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Abstract. The extraction of keypoints in images is at the basis of many
computer vision applications, from localization to 3D reconstruction.
Keypoints come with a score permitting to rank them according to their
quality. While learned keypoints often exhibit better properties than
handcrafted ones, their scores are not easily interpretable, making it
virtually impossible to compare the quality of individual keypoints across
methods. We propose a framework that can refine, and at the same
time characterize with an interpretable score, the keypoints extracted
by any method. Our approach leverages a modified robust Gaussian
Mixture Model fit designed to both reject non-robust keypoints and
refine the remaining ones. Our score comprises two components: one
relates to the probability of extracting the same keypoint in an image
captured from another viewpoint, the other relates to the localization
accuracy of the keypoint. These two interpretable components permit a
comparison of individual keypoints extracted across different methods.
Through extensive experiments we demonstrate that, when applied to
popular keypoint detectors, our framework consistently improves the
repeatability of keypoints as well as their performance in homography
and two/multiple-view pose recovery tasks.

Keywords: keypoint refinement · image matching · SfM

1 Introduction

Establishing point correspondences between images is a task that has been of
critical importance in the computer vision field since its conception. Even in the
deep learning era, reliable point-wise matches are still a fundamental requirement
for many applications, including Structure-from-Motion (SfM) [1, 17,32], Simul-
taneous Localization and Mapping (SLAM) [2, 21, 31], visual localization [30,34]
and object tracking [39]. The quality of the established correspondences is crucial
for these algorithms when estimating core geometric relationships, such as camera
poses and homographies. Therefore, there is a high demand for algorithms capable
of identifying correspondences, even in challenging scenarios.
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Fig. 1: Visualization of the input keypoints and their refined positions. The keypoints
from the original image are represented as + in red, while the red circles represent back-
projected keypoints detected in the warped images. The Gaussian fit at each keypoint
cluster is represented as a set of concentric circles whose spread encodes the variance.
The refined keypoints are the centers of the Gaussians, with robustness and deviation
represented by the number next to the Gaussian and by its spread, respectively.

Early hand-crafted local feature extractors like the Scale Invariant Feature
Transform (SIFT) [15], Speeded Up Robust Features (SURF) [5], and Oriented
FAST and rotated BRIEF (ORB) [26], have been applied in a variety of different
applications. These methods have established a three step paradigm: keypoint
detection, descriptor extraction and pairwise matching. In recent years, deep
learning has shown great promises for correspondence search, especially in highly
challenging scenarios. This has led to the introduction of many novel paradigms for
this task. In particular, inherent to their deep learning nature, these architectures
oftentimes exhibit less separation between the aforementioned phases.

In addition, deep matching algorithms, such as SuperGlue [29], have emerged.
These more advanced methods are capable of matching even less discriminative
descriptors by employing a more global form of reasoning. Despite this advance-
ment, deep matchers still rely on the input keypoints, which have now become a
primary limiting factor for pose related applications.

Defining what makes a good keypoint is not an easy task, especially when
taking into consideration the specific requirements of the downstream tasks.
Nevertheless, regardless of how discriminative its surrounding area is, a good
keypoint must at least be repeatable. In other words, it must be detected again
in a different image depicting the same scene. Focusing on and expanding the
concept of repeatability, in this work we introduce a general framework designed
to enhance and evaluate keypoints. Our framework takes an existing keypoint
detection method as input, refines its detections, potentially adding new stable
ones, and subsequently assigns two distinct scores to each refined keypoint: the
robustness, which relates to the probability of detecting the keypoint again when
the image undergoes viewpoint changes, and the deviation, which quantifies its
localization accuracy. The core of our idea is very simple and strongly relates to
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Fig. 2: Sketch of the proposed refinement and scoring framework. A set of image warping
augmentations are applied to the input image. The chosen keypoint detector is applied
to all the generated images, and detections in the warped images are projected back to
the input image. The local maxima in the estimated density are used as initialization for
a GMM fit. After convergence, each Gaussian component represents a refined keypoint
characterized by the robustness and the deviation scores. This procedure adds additional
robust keypoints not detected in the original image.

the fundamental definition of a good keypoint: As a first step, we generate multiple
versions of the input image by applying some known affine transformations. We
then run the given keypoint detector on each generated image, and use the inverse
transformations to project the detected keypoints back into the original image.
At this point, after a first coarse density estimation, we use our modified robust
Gaussian mixture model (GMM) fit to group the keypoints into clusters. Our
two scores are directly derived from the parameters of each estimated Gaussian.

