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Abstract. Fully-supervised monocular 3D hand reconstruction is of-
ten difficult because capturing the requisite 3D data entails deploy-
ing specialized equipment in a controlled environment. We introduce
a weakly-supervised method that avoids such requirements by lever-
aging fundamental principles well-established in the understanding of
the human hand’s unique structure and functionality. Specifically, we
systematically study hand knowledge from different sources, including
biomechanics, functional anatomy, and physics. We effectively incorpo-
rate these valuable foundational insights into 3D hand reconstruction
models through an appropriate set of differentiable training losses. This
enables training solely with readily-obtainable 2D hand landmark anno-
tations and eliminates the need for expensive 3D supervision. Moreover,
we explicitly model the uncertainty that is inherent in image observa-
tions. We enhance the training process by exploiting a simple yet effective
Negative Log-Likelihood (NLL) loss that incorporates uncertainty into
the loss function. Through extensive experiments, we demonstrate that
our method significantly outperforms state-of-the-art weakly-supervised
methods. For example, our method achieves nearly a 21% performance
improvement on the widely adopted FreiHAND dataset.

Keywords: Monocular 3D Hand Reconstruction · Weakly-Supervised
Learning · Universal Hand Prior · Maximum Likelihood Estimation

1 Introduction

Reconstructing the 3D configuration of human hands has broad applications, es-
pecially for Virtual/Augmented Reality (VR/AR) [3,22] and Human-Computer
Interaction (HCI) [53,65]. Traditional approaches rely on depth sensors [4,19,45,
49,51,52,56,76,77] or multi-camera setups [6,66,79]. Due to their reliance on spe-
cialized equipment that is often expensive or unavailable, the practicality of such
approaches is limited. We instead focus on monocular 3D hand reconstruction,
reconstructing 3D hands from a single RGB image.

Due to the lack of depth information in recovering 3D geometry from its
2D observation, monocular 3D hand reconstruction poses an ill-posed problem.
Recent methods tackle this issue using deep learning models that predict 3D
hand joint positions [16, 33, 43, 64, 64, 71, 72, 86] or reconstruct a dense 3D hand
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Fig. 1: Motivation of Studying Hand knowledge and Modeling Uncertainty.
(a) T-SNE visualization [42] of hand poses from a real dataset (FreiHAND [87]) and
a synthetic dataset (DARTset [17]). A large portion of synthetically generated hand
poses can be unnatural (DARTset-Unnatural), such as the presence of invalid bending
or penetration (marked by red crosses). (b) Images and 2D hand label from existing
hand datasets. We mark regions with high uncertainty attributed to self-similarity
(orange), motion blur (yellow), occlusion (pink), or poor image quality (purple).

mesh [13, 25, 39, 41, 44, 46, 62, 85]. While these methods avoid the need for spe-
cialized equipment in constrained environments at inference time, they still rely
upon it to obtain the 3D annotations required for training the deep models.
The resulting limitations in the diversity and amount of data restrict the per-
formance of these purely data-driven deep models. To address this challenge,
some methods [17, 37, 47, 48] leverage synthetically generated training images.
The synthetic data are rich in quantity, but limited in the realism of the images
and hand poses. As illustrated in Fig. 1(a), many synthetically generated poses
in DARTset appear unnatural due to a lack of systematic consideration of well-
established principles of hand structure, functionality and movement during the
data generation process. Additionally, approaches based on generating synthetic
data still require some real 3D data for further model fine-tuning.

Other authors [5,12,35,63] have exploited weakly-supervised learning, whereby
the models are trained on real images with 2D hand landmark annotations. The
advantage of such approaches is that 2D hand landmark labels are much more
readily acquired in practice than 3D annotations. Weakly-supervised 3D hand
models are typically trained by minimizing two loss terms: (1) a prior term im-
posed on 3D hand prediction to encourage its realism under weak supervision,
and (2) a data term measuring the consistency between the projection of 3D
prediction and 2D image observations. When constructing the prior term, some
methods [2, 5] learn the prior from data. However, there is no sufficiently ho-
mogeneous and dense data set that precisely captures realistic hand movement
patterns, and moreover it is a significant challenge to acquire such data [28].
Other works [12, 63] attempt to derive the prior from hand literature, but they
are often limited to a certain type of knowledge. Another issue exhibited in ex-
isting weakly-supervised approaches lies in their formulation of the data term.
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They overlook the uncertainty in image observations and employ standard re-
gression losses, such as Mean Square Error (MSE). As shown in Fig. 1(b), various
types of image ambiguities may be present, posing a significant challenge to the
reconstruction process. Failing to address such inherent uncertainty may lead to
degraded model performance [32].

