling and the density of the process x1 ̸∼ N(0, I), as stated in Sec. 2.1.

General interpolants. In the stochastic interpolant framework, the process (1) is
defined explicitly and without any reference to a forward SDE, creating more
flexibility in the choice of αt and σt. Specifically, any choice satisfying:

(i) α2
t + σ2

t > 0 for all t ∈ [0, 1];
(ii) αt and σt are differentiable for all t ∈ [0, 1];
(iii) α1 = σ0 = 0, α0 = σ1 = 1;

gives a process that interpolates without bias between xt=0 = x∗ and xt=1 =
ε. In our numerical experiments, we exploit this design flexibility to test, in
particular, the choices

Linear: αt = 1− t, σt = t,

GVP: αt = cos( 12πt), σt = sin( 12πt),
(12)

where GVP refers to a generalized VP which has constant variance across time
for any endpoint distributions with the same variance. We note that the fields
v(x, t) and s(x, t) entering (2) and (4) depend on the choice of αt and σt, and
typically must be specified before learning3. This is in contrast to the diffusion
coefficient w(t), as we now describe.
2 VP is the only linear scalar SDE with an equilibrium distribution [55]; interpolants

extend beyond α2
t+σ2

t = 1 by foregoing the requirement of an equilibrium distribution.
3 The requirement to learn and sample under one choice of path specified by αt, σt, at

training time may be relaxed and is explored in [1].
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2.4 Specifying the diffusion coefficient

As stated earlier, the SBDM diffusion coefficient used in (4) is usually taken
to match that of (10). That is, one sets wt = βt. In the stochastic interpolant
framework, this choice is again subject to greater flexibility: any wt ≥ 0 can
be used. Interestingly, this choice can be made after learning, as it does not
affect the velocity v(x, t) or the score s(x, t). In our experiments, we exploit this
flexibility by considering the following choices:

(i) wt = σt; this is used to eliminate the singularity at t = 0 following the
explanation at the end of Sec. 2.2;

(ii) wt = sin2(πt); this also eliminates the singularity at t = 0, and allows us to
explore the effect of removing diffusivity at times close to t = 1 in sampling.

(iii) wt can be chosen to minimize an upper bound on the KL divergence
DKL(p(x)∥p0(x)), where p(x) denotes the true data distribution and p0(x)
refers to the density of xt at t = 0. Disregarding the simulation cost of inte-
grating the SDE (4), it can be shown (see Appendix ??) that the following
choice of wt minimizes the KL upper bound:

wt = wKL
t ≡ 2

(
σ̇tσt −

α̇tσ
2
t

αt

)
. (13)

Under the SBDM-VP interpolant, wKL
t coincides with βt; this aligns with

the claim made in [58].
(iv) If the SDE in (iii) becomes hard to integrate because of the magnitude of

wKL
t near t = 1, one may wish to regularize the diffusion coefficient to reduce

the integration cost. For example, difficulties may arise for the Linear and
GVP interpolants, because wKL

t → ∞ as t → 1 given the presence of αt in
the denominator of (13). Including the integration cost of (4), it can also be
shown (see Appendix ??) that an optimal regularized wt is given by

wKL,η
t ≡ wKL

t

√
Lt

Lt + 2η(wKL
t )2

, (14)

where Lt is the value of Lv in Sec. 2.2 at time t, and η is any non-negative
constant. With η = 0, we recover wKL

t . For score models, we first convert
to a velocity model following (9), then calculate the corresponding Lv. As
t → 1, wKL,η

t approaches a limit at
√

Lt→1

2η . If Lt is defined everywhere on

[0, 1], then wKL,η
t will be well-behaved on [0, 1].

2.5 Interpolant Transformer Architecture

The backbone architecture and capacity of generative models are both crucial for
producing high-quality samples. In order to eliminate any confounding factors and
focus on our exploration, we strictly follow the standard Diffusion Transformer
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(DiT) [45] and its configurations. This way, we can also test the scalability of our
model across various model sizes.