The proposed refinement, owing to its compatibility with any keypoint detector
and its linear complexity in the number of images, presents a valuable option
for offline applications requiring robust and well localized keypoints, such as
image-based 3D reconstruction. Additionally, thanks to the interpretability of the
two scores, our method can provide more in-depth insights into the performance of
a keypoint detector. Moreover, our two scores permit to define different keypoint
rankings depending on the task at hand. As an example, more robust keypoints
might be preferable in visual localization, whereas precise robotic applications
might prefer low deviation ones.

In this work, we present the following contributions:

– A novel framework named GMM-IKRS (Gaussian Mixture Models for In-
terpretable Keypoint Refinement and Scoring) that can refine, and at the
same time characterize the keypoints extracted by any detector with two
interpretable scores.

– A modification of the expectation-maximization (EM) algorithm designed to
make the GMM fitting robust to outliers.
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– Insights into the properties of state-of-the-art learned and hand-crafted
detectors through our extensive evaluation.

2 Related works

The literature on keypoint detectors and local feature extraction methods is
large [5, 7, 10, 13, 16, 18, 19, 22, 25–27, 35, 38]. In this section, we focus on those
methods that closely relate to our proposed framework and refer the reader
to [2, 36] for a more extensive overview.

In a similar fashion to the first step of our pipeline, ASIFT [20] runs the
SIFT [15] feature extractor (keypoint + descriptors) on multiple warped versions
of the original image. Following this initial step, the descriptors extracted from
each warped image need to be matched across all possible warped image pairs,
which substantially increase the computational cost of the matching phase. In
contrast, our framework only extract descriptors from the original image and
leaves the matching phase unaltered. In addition, ASIFT directly relies on the
set of keypoints extracted from the different warpings and does not apply any
aggregation; instead, our clustering scheme evaluates and refines this initial set
to obtain better localized keypoints and permits the estimation of our two scores.

The deep method SuperPoint [9] also employs a warping augmentation process,
denoted homographic adaption, to generate heatmaps utilized in a second stage of
the training. Specifically, random homography warpings are applied to the input
image and subsequently processed by the network. An aggregated heatmap is then
computed warping back all the network outputs. The initial step of our pipeline
implements a similar warping scheme, however, our framework operates directly
on the keypoints, rather than on the heatmaps. Furthermore, after re-projecting
all the keypoints into the original image, our method applies a robust global
clustering algorithm to produce a set of refined and well characterized keypoints.

After several successful works on joint keypoint and descriptor learning [10,24,
27], promising deep matching algorithms like SuperGlue [29] and LightGlue [14]
have led to a shift in focus within the research community. These deep matchers
can cope with less reliable keypoint descriptors, sparkling renewed interest in
methods focusing mainly on keypoint detection [4,23,28]. The recent work NeSS-
ST [23] proposes a stability score against viewpoint transformation for keypoints
detected by the Shi-Tomasi [33] detector. This method assesses the stability of a
specified keypoint by firstly applying random homography warpings to a patch
centered at the keypoint. It then picks the highest Shi-Tomasi [33] response for
each patch and computes the sample covariance with respect to the original
keypoint location. In contrast, our method does not require to define any local
patch size to compute the scores, as our transformations are applied to the whole
image. Moreover, our framework jointly assesses, in addition to the keypoint
localization accuracy, its robustness conditioned on the detector in analysis.
Lastly, as opposed to NeSS-ST [23], our framework does not incorporate any
learned component and can be applied to arbitrary keypoint detectors.
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Fig. 3: Keypoint clusters and their two
scores: robustness and deviation. Robust-
ness measures the likelihood of detecting
the keypoint again, while deviation mea-
sures its localization accuracy. A desirable
keypoint has high robustness and low de-
viation, as in the bottom-left square.