In this paper, we address the two issues prevalent in current weakly-supervised
3D hand reconstruction models by (1) systematically and effectively leveraging
well-established knowledge about the human hand, and (2) explicitly modeling
the uncertainty inherent in input images. Our method draws inspiration from
KNOWN [84], which leverages body-specific knowledge and uncertainty for hu-
man body reconstruction. Here we adapt that approach to the hand. Specifically,
we extract from a comprehensive study of literature on hand biomechanics, func-
tional anatomy, and physics a useful body of hand knowledge. We encode it as
a set of differentiable losses to enable training on images solely with 2D weak
supervision. Moreover, we consider that the observation uncertainty varies at
different hand joints for different input images. We model such heteroscedastic
uncertainty by capturing the distribution of 2D hand landmark positions. We
improve the training by exploiting a simple yet effective Negative Log-Likelihood
(NLL) loss that automatically assigns weights to different 2D labels based on
their captured uncertainty. Through extensive experiments, we demonstrate the
effectiveness of the proposed method and its significant improvements over the
existing weakly-supervised 3D hand reconstruction models.

In summary, our main contributions lie in:

– identifying valuable generic knowledge from a comprehensive study of hand
literature, including hand biomechanics, functional anatomy, and physics;

– introducing a set of differentiable training losses to effectively integrate the
identified knowledge into 3D hand reconstruction models;

– exploiting a simple yet effective NLL loss that incorporates the uncertainty
in image observations to improve the training; and

– showing through extensive experiments that our method significantly out-
performs existing methods under the challenging weakly-supervised setting.

2 Related Work

In this section, we discuss recent advancements in monocular 3D hand recon-
struction, considering fully-supervised and weakly-supervised settings.

2.1 Fully-Supervised Approaches

Fully-supervised 3D hand reconstruction requires that 3D labels, such as ground
truth 3D hand meshes, are sufficiently available. They focus on designing dif-
ferent model architectures for improved performance. One line of work follows
a model-based reconstruction pipeline, wherein a 3D hand is represented by a
deformable 3D hand model and reconstructed by estimating low-dimensional
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pose and shape parameters of the hand model [1, 81]. These model-based ap-
proaches can struggle to capture fine reconstruction details. Another line of
work exploits a model-free reconstruction pipeline that directly predicts 3D
hand mesh vertex positions [10, 11, 13, 20, 39, 40, 46, 55]. Such model-free ap-
proaches are typically data-hungry and less robust to occlusions and truncations.
To address the issues inherent in both approaches, recent works [30,75] propose
unifying the two pipelines into a single framework to enhance overall perfor-
mance. Additionally, some models are specifically designed for handling cases
like occlusion [54], hand-object interaction [26, 67, 73] or two-hand reconstruc-
tion [38, 58, 70, 74, 78, 88]. While such innovations improve estimation accuracy,
none of them address the significant challenge of acquiring a sufficient amount
of 3D data for fully-supervised learning.

2.2 Weakly-Supervised Approaches

Weak supervision approaches have made significant progress in enhancing the
generalization and data efficiency of 3D reconstruction models [31, 84]. In the
context of 3D hand reconstruction, 2D hand landmark annotation proves to be
a valuable form of weak supervision given its wide accessibility and the struc-
tural information it captures. Early works [5, 9, 81] relied on Principle Compo-
nent Analysis (PCA) pose bases of the MANO hand model [59] and encour-
aged plausible 3D prediction by regularizing the prediction to be closer to the
mean pose. Some works [18,81] impose geometry constraints that assumed finger
joints were located in the same plane during movement. Baek et al. [2] propose
capturing the complex 3D hand pose data distribution via Generative Adver-
sarial Networks [21] and utilize the trained generative model as guidance for
predicting realistic outputs. Instead of relying on data-driven priors or heuristic
constraints, other works [12, 35, 48, 57, 63, 68] impose joint rotation constraints
with ranges retrieved from hand biomechanics literature and achieve improved
performance. However, they overlook other sources of useful hand knowledge.
Moreover, Tzionas et al. [69] propose preventing invalid penetration in recon-
structions by utilizing a non-penetration loss formulated over colliding mesh
triangles. The proposed non-penetration loss only handles shallow penetration
and cannot accommodate soft deformations that often occur in hand contact.

