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1 Experiments Detials

Parameter Ours
optimizer SGD

learning rate (LR) 0.03
LR decay type cosine

LR warmup steps 2000
training epoch 10

batch size 16
pretrained model ViT-B_16&32

loss function focal loss
number of bins 50

Table 1: Training details.

To ensure clarity and thoroughness in present-
ing our experimental settings, we expand on
the description of the hyperparameters and
datasets used in our study. The hyperparam-
eters utilized for training our meta-model are
detailed in Table 1. This table provides a com-
prehensive list of all critical parameters em-
ployed in the training process.

Furthermore, to provide comprehensive in-
formation on the datasets used in our study,
we present the statistics of training, valida-
tion, and testing samples for each dataset
in Table 2. The selected datasets include
Pascal VOC [8], CityScapes [4], COCO [2],
ADE20K [21], and COCO Detection [15].
These datasets vary in size and prediction difficulty, thus demonstrating the
robustness and versatility of our approach.

Dataset Pascal VOC [8] CityScapes [4] COCO [2] ADE20K [21] COCO Detection [15]
Train 1171 2380 7181 16167 94629
Val 293 595 1796 4042 23658
Test 1449 500 1000 2000 5000

Table 2: Datasets statistics.

⋆ Work done while interning at Bosch Research North America.
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Fig. 1: Performance comparison between MetaAT and RS for evaluating object de-
tection model on the CityScapes dataset [4]. The values in the upper right corner are
the mean of ER and its standard deviation. Here, ASE and ATS cannot be directly
adapted to object detection as the risk of object detection involves both classification
and regression. We can observe that our MetaAT outperforms the RS on both image
and region level settings.

2 Additional Experiments for Object Detection

2.1 Results on Extra Dataset

We have extended the application of our approach on the object detection task
to one additional dataset CityScapes [4]. As mentioned in the main text, it is
nontrivial to adapt ASE and ATS for the object detection task. Consequently, we
only compare the performance of our MetaAT with RS, applied to three target
models, including DETR [3] DE-DETR [18] and DELA-DETR [18], considering
both image-level and region-level annotation settings.
Performance with Respect to Annotation Budget. Figure 1 presents the
results of the ER calculated across three target models. We use annotation bud-
get ranges ≤ 10% and ≤ 1% for image and region level experiments, respectively.
Overall, our MetaAT consistently outperforms RS in risk estimation under all
settings. Notably, it achieves a reduction of up to 98% in ER compared to RS,
specifically on DE-DETR at the image level experiment.
Numerical Comparison of Performance. The values in the upper right
corner of Figure 1 present the average ER across the annotation budget range
and its corresponding standard deviation. Our approach always outperforms RS
on bias and variance. On average, our MetaAT archives a reduction of 64% and
56% in ER, and 88% and 74% in standard deviation, compared to RS, at the
image level and region level.
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Fig. 2: Performance comparison between MetaAT and RS for YOLOX model.

2.2 Results on Anchor-based Model

Previous target models for the object detection task are mainly transformer-
based. Here we extended the application of our approach on the object detec-
tion task to the anchor-based target model YOLOX [10] on the COCO Detection
dataset [15]. We compare the performance of our MetaAT with RS, considering
both image-level and region-level annotation settings. Figure 2 presents the re-
sults of the ER calculated on the YOLOX [10] model. Here we use annotation
budget ranges ≤ 1% and ≤ 0.1% for image and region level experiments, re-
spectively. The values in the upper right corner of Figure 2 present the average
ER across the annotation budget range and its corresponding standard devia-
tion Overall, our MetaAT outperforms RS. On average, our MetaAT archives
a reduction of 39% and 58% in ER, and 45% and 71% in standard deviation,
compared to RS, at the image level and region level.

3 Discussions About Run Time

Target Model PSPNet UNet SEGNet FCN
ASE & ATS 67.80h 40.68h 32.88h 62.12h
Our MetaAT 11.15h 11.27h 10.74h 10.98h

Table 3: Comparison of training times (in hours) between our MetaAT and other
methods (ASE and ATS) on the VOC dataset.

Training dense recognition models is notably expensive; for example, DETR [3]
requires 1152 GPU hours on the V100 (130 TFLOPS), making the current state-
of-the-art methods such as ASE and ATS, which necessitate training additional
segmentation/detection models, impractical. In contrast, the meta-model used
in our approach is a single regression model for loss estimation. Utilizing a
pre-trained ViT, our approach requires only 10 hours on a single RTX 2080 Ti
(14.2 TFLOPS), costing just a few dozen dollars on the cloud (AWS). This is
clearly illustrated in Table 3 for the segmentation task. On average, ASE and
ATS require 4.6 times more training time compared to MetaAT.
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Fig. 3: Examples of the attention maps employed by our MetaAT. The high alignment
between the ground-truth loss map and the attention map indicates that our model
prioritizes the high-loss areas when performing image-level estimations.