Harris DoG DISK SuperP. R2D2 MD-Net

Fig. 4: Qualitative comparison between
the best clusters found by different meth-
ods in the first 5 scenes of HPatches. For
each scene (one per row), we select the
lowest deviation cluster (best localization
accuracy) among all the ones with robust-
ness = 21 (which represents keypoints
that have been detected in all warps).

3 Method

The purpose or our method is twofold: it refines the positions of a given keypoint
set, additionally dropping low quality keypoints and adding new stable ones, while
at the same time characterizing each resulting keypoint with two interpretable
scores. These scores directly relate to two orthogonal keypoint properties: robust-
ness to viewpoint changes and localization accuracy. As depicted in Figure 2, our
pipeline consists of several stages, which we detail in the following subsections.

3.1 Multiple Image Warping

The goal of the first stage of our pipeline is to simulate real-world viewpoint
changes. To this end, we generate multiple altered versions of the original image
by applying a series of affine warpings, each sampled from a fixed set of possible
transformations. In order to avoid uneven keypoint densities in the next step, we
only use transformations that distort every part of the image uniformly.

3.2 Keypoint Detection & Reprojection

We run the chosen keypoint detector on all the warped images and pick the
best n keypoints from each, according to the scores given by the detector. Each
set of detected keypoints is then re-projected into the input image reference
frame through the inverse of the transformation originally used to generate
the warped image. To compensate for very close keypoints, which may happen
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as a consequence of warpings that increase the image area, we apply a non-
maximum-suppression (NMS) to the reprojected keypoints from each warped
image separately. Keypoints retained after NMS are then aggregated into a single
set, regardless of the warped image they have been extracted from.

3.3 Density Estimation

The proposed approach characterizes keypoints based on robustness against
viewpoint changes and localization accuracy, which we describe by metrics derived
from a GMM. To ensure a proper fit, the parameters and initialization of the
GMM, in particular the number of components and their respective means, have
to be chosen in an informed manner. In this section, we briefly describe how we
utilize classical kernel density estimation (KDE) to initialize the down-stream
fitting task.

Let (xi)
N
i=1 ⊂ R2 denote the collection of N re-projected keypoints extracted

from the augmentation pipeline. From this collection, we construct a KDE
fKDE : R2 → R+ as

fKDE(x) = (Nh2)−1
N∑
i=1

ϕ

(
xi − x

h

)
. (1)

We utilize the symmetric Gaussian kernel ϕ : R2 → R+ :

ϕ(x) = (2πh)−1 exp
(
−∥x∥2 /2

)
. (2)

In the definitions above, h ∈ R+ is the KDE bandwidth in pixels, the choice
of which determines the fidelity of fKDE. We found that the choice of h is not
crucial (within a reasonable range) and barely influences the subsequent GMM
fitting routine.

For the GMM fitting, we then utilize the set of maximizers argmax fKDE
as the initialization for the component means. A classical algorithm to find
argmax fKDE is the mean shift algorithm [8]. However, it is computationally
demanding and there is no strict requirement for the resulting points to be
exact maximizers, as they only serve as an initialization to the subsequent fitting
algorithm. Thus, we resort to evaluating fKDE on the regular Cartesian grid Ω =
{1, . . . ,W}×{1, . . . ,H} of pixel centers for an image with dimensions W×H and
find maxima on this grid in a local neighborhood. In particular, we find the points
X̃max = {x ∈ Ω : fKDE(x) > ζ, fKDE(y) < fKDE(x)∀y ∈ ωr(x)}, where ζ ∈ R+

is a threshold to avoid low-density regions and ωr(x) = {y ∈ Ω : ∥y − x∥∞ ≤ r}
is a window of radius r ∈ N centered around x. To have an upper bound on the
components in the subsequent GMM fitting routine, we take the 2Nkpts points
that score best under f : Xmax = {xi ∈ X̃max : i ∈ I}, where I are the 2Nkpts

indices into X̃max such that fKDE(xi) > fKDE(xj), for all i ∈ I and all j /∈ I.
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Fig. 5: Outlier weighting functions