The contributions that differentiate our method from existing works are as
follows. First, our study and utilization of generic hand knowledge is more com-
prehensive, and includes a novel inter-dependency derived from hand functional
anatomy. Second, our encoding of knowledge is more effective. In particular, our
formulation of the non-penetration loss effectively handles soft surface deforma-
tions by accurately pulling out deep inside vertices. Third, unlike existing works
that neglect the heteroscedastic uncertainty in input images or limit their un-
certainty modeling to hypothesis generation [9], our method explicitly models
the uncertainty and incorporates it into the training loss through a simple yet
effective NLL loss, directly improving the training process. While this strategy
has been studied in other applications [14,15,36,80], we are the first to apply it
to monocular 3D hand reconstruction.
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Fig. 2: Overview of the proposed method. Given a hand image, the regression
model predicts the 3D hand pose and shape for recovering the 3D hand mesh through
forward kinematics. The distribution of 2D hand landmark positions is specified via the
projection of 3D hand and the predicted variance. The model is trained by incorporating
generic hand knowledge and utilizing 2D hand landmark annotations.

3 Method

Fig. 2 overviews our proposed method. We begin by introducing our 3D hand
representation and camera projection model in Sec. 3.1. Then, we systematically
survey valuable hand knowledge and describe how we encode it as differentiable
model training losses in Sec. 3.2. We discuss the modeled distribution of 2D hand
landmark positions and our formulation of the NLL loss in Sec. 3.3. Finally, we
summarize the overall training loss for our model in Sec. 3.4.

3.1 Preliminaries

3D Hand Representation. We employ MANO [59] to represent a 3D hand.
MANO is a deformable 778-vertex 3D mesh model. It is parameterized by pose
parameters θ ∈ R15×3 that govern the rotation of 15 hand joints, and shape
parameters β ∈ R10 that represent the coefficients of PCA shape bases, cap-
turing variations like hand length and width. Given θ and β, 3D mesh vertices
M(θ,β) ∈ R778×3 are obtained through forward kinematics. 3D hand joints
P(θ,β) ∈ RJ×3 are a linear combination of the vertices as P(θ,β) = HM(θ,β),
where H ∈ RJ×778 is a joint regressor learned from data during the development
of MANO, and J = 21 indicates the number of modeled hand joints.
Camera Projection Model. Similar to existing practices, we estimate camera
parameters C = [s,R, t], where s ∈ R, R ∈ R3, and t ∈ R2 denote the scale
factor, camera rotation, and global translation, respectively. The projection of
3D hand joints is obtained as p2D = Proj(P;C), where Proj(·) denotes the
full-perspective projection function with a constant focal length, as in [31].
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Fig. 3: Illustration of Generic Hand Knowledge. (a) Different hand joints have
different degrees of freedom (DOFs) and ranges of motion [23]. (b) For the four fin-
gers, (i) mutual restrictions exist between joint bending (α) and splaying (γ) of the
MCPs (metacarpophalangeal joints); (ii) the bending of the DIP (distal interphalangeal
joint) induces bending in the PIP (proximal interphalangeal joint) due to tighter liga-
ments [60]. (c) Different hand digits are prevented from penetrating into each other.