Here we briefly introduce the model design. Generating high-resolution images
with diffusion models can be computationally expensive. Latent diffusion models
(LDMs) [48] address this by first downsampling images into a smaller latent
embedding space using an encoder E, and then training a diffusion model on
z = E(x). New images are created by sampling z from the model and decoding
it back to images using a decoder x = D(z).

Similarly, SiT is a latent generative model, and we use the same pre-trained
VAE encoder and decoder models originally used in Stable Diffusion [48]. SiT
processes a spatial input z (shape 32× 32× 4 for 256× 256× 3 images) by first
‘patchifying’ it into T linearly embedded tokens of dimension d. We always use a
patch size of 2 in these models as they achieve the best sample quality. We then
apply standard ViT [20] sinusoidal positional embeddings to these tokens. We
use a series of N SiT transformer blocks, each with hidden dimension d.

Our model configurations—SiT-{S,B,L,XL}—vary in model size (parameters)
and compute (flops), allowing for a model scaling analysis. For class-conditional
generation on ImageNet, we use the AdaLN-Zero block [45] to process additional
conditional information (times and class labels). SiT architectural details are
listed in Appendix ??.

The complete SiT design space that we explore consists of the choice of time
discretization and the model prediction (Sec. 2.2), the choice of the interpolant
(Sec. 2.3), the choice of sampler and diffusion coefficient (Sec. 2.4), and the model
size (Sec. 2.5).

3 Experiments

To provide a more detailed answer to the question raised in Table 1 and make a
fair comparison between DiT and SiT, we gradually transition from a DiT model
(discrete, score prediction, VP interpolant) to a SiT model (continuous, velocity
prediction, Linear interpolant) and present the impacts on performance.

Experimental setup. In the transition experiments, we use SiT-B models trained
on 256× 256 image resolution on the ImageNet as our backbone. We fix training
steps to be 400K throughout the transition. For solving the ODE (2), we adopt
a fixed step second-order Heun integrator; for solving the SDE (4), we used a
first-order Euler-Maruyama integrator. With both solver choices we limit the
number of function evaluations (NFE) to be 250 to match the number of sampling
steps used in DiT. All metrics presented are FID-50K scores evaluated on the
ImageNet training set unless otherwise stated.

We also scale up our SiT model to the XL configuration and train on both
256× 256 and 512× 512 resolution on ImageNet. We strictly follow the training
settings of DiT and did not tune any hyperparameters.



10 N.Ma et al.

3.1 Model Parameterization

Discrete- to continuous-time. Continuous time training has been previously
studied from the perspective of improved likelihood bounds [34,59]. As mentioned
in Section 2.2, here we focus on the fact that training in continuous time allows
us to decouple discretization choices in sampling from the particular training
method, which allows for finding the right discretization for various choices of
diffusion coefficients that we are free to choose after training. We observe a
marginal performance increase in Table 2 by switching to continuous time.

We additionally observe in Figure 5 that flexibility in integration allows one
to trade-off number of functional evaluations and FID performance.

Model parameterization. To clarify the role of the model parameterization in
the context of SBDM-VP, we now compare learning (i) a score model using (6)
(Ls), (ii) a weighted score model (Lsλ), or (iii) a velocity model using (7)(Lv).
We observe a significant performance increase with Lsλ and Lv in Table 3.

In accordance with the observation made in [33], we carefully choose a λ(t)
such that λsλ is made equivalent to λv. We will provide detailed derivations
in Appendix ??, and demonstrate such λ is closely related to the maximum
likelihood weighting proposed in [58,61]. Furthermore, we note that λ(t) → ∞ as
t → 0, thus compensating for the vanishing gradient of the score objective when
near the data. This could also account for the performance gain from λs to λsλ .

Table 2: Discrete vs. continuous.