3.4 Gaussian Mixture Model

To refine keypoint locations and assign scores, we leverage a GMM. We chose
this model as its parameters inherently allow us to refine and score keypoints in
an interpretable fashion. In particular, refined keypoint positions are given by the
means of the components of the GMM, and for a specific component, robustness
is measured via its weight and the deviation via its variance. As the negative
influence of outliers needs to be considered in our setting, we propose a custom
robust fitting algorithm, which we elaborate on in this section.

A K-component GMM
K∑

k=1

αkGµk,Σk
(3)

is a convex combination of K Gaussians

Gµ,Σ : Rd → R+ : x 7→
exp

(
−∥x− µ∥2Σ−1

)√
det(2πΣ)

(4)

parameterized by their means µ ∈ Rd and covariance matrices Σ ∈ Sd+. For
proper normalization, the weight vector α = (α1, . . . , αK)⊤ must satisfy α ≥ 0,
⟨α,1d⟩ = 1. In our case, since we are fitting a GMM on the image domain d = 2,
we restrict ourselves to isotropic covariance matrices of the form Σk = σ2

kId2. We
discuss the implications of this choice later and, with slight abuse of notation,
denote with Gµ,σ a Gaussian with mean µ and covariance matrix σ2Id.

The most widely used estimator for the parameters (αk, µk, σk)
K
k=1 maximizes

the likelihood of the data (xi)
N
i=1 (equivalently, minimizes the negative-log-

likelihood):

min
(αk,µk,σk)Kk=1

N∑
i=1

− log

( K∑
k=1

αKGµk,σk
(xi)

)
. (5)

The EM algorithm is a popular algorithm to solve this problem iteratively:
Given the estimates α

(j)
k , µ

(j)
k , σ

(j)
k at the j-th iteration, the expectation step

computes the responsibilities γ
(j)
k,i of the k-th component w.r.t the i-th data point

as

γ
(j)
k,i =

α
(j)
k w(xi, µ

(j)
k , σ

(j)
k )G

µ
(j)
k ,σ

(j)
k

(xi)∑K
k=1 α

(j)
k w(xi, µ

(j)
k , σ

(j)
k )G

µ
(j)
k ,σ

(j)
k

(xi)
. (6)



8 E. Santellani et al.

Later, we will show our choice of the weighting function w : R2 ×R2 ×R+ → R+

to deal with outliers. In the standard EM algorithm, w ≡ 1.
With the current responsibilities γ

(j)
k,i , the maximization step amounts to

updating

α
(j+1)
k =

1

N

N∑
i=1

γ
(j)
k,i ,

µ
(j+1)
k =

∑N
i=1 γ

(j)
k,ixi∑N

i=1 γ
(j)
k,i

,

(σ̃
(j+1)
k )2 =

∑N
i=1 γ

(j)
k,i

∥∥xi − µ
(j+1)
k

∥∥2∑N
i=1 γ

(j)
k,i

.

(7)

To avoid degenerate cases, we regularize the variances by adding a small positive
scalar:

σ
(j+1)
k = σ̃

(j+1)
k + ϵ, (8)

where ϵ > 0 is a tunable parameter, which should be set as small as possible
while retaining stability.

In the fitting procedure, outliers present a major difficulty. They are repre-
sented by keypoints that have been detected in only few of the warped images,
even just one, and should not disturb the clustering process. We tackle this by
choosing w = w1, where

w1(x, µ, σ) =

{
1 if ∥x− µ∥ < 3σ,

exp
(
−(∥x− µ∥ − 3σ2)2/(2σ2)

)
else.