3.2 Study and Incorporation of Generic Hand Knowledge

Hand movement adheres to fundamental principles applicable across different
subjects and gestures, serving as foundational insights for realistic 3D hands re-
construction. In this section, we systematically survey the generic hand knowl-
edge from various sources, including hand biomechanics, functional anatomy,
and physics. We introduce a set of differentiable losses over the 3D hand pose
and shape parameters to integrate the knowledge into the reconstruction model.
Hand Biomechanics involves the quantitative study of hand movement mech-
anisms. There are 15 hand joints contributing to movement: a metacarpopha-
langeal joint (MCP), a proximal interphalangeal joint (PIP), and a distal in-
terphalangeal joint (DIP) for each of the four fingers, and a carpometacarpal
joint (CMC), an MCP, and an IP for the thumb. Each joint’s movement can be
described via three Euler angles corresponding to joint bending, splaying, and
twisting, respectively. Hand biomechanics studies specify the DOFs and ranges
of motion for each joint as illustrated in Fig. 3(a). To impose these constraints,
we introduce the following pose loss:

Lpose =

15∑
j=1

(max{θj − θ̄j,max, θ̄j,min − θj ,0})2, (1)

where θj represents the three Euler angles predicted for the jth joint. Their
range, denoted by (θ̄j,min, θ̄j,max), is obtained from literature [23], with the
ranges set to zero for directions without degrees of freedom. Since the joint
rotation coordinates used by MANO differ from those defined above, we adjust
MANO’s original coordinates by aligning its movement axes with the three Euler
angles defined above. We also design the Euler angle rotation order for a joint
based on their rotation range to avoid singularity, following [82–84].
Hand Functional Anatomy investigates how the hand’s anatomical structure
influences its movement. In contrast to hand biomechanics, which delineates the
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range of motion for each individual joint, the study of functional anatomy stip-
ulates essential inter-joint dependencies during hand movement. As illustrated
in Fig. 3(b), there are two types of dependencies: (i) the bending of the MCP
restricts its splaying, following a linear relationship that peaks at the maximum
bending angle [61]; and (ii) the bending of the DIP induces bending of the PIP
within the same finger [60]. These inter-dependencies highlight that the range of
motion of the hand joints can be dynamic and dependent on each other. Specif-
ically, denote the predicted bending and splaying angles of an MCP joint j as
αMCP
j and γMCP

j , respectively. Based on the Type-(i) dependency, their range
of motion should be updated as:

γ̂MCP
j,min = γ̄MCP

j,min (1−
αMCP
j

ᾱMCP
j,min

), if ᾱMCP
j,min < αMCP

j < 0,

γ̂MCP
j,max = γ̄MCP

j,max(1−
αMCP
j

ᾱMCP
j,max

), if 0 < αMCP
j < ᾱMCP

j,max,

(2)

where (γ̄MCP
j,min , γ̄

MCP
j,max) and (ᾱMCP

j,min, ᾱ
MCP
j,max) are the ranges based on hand biome-

chanics, while (γ̂MCP
j,min , γ̂

MCP
j,max) denotes the refined range. As shown, the range of

γMCP
j becomes very limited as αMCP

j approaches extreme angles. Similarly, the
range of motion for αMCP

j needs to be further constrained based on the value
of γMCP

j . Moreover, denote the predicted bending of the PIP and DIP of finger
k as αPIP

k and αDIP
k , respectively. According to the Type-(ii) dependency, the

lower bound of αPIP
k should be refined as:

α̂PIP
k,min = 0, if αDIP

k > 0, (3)

where αPIP
k is encouraged to be greater than zero given a flexion DIP. In sum-

mary, the two types of dependencies refine the ranges (θ̄min, θ̄max) provided
by the hand biomechanics to (θ̂min, θ̂max) based on the current hand pose
prediction θ. To integrate this valuable anatomical knowledge into the 3D re-
construction model, we dynamically update the joint rotation ranges following
Eq. 2 and Eq. 3, and utilize the refined ranges to calculate the pose loss in Eq. 1.
Hand Physics studies assert various principles governing the physical inter-
actions of the human hand. As our model reconstructs a single 3D hand from
a single image, we mainly consider static physics, particularly the principle of
non-penetration, according to which different hand parts cannot penetrate into
each other. Fig. 3(c) illustrates a failure case. To integrate the non-penetration
principle into the 3D reconstruction model, we first identify a set M comprising
vertices located inside the mesh through the generalized winding number [29,50].
For each vertex v ∈ M, we then apply the following non-penetration loss:

Lnon−penetration =
∑
v∈M

max{d(v)− dtol, 0}, (4)

where d(v) denotes the minimum distance from vertex v to another vertex that
is not a neighbor of v (where the geodesic distance exceeds the average length
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of phalanges, e.g., 2cm). In other words, d(v) represents the minimum distance
from vertex v to 3D hand surface. Meanwhile, recognizing MANO’s limitation
in modeling soft surface deformations during contact, we introduce a tolerance
distance dtol to accommodate shallow penetrations. Unlike existing methods [69]
that formulate the loss based on collision triangles and only deter shallow pen-
etrations, our proposed loss is applied to vertices with distances to the surface
exceeding dtol, effectively pulling out the those deeply embedded vertices.
Overall Knowledge-Encoded Prior. Incorporating the knowledge discussed
above ensures natural 3D hand pose predictions. Similar to existing methods [12,
35], we apply a shape regularization Lshape = ∥β∥2 to promote plausible hand
shape predictions. Assembling all the losses together, we obtain the overall prior:

Lprior = λ1Lpose + λ2Lnon−penetration + λ3Lshape (5)

It is worth noting that the prior term in Eq. 5 is derived from generic hand knowl-
edge, which is applicable to all subjects and gestures. Notably, its formulation
does not require any 3D data and is independent of any specific dataset.

3.3 Training with Negative Log-Likelihood

To further ensure that predictions are consistent with the image observations,
we utilize 2D hand landmark annotations. The input images can often exhibit
challenges, such as occlusion or low image quality, that result in inherently am-
biguous 2D hand positions or high uncertainty in the 3D reconstruction. Unlike
existing methods that overlook this inherent uncertainty and train on 2D hand
labels using standard regression loss, we explicitly model the uncertainty and
incorporate it into the loss function to enhance model performance. Specifically,
we model the uncertainty by capturing the distribution of 2D hand landmark
positions. As different 2D hand landmarks exhibit different appearance features
that vary across input images, we model each joint independently and capture
input-dependent uncertainty. We assume the distribution of 2D hand landmark
positions p2D of an image X as:

p(p2D|X;W) =
∏
i

1√
2πσi

exp

(
− (p2D,i − µi)

2

2σ2
i

)
, (6)

where i is the image location index of hand joints. The adoption of Gaussian
distributions is based on their wide utility in modeling observation noise [32]. µ
represents the mean of the Gaussian distributions computed through the pro-
jection of 3D hand joint positions P using the camera parameters C, while the
variance σ2 are directly predicted by the regression model with parameters W.

The modeled distribution p(p2D|X;W) specifies the probability of the ground
truth appearing at position p2D. The labeled position p̄2D can be viewed as an
observed data sample. We can thus train the model through Maximum Likeli-
hood Estimation. It minimizes the Negative Log-Likelihood (NLL) to construct
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the data term to ensure 3D-2D consistency as:

Ldata = − log p(p2D = p̄2D|X;W)

∝
∑
i

(
logσi +

(p̄2D,i − µi)
2

2σ2
i

)
.

(7)

Note that the variance σ2 in Eq. 7 depends on the individual hand joint i. Omit-
ting the variance estimation or treating it as a constant would be equivalent to
using the standard MSE loss, which is agnostic to uncertainty and assigns weights
to all samples uniformly. In contrast, our method assigns reduced weights to im-
ages and joints with high uncertainty in a principled fashion, thereby producing
a more robust model with improved performance.

3.4 Total Training Loss

By combining the prior term in Eq. 5 and the data term in Eq. 7, we obtain the
total loss for training the regression model as:

L = Lprior + Ldata. (8)

During testing, 3D hands can be directly reconstructed through the hand pose
and shape parameters estimated by the regression model.

4 Experiment

We briefly introduce our data sets, evaluation metrics, and implementation de-
tails in Sec. 4.1. Then, in Sec. 4.2, we discuss an ablation study that demon-
strates the effectiveness of incorporating various sources of generic hand knowl-
edge and training with the Negative Log-Likelihood (NLL). Finally, in Sec. 4.3,
we assess the improved performance of our method in comparison to existing
weakly-supervised State-of-the-Art (SOTA) approaches.