4 Image Level Attention Maps

Figure 3 showcases six examples of attention weights employed by our meta
model during image-level estimation. Significantly, the model shows a tendency
to focus on regions with high losses, which aligns well with our rationale for
choosing the ViT as the backbone architecture. Additionally, the model displays
versatility in dealing with regions of high losses, regardless of their size. For
instance, in small areas with high losses, such as the bird in row two and column
four, our model precisely focuses its attention. Conversely, in larger areas with
high losses, like the wheels in row two and column one, it effectively identifies
and concentrates on these larger regions.

5 Relations Between Entropy and Test Loss

In the main text, we conduct an ablation study to highlight the crucial role
of output entropy in our model’s inputs for the segmentation task. To further
clarify this relationship, Figure 4 provides visual examples of both ground-truth
loss and entropy. These examples demonstrate a close alignment between entropy
and ground-truth loss, particularly in border regions. For instance, at the top
right corner of the figure, we observe high losses around the sheep’s margins,
which correspond with increased entropy in the same areas. This observation
reinforces the strong correlation between entropy and test loss, as discussed in
the main text.

However, a detailed analysis of Figure 4 shows that the alignment is not
always perfect. For example, at the top left corner, while the entropy effectively
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highlights the boundary between two pillows on the sofa, it assigns low entropy to
the brown pillow, which is in contrast to the ground-truth loss. This observation
explains our rationale for still needing the model output and the original image
to further enhance the accuracy of the loss estimation.

Fig. 4: Examples illustrating the relationship between entropy and ground-truth loss.
The entropy map is closely aligned with the ground-truth loss map, providing visual
evidence of entropy’s crucial role among all inputs for our meta model.

6 Loss Distribution

Figure 5 provides visualizations of the distribution of ground-truth losses and
estimated losses from MetaAT, ATS, and ASE at various levels: image, region-32,
and region-16.

Firstly, these visualizations at the region-32 and region-16 levels clearly show
that the test loss distribution is highly imbalanced. This supports our hypothesis
that in segmentation and object detection, only small regions, such as borders
and areas of ambiguity, account for most of the test errors. Additionally, this
observation explains why we utilize equal-width binning and focal loss in training
our meta model. These methods are designed to address the challenges posed by
such highly imbalanced data.

Secondly, our approach demonstrates an estimated loss distribution that
closely aligns with the ground-truth loss distribution across all sample levels,
exhibiting superior performance compared to other methods. For example, at
the region-32 level, where 90% of ground-truth losses are zeros, our approach ac-
curately estimates 90% of losses as zeros. In contrast, ASE estimates only 60%
of losses as zeros, resulting in a significant overestimation of losses in at least
30% of samples. This discrepancy is due to ASE’s reliance on epistemic uncer-
tainty for estimations, which does not consistently correlate with ground-truth
losses. The losses estimated by ATS closely resemble a Gaussian distribution,
characterized by a low value of loss (< 0.07). It suggests a limited ability in
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accurately estimating losses. This might be attributed to the lack of diversity
in ATS’s deep ensemble models. The behavior of ATS and ASE aligns with the
qualitative results shown in the previous subsection.

Finally, it should be noted that, although ASE appears to have a better
loss distribution estimation than ATS (Figure 5), it often yields reversed predic-
tions (Figure 6 in the main text), leading to lower performance in active testing
compared to ATS.

Fig. 5: Examples of loss distribution of the ground-truth losses and estimated losses
from MetaAT, ATS and ASE, at the image level, region-32 level and region-16 level.
Our MetaAT outperforms other approaches on loss estimation at all sample levels.