(9)

Thus, points that are far from a component mean are adaptively down-weighted
based on the distance to the center as well as the variance of the component. To
facilitate proper localization after the GMM has been fit using the adapted EM
algorithm, we run additional iterations ignoring points that are outside the 3σ
radius, i.e. we set w = w2, where

w2(x, µ, σ) =

{
1 if ∥x− µ∥ < 3σ,

0 else.
(10)

In addition, we perform a simple component selection scheme: recall that the
component means are initialized to the KDE maxima, Xmax. However, the KDE
typically slightly overestimates the number of clusters; during the EM algorithm,
components might “merge” to the same location. In this case, the scores derived
from the weights of the GMM would systematically be too low as the weights are
shared between two components. To avoid this, we drop concentric components
based on the distance of their means: Let k, l ∈ N, k < l be two component
indices at iteration j. If ∥µ(j)

k − µ
(j)
l ∥ < ν, we discard the k-th component. Here,

ν ∈ R+ defines the minimal distance between component means.
Note that our method is not necessarily restricted to isotropic covariance

matrices; we chose this as it makes the interpretation of the score straightforward.
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Table 1: Comparison on HPatches v-set - keypoints budget 2048.

Rep @ ↑ Rep MNN @ ↑ MMA @ ↑ MS @ ↑ Hom. Acc. AUC @ ↑
1 px 2 px 3 px 1 px 2 px 3 px 1 px 2 px 3 px 1 px 2 px 3 px 1 px 3 px 5 px

Harris [11] 0.215 0.434 0.553 0.215 0.398 0.458 — — — — — — — — —
+ GMM-IKRS 0.229 0.426 0.532 0.229 0.421 0.504 — — — — — — — — —

DoG [15] 0.231 0.363 0.442 0.231 0.362 0.428 — — — — — — — — —
+ GMM-IKRS 0.275 0.433 0.517 0.275 0.431 0.502 — — — — — — — — —

DISK [37] 0.211 0.388 0.464 0.211 0.387 0.460 0.352 0.621 0.709 0.206 0.352 0.398 0.092 0.299 0.420
+ GMM-IKRS 0.257 0.425 0.499 0.257 0.425 0.494 0.409 0.647 0.727 0.248 0.380 0.422 0.110 0.326 0.444

SuperPoint [9] 0.197 0.392 0.502 0.197 0.383 0.466 0.242 0.483 0.595 0.159 0.314 0.383 0.121 0.360 0.488
+ GMM-IKRS 0.247 0.446 0.545 0.247 0.445 0.538 0.312 0.531 0.627 0.211 0.353 0.413 0.144 0.382 0.507

R2D2 [24] 0.163 0.354 0.459 0.163 0.354 0.458 0.261 0.520 0.625 0.102 0.191 0.221 0.069 0.253 0.367
+ GMM-IKRS 0.205 0.388 0.486 0.205 0.388 0.484 0.308 0.537 0.629 0.121 0.194 0.222 0.078 0.264 0.376

MD-Net [27] 0.193 0.380 0.466 0.193 0.378 0.462 0.329 0.614 0.717 0.167 0.296 0.339 0.140 0.348 0.454
+ GMM-IKRS 0.237 0.406 0.486 0.237 0.406 0.483 0.388 0.639 0.729 0.199 0.308 0.345 0.143 0.356 0.470

An alternative would be to fit full covariance matrices and base the localization
score on the largest singular value.

The resulting robustness score for the k-th refined keypoint is given by the
number of points within a 3σ radius of its gaussian component as:

robustnessk =

N∑
i=1

w2(xi, µk, σk), (11)

while the deviation in pixels is defined as:

deviationk = 6σk. (12)

4 Experiments

4.1 Implementation Details

We apply the same set of augmentations to each image:

– isotropic scaling {1.5, 1.25, 0.75, 0.5},
– anisotropic scaling along x, y {1.5, 1.25, 0.75, 0.5},
– anisotropic shear along x, y {+0.2, −0.2, +0.6, −0.6}.

These result in a set of 21 images, including the original one. We found beneficial
to add a slight Gaussian noise to all the warped images. This prevents weak noise
patterns in the original image from triggering repeated detections.