4.1 Datasets, Metrics, and Implementation Details

Datasets. We employ three widely adopted datasets: FreiHAND [87], DexYCB [8],
and HO3Dv3 [24], all of which have been captured by multi-view data collec-
tion systems. FreiHAND features a diverse range of daily hand poses. DexYCB
and HO3Dv3 contain hand-object interaction images, some of which are signifi-
cantly occluded. We follow the established training and testing splits to facilitate
comparison with other methods.
Evaluation Metrics. Like existing methods [12, 30], we compute the average
Euclidean distance between the predicted and the ground truth 3D hand joint
and vertex positions after procrustes alignment (EJ/EV ). The evaluation on
HO3Dv3 is obtained through the online submission system. It further includes
AUCJ/AUCV , the area under the percentage of correct keypoint (PCK) curves
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with thresholds between 0mm and 50mm. Additionally, we compute penetration
rate (PR), the percentage of reconstructions exhibiting penetration with a depth
greater than dtol, to assess the physical plausibility of 3D reconstructions.
Implementation. We implemented our framework using PyTorch. The regres-
sion model consists of a ResNet-50 model [27] to extract image features and an
iterative error feedback regression model [7] to predict the unknown parame-
ters from the extracted features. The hand images are scaled to 224× 224 while
preserving the aspect ratio. The training images are augmented with random
scaling and flipping. The training batch size and epochs is 64 and 200, respec-
tively. Following the training strategy in [84], we initially employ the MSE for
the data term and then utilize the NLL for faster convergence. We use the Adam
optimizer [34] with a learning rate of 10−5 and weight decay of 10−4. The hyper-
parameters are set to dtol = 6mm, λ1 = 20000, λ2 = 20000, and λ3 = 10.

4.2 Ablation Study

Table 1 summarizes the impact of a) incorporating hand knowledge and b) train-
ing with the NLL loss. We provide a detailed analysis of these results below.
Incorporating Generic Hand Knowledge. To provide valuable insights about
the effectiveness of leveraging different sources of hand knowledge, we supple-
ment Table 1 with a qualitative evaluation in Fig. 4. When not integrating
any hand knowledge, the model is trained using 2D hand landmark annotations
with a prior term that only includes the shape regularization. This model pro-
duces large reconstruction errors (Table 1, row1). As illustrated in Fig. 4 (“No
Knowledge”), the reconstructions can align with the image observations, but the
predicted 3D hand poses are fairly unrealistic. The infeasible twisted fingers sig-
nificantly violate the joint range of motion specified by hand biomechanics. This
issue is addressed by introducing hand biomechanics into the training, resulting
in a significant model performance boost (Table 1, row2 over row1). For exam-
ple, EJ is improved from 22.4mm to 10.9mm. Meanwhile, the estimated 3D hand
poses become more plausible as shown in Fig. 4 (“+Biomechanics”). Nonethe-
less, poor reconstructions can still occur due to the inherent depth ambiguity.
Specifically, the relative depth of hand joints can be incorrect. Mitigating this
issue requires the further incorporation of the functional anatomy knowledge
(Fig. 4, “++F-Anatomy”), leading to a reduction of the reconstruction errors
from 10.9mm to 9.6mm for EJ and from 11.4mm to 10.0mm for EV (Table 1,
row3 over row2). The functional anatomy captures inter-joint dependency, al-
leviating the depth ambiguity by introducing additional constraints on the 3D
reconstruction space. Furthermore. avoiding invalid penetrations in the recon-
structions requires adding the proposed non-penetration loss (Fig. 4, bottom
example). Incorporating this physics knowledge effectively reduces the percent-
age of reconstructions with invalid penetration from 11.4% to 1.9%. To a lesser
degree, but still significantly, it also improves the other reconstruction accuracy
metrics. In summary, by incorporating hand knowledge gleaned from literature
into our proposed training loss functions, we are able to generate accurate 3D
hand reconstruction models based solely on 2D weak supervision.
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Table 1: Quantitative Evaluation of Incorporating Hand Knowledge and
Training into the NLL Loss. The evaluation is on FreiHAND. Without incorporat-
ing any hand knowledge, the model is trained by utilizing 2D hand landmark annota-
tions and the shape regularization. “F-Anatomy” denotes “Functional Anatomy”. The
units of EJ and EV are in mm, while PR is in percentage.