Model Objective FID

DDPM Noise LN
s 44.2

SBDM-VP Score Ls 43.6

Table 3: Effect of parameterizations.

Interpolant Model Objective FID

SBDM-VP Score Ls 43.6
SBDM-VP Score Lsλ 39.1
SBDM-VP Velocity Lv 39.8

Choices of interpolant. Sec. 2 highlights that there are many possible ways to
build a connection between the data distribution and a Gaussian by varying the
choice of αt and σt in the definition of the interpolant (1). To understand the role
of this choice, we now study the benefits of moving away from the commonly-used
SBDM-VP setup. We consider learning a velocity model v(x, t) with the Linear
and GVP interpolants presented in (12), which make the interpolation between
the Gaussian and the data distribution exact on [0, 1]. We benchmark these
models against the SBDM-VP in Table 4, where we find that both the GVP and
Linear interpolants obtain significantly improved performance.

One possible explanation for this observation is given in Fig. 4, where we see
that the path length (transport cost) is reduced when changing from SBDM-VP
to GVP or Linear. We note that this is equivalently reducing curvatures in the
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ODE trajectories from SBDM-VP to Linear, which is known to reduce the time-
discretization errors in sampling [37,40], and thus contributing to the performance.
Numerically, we also note that for SBDM-VP, σ̇t = βte

−
∫ t
0
βsds/(2σt) becomes

singular at t = 0: this can pose numerical difficulties inside Lv, leading to difficulty
in learning near the data distribution. This issue does not appear with the GVP
and Linear interpolants.

Table 4: Effect of interpolant.

Interpolant Model Objective FID

SBDM-VP Velocity Lv 39.8
Linear Velocity Lv 34.8
GVP Velocity Lv 34.6

Table 5: ODE vs. SDE, wt = wKL
t .

Interpolant Model Objective ODE SDE

SBDM-VP Velocity Lv 39.8 37.8
Linear Velocity Lv 34.8 33.6
GVP Velocity Lv 34.6 32.9

3.2 Deterministic vs stochastic sampling

As shown in Sec. 2, given a learned model, we can sample using either the
probability flow equation (2) or an SDE (4). In Tab. 5 we illustrate the discrepancy
between the two methods when using the same trained velocity model. We find
performance improvements by sampling with an SDE over the ODE, which
is in line with the bounds given in [2]: the SDE has better control over the
KL divergence between the model density at t = 0 and the ground truth data
distribution. We also note that the performance of ODE and SDE integrators
may differ under different computation budgets. As shown in Fig. 5, the ODE
converges faster with fewer NFE, while the SDE is capable of reaching a much
lower final FID score when given a larger computational budget.

Tunable diffusion coefficient. Motivated by the improved performance of SDE
sampling, we now consider the effect of tuning the diffusion coefficient in inference.
As shown in Table 6, we sweep through all different combinations of our model
prediction and interpolant, and present the result. We find that the optimal
choice for sampling is both model prediction and interpolant dependent.

According to Sec. 2.4, the choice of wt = wKL
t would ideally minimize the upper

bound for the KL divergence DKL(p(x)|∥p0(x)) and make the SDE approximate
the data distribution more closely, barring integration costs. This theoretical result
is supported by empirical observation for the SBDM-VP and GVP interpolants
presented in Table 6. For Linear interpolants, the cost-regularized version wKL,η

t

provides the best FID, because the SDE for the Linear interpolant with wKL
t

becomes hard to integrate at the endpoint. Generally speaking, the score models
perform worse than the velocity models, which may be due to the singularity
of the objective in (6). Moreover, the efficacy of using wKL

t in this context is
also reduced, for similar reason. For example, reverting (9) to obtain vθ(x, t)
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We evaluate each sampler using a 400K
steps trained SiT-B model with Linear
interpolant and learning the v(x, t).

Table 6: Evaluation of our SDE samplers. The last three columns specify different
diffusion coefficients wt. To make the SBDM-VP competitive, we perform evaluation
on the weighted score model Lsλ . We mark the optimal wt for each interpolant.