In all the experiments we extract Nkpts = 2048 keypoints from each image.
For the KDE, we choose the bandwidth h = 0.5 px and a window radius of
r = 3px to identify the maxima Xmax. We initialize the GMM component means
with the entries of Xmax and choose the initial variance such that the diameter
at 3σ corresponds to 2 px and set ν = 0.1 px. At each iteration, we also clamp
the maximum variance for each component such that its diameter at 3σ does not
exceed 10 px. In addition, we consider the rare case that clusters may contain
more than one keypoint extracted from the same image. This may happen when
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Table 2: Comparison on IMC [12] stereo, keypoints budget 2048.

Validation set Test set
Rep@3 px ↑ N. inliers ↑ mAA@10° ↑ Rep@3 px ↑ N. inliers ↑ mAA@10° ↑

DISK [37] 0.493 438 0.707 0.452 393 0.503
+ GMM-IKRS 0.507 469 0.722 0.468 426 0.524

SuperPoint [9] 0.350 154 0.270 0.359 176 0.282
+ GMM-IKRS 0.380 182 0.319 0.391 210 0.318

R2D2 [24] 0.377 117 0.307 0.388 134 0.271
+ GMM-IKRS 0.396 120 0.313 0.406 135 0.276

MD-Net [27] 0.357 144 0.470 0.396 199 0.401
+ GMM-IKRS 0.370 152 0.484 0.411 211 0.412

Table 3: Comparison on IMC [12] multiview, keypoints budget 2048.

Validation set Test set
3D pts. ↑ Track L. ↑ N. Inliers ↑ mAA@10° ↑ 3D pts. ↑ Track L. ↑ N. Inliers ↑ mAA@10° ↑

DISK [37] 2195 6.032 450 0.842 2183 5.660 404 0.729
+ GMM-IKRS 2217 6.088 482 0.850 2203 5.736 438 0.736

SuperPoint [9] 1332 4.330 163 0.568 1522 4.356 181 0.596
+ GMM-IKRS 1467 4.488 193 0.601 1685 4.466 217 0.623

R2D2 [24] 1022 4.702 127 0.547 1287 4.462 139 0.548
+ GMM-IKRS 1044 4.710 131 0.556 1309 4.473 141 0.560

MD-Net [27] 1108 5.002 154 0.727 1474 5.020 205 0.692
+ GMM-IKRS 1133 5.053 162 0.740 1511 5.072 216 0.704

two badly localized clusters of keypoints partially intersect and the GMM uses
a single component to fit both. In this case, we correct the cluster weight by
removing the contributions from the duplicate keypoints.

For all the deep methods, we sample the descriptors from their dense descriptor
volume at the integer locations of the refined keypoints. We run our pipeline
with exactly the same parameters regardless of the keypoint detector used, which
confirms the generality of our process.

4.2 HPatches

We test our framework on the popular HPatches [3] dataset. We run GMM-IKRS
on top of several recent deep local feature extractors as well as hand-crafted
classical keypoint detectors which have been widely used in the past. To test
the performances of our method when dealing with viewpoint changes, we focus
our experiments on the v set of HPatches, which contains photos of planar
scenes taken from different viewpoints. Each scene contains 1 reference image and
5 source images of different viewpoints. We run all the methods using the code
provided by the authors and use OpenCV [6] RANSAC with 3.0 px threshold and
100k iterations to recover the homographies. As often done in the literature, we
extract a maximum of 2048 keypoints from each image and match the descriptors
using a simple mutual nearest neighbor (MNN) search, without any minimum
score or ratio test. The results of our evaluations are reported in Table 1, where
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Table 4: Ablations on HPatches v-set.