Hand Knowledge Weak Supervision Reconstruction

Biomechanics F-Anatomy Physics NLL EJ↓ EV ↓ PR↓

22.4 24.8 38.8
✓ 10.9 11.4 11.4
✓ ✓ 9.6 10.0 11.4
✓ ✓ ✓ 9.4 9.8 1.9

✓ ✓ ✓ ✓ 8.5 8.9 1.3

Fig. 4: Qualitative Evaluation of Incorporating Hand Knowledge. The images
are from FreiHAND’s test set. For each example, we present the rendered 3D hand
overlaid on the input image, along with the reconstructed 3D hand viewed from a dif-
ferent angle. The results from left to right are obtained by incorporating the additional
knowledge specified at the bottom. “F-Anatomy” denotes “Functional Anatomy”. Re-
constructions with notable errors are marked by red crosses.

Training with Negative Log-likelihood. As discussed in Sec. 3.3, the NLL
loss takes into account the increased reconstruction uncertainty of images con-
taining occlusions or other degradations at the granularity of individual hand
joints. Comparing rows 5 and 4 of Table 1 we see that the 3D joint position error
EJ is reduced from 9.4mm to 8.5mm and the 3D mesh reconstruction error EV is
decreased from 9.8mm to 8.9mm. In Fig. 5(a), we provide qualitative comparison
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Fig. 5: Qualitative Evaluation of Training with the NLL. (a) Evaluation of
the models trained without and with the NLL. Notable errors are marked by red
crosses. Colors indicate finger identity: thumb (black), index (yellow), middle (green),
ring (blue), and pinky (magenta). The width and height of the ellipse at each joint
represent the magnitude of the estimated variance along the horizontal and vertical
directions, respectively. (b) Training images with high uncertainty, captured by large
estimated variances (averaged over all joints). The images in (a) and (b) are from
FreiHAND (top), DexYCB (middle), and HO3D (bottom).

between the models trained without and with the NLL loss. When not utilizing
the NLL, the model is trained using the MSE loss. As shown, such models can be
adversely affected by low image quality, image occlusion, and image truncation
occurring at various hand joints, resulting in poor 3D hand reconstructions. In
contrast, the model trained with the NLL is more robust to these situations. For
example, the alignment to the input image is significantly improved compared
to training with the MSE even when the hand is heavily occluded (Fig. 5(a),
middle example). Furthermore, the model trained with the NLL captures the
distribution of 2D hand positions. As shown in Fig. 5(a) (column4), the hand
joints in low-quality or occluded regions are captured by high variance estimates
(visualized by large ellipses). In Fig. 5(b), we present training images with large
estimated variances. As shown, the images with excessive occlusion, truncation,
and ambiguity appearance exhibit large variance estimations. During training,
the utilization of the NLL effectively enhances the final model performance by
incorporating the uncertainty into the training loss function.

4.3 Comparison with State-of-the-Art

In this section, we showcase the enhanced performance of our approach com-
pared to state-of-the-art (SOTA) methods in the challenging weakly-supervised
setting. We summarize the quantitative evaluation on three different datasets:
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Table 2: Comparison with Weakly-Supervised SOTA Methods. The evaluation
of other methods are obtained from published papers. * denotes the methods using 3D
annotations in synthetic or real 3D hand datasets during training. For the evaluation
on DexYCB, we report the 3D mesh reconstruction error with the root translation
alignment ERV to compare with others. The units of EJ , EV , and ERV are in mm.

Method
FreiHAND DexYCB HO3D

EJ↓ EV ↓ EJ↓ ERV ↓ EJ↓ AUCJ↑ EV ↓ AUCV ↑

*Boukhayma et al. [5] 11.0 10.9 - 27.3 - - - -
*Spurr et al. [63] 11.3 - 7.1 - - - - -
Chen et al. [12] 11.8 11.9 - - 11.5 0.769 11.1 0.778
Ren et al. [57] 10.7 11.0 - - - - - -
Jiang et al. [30] 10.8 10.9 - - 10.5 0.789 10.7 0.785