Interpolant Model Objective wt = wKL
t wt = σt wt = sin2(πt) wt = wKL,η

t

SBDM-VP velocity Lv 37.8 38.7 39.2 41.1
score Lsλ 35.7 37.1 37.7 38.9

GVP velocity Lv 32.9 33.4 33.6 33.2
score Ls 37.8 33.5 33.2 33.3

Linear velocity Lv 33.6 33.5 33.3 33.0
score Ls 41.0 35.3 34.4 34.9

from sθ(x, t) will result in a singularity at t = 1 in Lt used to choose wKL,η
t in

(14). Lastly, for SBDM-VP we observe worse result from wKL,η
t as opposed to

wKL
t . Different from Linear and GVP, as stated in Sec. 2.4 and Sec. 3.1, wKL

t is
well-defined everywhere on [0, 1] for SBDM-VP, whereas wKL,η

t suffers from the
singularity issue posed by Lv near t = 0. These observations supports our claim
made before, that the optimal choice of wt will always be model prediction and
interpolant dependent.

We also note that the influences of different diffusion coefficients can vary
across different model sizes. Empirically, we observe the best choice for our
SiT-XL is a velocity model with Linear interpolant and sampled with wKL,η

t .

3.3 Classifier-free guidance

Classifier-free guidance (CFG) [26] often leads to improved performance for
score-based models. In this section, we give a concise justification for adopting
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it on the velocity model, and then empirically show that the drastic gains in
performance for DiT case carry across to SiT.

Guidance for a velocity field means that: (i) that the velocity model vθ(x, t;y)
takes class labels y during training, where y is occasionally masked with a null
token ∅; and (ii) during sampling the velocity used is vζ

θ(x, t;y) = ζvθ(x, t;y) +
(1 − ζ)vθ(x, t; ∅) for a fixed ζ > 0. In Appendix ??, we show that this indeed
corresponds to sampling the tempered density p(xt)p(y|xt)

ζ as proposed in [43].
Given this observation, one can leverage the usual argument for classifier-free
guidance of score-based models.

We observed similar performance improvement with our SiT-XL models under
identical computation budget and CFG scale as DiT-X: models. For SiT-XL
256× 256, we follow identical settings in DiT and train the model for 7M steps.
We show samples in Fig. 1, and report the result in Table 7. For SiT-XL 512×512,
we train the model for 3M steps under the same setting and report the result in
Table 7. Under both training settings we observe performance advantage of SiT.
We display more samples in Fig. 1 and in Appendix ??.

Table 7: Benchmarking class-conditional image generation on ImageNet
256× 256 and 512× 512. SiT-XL surpasses DiT-XL in both resolutions.

Class-Conditional ImageNet 256× 256

Model FID↓ sFID↓ IS↑ Precision↑ Recall↑

BigGAN-deep [10] 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL [52] 2.30 4.02 265.12 0.78 0.53

Mask-GIT [12] 6.18 - 182.1 - -

ADM [19] 10.94 6.02 100.98 0.69 0.63
ADM-G, ADM-U 3.94 6.14 215.84 0.83 0.53

CDM [25] 4.88 - 158.71 - -

RIN [30] 3.42 - 182.0 - -

Simple Diffusion(U-Net) [27] 3.76 - 171.6 - -
Simple Diffusion(U-ViT, L) 2.77 - 211.8 - -

VDM++ [33] 2.12 - 267.7 - -

DiT-XL(cfg = 1.5) [45] 2.27 4.60 278.24 0.83 0.57

SiT-XL(cfg = 1.5, ODE) 2.15 4.60 258.09 0.81 0.60
SiT-XL(cfg = 1.5, SDE) 2.06 4.49 277.50 0.83 0.59

Class-Conditional ImageNet 512× 512

Model FID↓ sFID↓ IS↑ Precision↑ Recall↑

BigGAN-deep [10] 8.43 8.13 177.90 0.88 0.29
StyleGAN-XL [52] 2.41 4.06 267.75 0.77 0.52