Method Rep@3 px↑ Rep MNN@3 px↑ MMA@3 px ↑ MS@3 px ↑ s per img
DISK [37] 0.464 0.460 0.709 0.398 0.03
+ 8 warps 0.484 0.479 0.722 0.412 0.43
+ 14 warps 0.493 0.488 0.732 0.416 0.69
+ 20 warps 0.499 0.494 0.727 0.422 0.98

+ 20 warps w/o outlier rejection 0.483 0.478 0.724 0.395 0.98
+ 20 warps KDE only 0.473 0.468 0.719 0.398 0.78
+ 20 warps round int 0.494 0.489 0.726 0.417 0.98

DISK [37] + 20 heatmap warps 0.488 0.482 0.726 0.413 0.65

we compare the performance of each method with or without our refinement for
various metrics at different pixel thresholds:

– Repeatability: Ratio between the number of keypoints that, from any of
the two images, project close to a keypoint in the other and the total number
of keypoints in the area of overlap.

– Repeatability-Mutual-Nearest-Neighbor (MNN): This is a metric we
propose to compensate for the overestimates of the standard repeatability
metric in case of dense keypoint detections. A keypoint from image A is
considered MNN-repeatable, if it is both repeatable and forms a mutual-
nearest-neighbor pair in both images with the same keypoint from image B.
The repeatability-MNN metric is then computed as the ratio between the
sum of the number of mnn-repeatable keypoints from the two images and
the total number of keypoints in the overlap area. This metric better relates
to the pairwise descriptor matching task and upper-bounds to the standard
repeatability in the case of well spaced keypoints.

– Mean Matching Accuracy: Ratio between the number of correct matches
and the number of proposed matches.

– Matching Score: Ratio between the number of correct matches and the
average number of detected keypoints in the overlap area.

– Homography Accuracy AUC: Area under the curve of the fraction of
image pairs where the relative homography could be recovered with an average
corner error lower than a specified threshold, evaluated at 0.1px steps.

The table shows a consistent improvement, with a single exception, over all the
computed metrics at all pixel thresholds. Harris [11], due to its densely detected
keypoints, tricks the repeatability measure obtaining higher scores at 2 and 3
pixels, but falls behind once evaluated with the more robust repeatability-MNN
metric. The Homography Accuracy AUC, which is the most important score
for many downstream tasks, is also improved when using our refined keypoints.
The performance boost obtained using the refined keypoints does not only come
from the sub-pixel accuracy of our method, as better discussed in Sec 5, but also
from a more robust selection of keypoints. This is confirmed by the improved
repeatabilities obtained for the already sub-pixel-accurate DoG [15] detector.
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(a) DISK [37] (b) SuperPoint [9] (c) R2D2 [24] (d) MD-Net [27]

Fig. 6: Visual comparison between original methods (top) and their GMM-IKRS refined
version (bottom) on a challenging image pair from Image Matching Challenge [12]. The
RANSAC inliers are color coded depending on the reprojection error, from green (0px)
to yellow (5px). Matches are shown in red when their reprojection error is larger than
5 px, and in blue when the depth is not available. For this image pair, all the methods
except SuperPoint [9] obtain more and better localized matches.

4.3 Image matching benchmark

To evaluate the generalization of our framework to more challenging scenarios,
we run the deep learning based methods, with and without our refinement
framework, on the phototourism set of the 2021 Image Matching Challenge
(IMC) [12]. Additionally to the stereo pose recovery task, the benchmark evaluates
the local features performance in the more practical scenario of multi-view 3D
reconstruction. Each of the scenes (3 validation set, 9 test set) contains 100
pictures of famous landmarks, captured by tourist with different cameras, from
various angles and under diverse lighting conditions We run each method single-
scale, using the matching and filtering parameters obtained from the online
leaderboard, where available. The numerical results are shown in Table 2 and
Table 3, where the methods are evaluated for:

– mAA: Mean Average Accuracy. This is the main benchmark metric, computed
as the area under the curve of the fraction of relative poses recovered within
a maximum error in degrees, evaluated at 1° steps.

– N. inliers: Average number of inlier matches after the robust fit.
– 3D pts.: Average number of reconstructed 3D points.
– Track L.: Average 3D reconstruction track length.

For all methods, every metric improves, thus confirming the validity of our refine-
ment approach for real tasks. SuperPoint [9], with a more than 10% improvement
in stereo mAA and 7% in multiview mAA, is the method that most strongly
benefits from our framework, followed by DISK [37] and MD-Net [27].
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Fig. 7: Statistical analysis of keypoints extracted from different detectors on the
HPatches [3] v-set images. Better seen in color.