Ours 8.5 8.9 6.7 22.0 10.0 0.800 9.8 0.804

FreiHAND, DexYCB, and HO3D in Table 2. Our method consistently outper-
forms existing approaches across all three datasets, which include diverse images
depicting daily hand poses and hand-object interactions. Specifically, early meth-
ods using 2D weak supervision often require training with 3D annotations due to
limited constraints on the 3D predictions [5,63]. Chen et al. [12] avoid the depen-
dency on 3D data by employing different statistical regularizations during train-
ing, achieving performance comparable to that of methods utilizing 3D data.
Ren et al. [57] further enhance the performance by leveraging feature consis-
tency constraints. However, these methods are confined to heuristic constraints,
such as enforcing a mean pose prediction, or partial types of hand knowledge,
like hand biomechanics alone. In contrast, we systematically study and exploit
generic hand knowledge, resulting in significant performance improvements. No-
tably, our improvements over these methods are achieved even without utilizing
the NLL loss. For instance, on the FreiHAND dataset, our method achieves EJ

of 9.4mm, reducing the second-best’s 10.7mm by 12%. Further utilization of the
NLL leads to a more significant error reduction of 21%. Additionally, Jiang et
al. [30] propose a probabilistic framework to combine model-based and model-
free reconstruction models. Despite their incorporation of additional models, our
method outperforms them by a large margin. For example, EV is decreased from
10.9mm to 8.9mm on FreiHAND, and from 10.7mm to 9.8mm on HO3D. Par-
ticularly, our method achieves the improved performance by effectively utilizing
the generic hand knowledge and modeling the input uncertainty.

5 Discussion

In Sec. 4, we validated our method under the challenging weakly-supervised set-
ting. Here, we demonstrate the advantages of leveraging generic hand knowledge
even when 3D annotations are available. Table 3(a) shows that our method’s
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Table 3: Benefits of Utilizing Generic Hand Knowledge When 3D Annota-
tion is Available. The units of EJ , EV , and ERV are in mm.

(a) Generalization. The evaluation is
on DexYCB. The models are trained
using 2D hand landmark annotation.
“FreiHAND-3D” exploits 3D annotated
images from FreiHAND to regularize the
training on DexYCB, while “Ours” uses
generic hand knowledge as the prior.

Prior EJ↓ EV ↓

FreiHAND-3D 8.3 8.5

Ours 6.7 7.1

(b) Data Efficiency. The evaluation is
on FreiHAND. The models are trained
using 2D hand landmark annotation and
incorporating different percentages of 3D
annotation during training.

3D Annotation EJ↓ EV ↓ ERV ↓

100% 8.30 8.4 21.5

Ours (0%) 8.52 8.9 18.4
Ours+10% 8.26 8.6 16.9

performance compares favorably with that attained by using a data-driven prior
extracted from FreiHAND (following [31]) and then evaluated on DexYCB. Thus
our method’s use of generic hand knowledge gives it a significant advantage over
data-driven, domain-specific approaches. Furthermore, our method can take ad-
vantage of 3D annotations when they are available. As illustrated in Table 3(b),
when not leveraging any 3D annotation, our method performs just slightly worse
than the fully-supervised model (“100%”) on 2 of the 3 metrics, and it performs
comparably to the fully-supervised model using only 10% of the 3D annota-
tions (“Ours+10%”). The advantages of generic hand knowledge, including its
generalizability and its role in improving data efficiency of monocular 3D hand
reconstruction models, further demonstrate its significance.

6 Conclusion

We comprehensively study generic hand knowledge, including hand biomechan-
ics, functional anatomy, and physics. We effectively encode these foundational
insights as differentiable prior losses, enabling the training of 3D hand recon-
struction models solely using 2D annotation. Moreover, we explicitly model im-
age uncertainty with a simple yet effective Negative Log-Likelihood (NLL) loss
that incorporates the well-captured uncertainty into the training loss function.
Our method significantly outperforms existing weakly-supervised methods. On
the widely adopted FreiHAND dataset, the improvement is nearly 21%.
Society Impact. Our work highlights the importance of integrating hand knowl-
edge and modeling uncertainty to produce reliable predictions, grounded in hand
mechanics and with confidence estimates. It can potentially benefit many down-
stream tasks like synthetic data generation, biomechanics, and robotics.
Limitations & Future Work. Our method focuses on static generic hand
knowledge for image-based reconstruction. A natural extension to our work
would be to estimate hand dynamics from monocular videos.
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