Mask-GIT [12] 7.32 - 156.0 - -

ADM [19] 23.24 10.19 58.06 0.73 0.60
ADM-G, ADM-U 3.85 5.86 221.72 0.84 0.53

Simple Diffusion(U-Net) [27] 4.28 - 171.0 - -
Simple Diffusion(U-ViT, L) 4.53 - 205.3 - -

VDM++ [33] 2.65 - 278.1 - -

DiT-XL(cfg = 1.5) [45] 3.04 5.02 240.82 0.84 0.54

SiT-XL(cfg = 1.5, SDE) 2.62 4.18 252.21 0.84 0.57

4 Related Work

Transformers. The transformer architecture [62] has emerged as a powerful tool
for application domains as diverse as vision [20,44], language [63,64], quantum
chemistry [22], active matter systems [9], and biology [11]. Several works have
built on DiT and have made improvements by modifying the architecture to
internally include masked prediction layers [21,65]; these choices are orthogonal
to this work and may be fruitfully combined in future work.

Training and Sampling in Diffusions. Diffusion models arose from [24, 56, 59]
and have close historical relationship with denoising methods [28,29,54]. Various
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efforts have gone into improving the sampling algorithms behind these methods
in the context of DDPM [57] and SBDM [32, 58]; these are also orthogonal to
our studies and may be combined to push for better performance in future
work. Improved Diffusion ODE [66] also studies several combinations of model
parameterizations (velocity versus noise) and paths (VP versus Linear). Unlike our
work, they focus on lower dimensional experiments, benchmark with likelihoods,
and do not consider SDE sampling.

Interpolants and flow matching. Velocity parameterizations using the Linear
interpolant were also studied in [38, 40], and were generalized to the manifold
setting in [6]. A trade-off in bounds on the KL divergence between the target
distribution and the model arises when considering sampling with SDEs versus
ODE; [2] shows that minimizing the objectives presented in this work controls
KL for SDEs, but not for ODEs. Error bounds for SDE-based sampling with
score-based diffusion models are studied in [13,14,35,36], for ODE-base sampling
are explored in [7, 15], in addition to the Wasserstein bounds provided in [4].

Other related works make improvements by changing how noise and data are
sampled during training. [47,60] compute mini-batch optimal couplings between
the Gaussian and data distribution to reduce the transport cost and gradient
variance; [3] instead build the coupling by flowing directly from the conditioning
variable to the data for image-conditional tasks. Finally, various work considers
learning a stochastic bridge connecting two arbitrary distributions [18, 41, 46, 53].
These directions are compatible with our investigations; they specify the learning
problem for which one can vary the choices of model parameterizations, interpolant
schedules, and sampling algorithms.

Diffusion in Latent Space. Generative modeling in latent space [48, 61] is a
tractable approach for modeling high-dimensional data. The approach has been
applied beyond images to video generation [8], which is a yet-to-be explored and
promising application area for velocity trained models. [17] also train velocity
models in the latent space of the pre-trained Stable Diffusion VAE. They demon-
strate promising results for the DiT-B backbone with a final FID-50K of 4.46;
their study was one motivation for the investigation in this work regarding which
aspects of these models contribute to the gains in performance over DiT.

5 Conclusion

In this work, we have presented Scalable Interpolant Transformers, a simple
and powerful framework for image generation tasks. Within the framework, we
explored the tradeoffs between a number of key design choices: the choice of a
continuous or discrete-time model, the choice of interpolant, the choice of model
prediction, and the choice of diffusion coefficient. We highlighted the advantages
and disadvantages of each choice and demonstrated how careful decisions can lead
to significant performance improvements. Many concurrent works [23, 31,39,42]
explore similar approaches in a wide variety of downstream tasks, and we leave
the application of SiT to these tasks for future works.
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