4.4 Statistical analysis

In addition to the metrics evaluated for the benchmark, our framework permits
to shed more light on the different detector behaviours. In Figure 7, we report
the distributions of robustness and deviation for all the keypoints extracted from
HPatches. We recall that a deviation value of 1 px indicates a cluster whose diam-
eter at 3σ measures 1 px. From the histograms we can notice how DoG [15], which
obtains similar repeatabilities to other methods on the HPatches evaluations, is
characterized by very different robustness and deviation distributions. Looking
at the top-left chart, which shows the robustness distribution for well localized
keypoints with deviation up to 1 px, it can be noticed how DoG dominates all the
other methods; not only at higher robustness values, but also at lower ones. This
leads to the conclusion that DoG is very good at finding well localized keypoints,
but it does not excel at finding robust ones. When relaxing the requirements for
localization accuracy to 3 px, shown in the 3rd row, methods like DISK, Harris
and MD-Net are able to detect keypoints with higher robustness scores, that is
points that are very likely to be detected again in another image. In the last row
of the same chart, SuperPoint emerges as the method able to find the largest
number of very robust keypoints. The distributions on the right chart describe
instead how well localized keypoints with different degrees of robustness are. If
looking for very robust keypoints, we should focus on the bottom chart, which
shows the distributions of keypoints with robustness score of at least 20/21. In
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this case, DoG results the worst performing method, whereas SuperPoint is the
one able to find the largest number of keypoints with deviation lower than 4 px.

In Figure 4 we show for each method the best refined keypoint across 5
different HPatches scenes. We can notice a tendency of classical method to prefer
hard contrast regions. SuperPoint, in accordance with its specific pretraining,
shows a clear preference for corner-like structures, while DISK, R2D2 and MD-Net
seem more oriented toward blobs. In particular, DISK appears able to find robust
keypoints even in less contrasted regions (rows 2 and 5).

5 Ablation studies

To validate our design choices, we conduct further experiments using DISK [37],
which was found to be the best performing method on IMC [12]. The results are
shown in Table 4. On the upper section of the table, we compare our framework
performance using different numbers of augmentations. In the +8 warps row, we
use only the smallest shears and anisotropic scalings from the set of augmentations,
while in the +14 warps row we reintroduce the isotropic scaling and stronger
shears. When comparing results with different augmentation numbers, we can
observe that the +20 warps row yields the best trade off in term of performances,
keeping the computational time below one second. The mean keypoint refinement
shift in this case is 0.34 px. In the w/o outlier rejection line we report the results
obtained dropping our robustified GMM modification and, for the warps KDE
only entry, we directly use the KDE local maxima as keypoints, skipping the
GMM fit. For a more fair comparison against the discrete-pixel-accurate KDE
result, we also report the results obtained rounding our GMM-IKRS keypoints
coordinate to the closest integer. Comparing against these lines, we can see how
our robust GMM-fit scores and refines the keypoint locations better and beyond
a simple sub-pixel refinement. Finally, as a baseline comparison, we report as
DISK +20 heatmap warps the results obtained aggregating the unwarped DISK
heatmaps directly and then detecting the keypoints. This approach improves the
original DISK results, but not as much as our GMM-IKRS pipeline.

6 Conclusion

In this work, we presented GMM-IKRS, a general framework capable of refining
and evaluating the keypoints from any detector. The two scores assigned by our
pipeline, robustness and deviation, characterize each keypoint in an interpretable
manner and can be compared across different methods. This permits an in-depth
analysis of qualities across different detectors, which would otherwise not be
possible. The outcome of our experiments on the HPatches v-set confirmed the
validity of our method, while the results of the Image Matching Challenge demon-
strated its refinement capabilities for 3D reconstruction, even under challenging
conditions. For the future, an interesting research direction could consist in the
use of our method for the generation of sub-pixel keypoints to be used as ground
truth to train, in a teacher-student fashion, a deep detector.
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