7 Extended Related Work

7.1 Active Testing

The work in [16] was the first to utilize importance sampling to estimate active
risk; however, it does not adhere to the pool-based setting. In [20], active testing
based on Poisson sampling was proposed. While these methods outperform sim-
ple baselines, they rely on non-adaptive acquisitions that cannot adjust to the
test data. To address this challenge, Active Testing Surrogate (ATS) [14] and Ac-
tive Surrogate Estimator (ASE) [13] were introduced, as discussed in Section 2.
Our MetaAT not only retains the adaptive acquisition policy but also enhances
active testing performance in dense recognition tasks.
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7.2 Model Evaluation without Labels

Testing with a few test labels or even without test labels can also make model
evaluation more efficient. The works in [5–7,11] estimate accuracy using multiple
other datasets. Specifically, [5] estimates the performance gap between training
and test datasets through persistent topology measures, while [7] trains a regres-
sion model on a meta-dataset to estimate classification accuracy on test datasets.
However, these methods require access to multiple related datasets with available
labels, thereby increasing labeling costs. Another approach, which mainly focuses
on segmentation task, involves utilizing few-shot segmentation models [9,17,19]
to generate pseudo-labels and compute the risk as the loss between the pseudo-
labels and the target model’s outputs. These few-shot segmentation models are
trained on the training dataset and a few test samples. Nonetheless, they often
fail to provide accurate labels in challenging areas, which are crucial for risk
evaluation, resulting in ineffective estimates.

8 Additional Ablation Study

8.1 Model Architecture

In Table 2, we show that our meta-model outperforms ResNet [12] by around
20% at the image level. Here, we present new results at the region-16 level:
our model achieves 4.27 ± 1.4 compared to ResNet’s 7.99 ± 3.25, indicating a
significant error reduction. For the object detection task, the meta-model takes
a list of query features as input, which represent objects in images. Unlike image
inputs for CNNs, these query features do not have a fixed spatial relationship,
making it non-trivial to modify a CNN model to process them.

8.2 Few-shot Training

In the few-shot setting, our MetaAT faces challenges due to fewer labels. How-
ever, our method’s region design, which divides images into 225/900 patches,
and the joint training of the image and region heads, help address this problem.
Table 4 compares the performance of our MetaAT on 100% and 1% training
samples of VOC [8] with SEGNet [1]. For VOC, 1% training samples mean 11
samples, which is around 1 shot. The results show minor performance drops.
Especially for the region-16 level, there is an 18.58% reduction. These results in-
dicate that the impacts, while present, are not statistically significant (P-values
of 0.24 and 0.38).

Annotation Level 100% Training Sample 1% Training Samples
Image Level 17.52 ± 2.09 21.64 ± 4.36

Region-16 Level 9.13 ± 4.78 10.83 ± 3.04
Table 4: Ablation study for the size of training samples on SEGNet model and VOC.
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Fig. 6: Qualitative examples from SCCAN [19].

8.3 Comparison with Few-shot Segmentation

Another active testing pipeline for the segmentation task utilizes the few-shot
segmentation model to predict the pseudo labels. The trained few-shot segmenta-
tion models, such as SCAAN [19] and GFS-Seg [17], are retrained on the original
training dataset and the selected annotated test dataset. Then the predictions
of the few-shot segmentation model are served as pseudo labels to estimate the
risk of the target segmentation model on the whole test dataset. Here we com-
pare the performance of this pipeline, which uses SCAAN [19] as the few-shot
segmentation model, with our MetaAT on VOC [8], as shown in Table 5. All ap-
proaches utilize the whole training dataset and 10% test labels. We also provide
qualitative examples of SCCAN [19] in Figure 6. While SCCAN achieves a high
IOU (91.9) after training with the training dataset and 10% of testing labels, it
underperforms compared to MetaAT. SCCAN struggles to provide correct labels
in challenging areas, as shown in Figure 6d, which are crucial for risk evalua-
tion in high-performance segmentation models (Figure 1c), leading to ineffective
estimates. However, in scenarios with weaker models like UNet, where risk is
more widespread as shown in Figure, SCCAN’s correct labeling in those areas
can match MetaAT’s performance at the image level.

Methods PSPNet UNet SEGNet FCN
SCCAN [19] 35.15 3.11 33.31 20.97
Ours (Image) 5.93 2.71 9.79 4.10

Ours (Region-16) 0.64 0.42 0.44 0.46
Table 5: Results of SCCAN as baseline (ER on 10% test labels).
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Fig. 7: Performance comparison between our MetaAT and three competitors with
respect to larger annotation budgets for the region-16 level annotation and the semantic
segmentation task on the ADE20K dataset. The ER is very close to zero under 1%
acquired labels with our MetaAT.

8.4 Large Annotation Budget

To evaluate the performance of active testing with an increased annotation
budget, we assessed our MetaAT model and three competitors using up to a
1% region-16 level annotation budget on the ADE20K dataset. This evaluation
served as a sanity check to verify that a sufficiently large annotation budget
leads to error convergence towards zero. Figure 7 shows the average ER calcu-
lated across all four target models under this larger annotation budget for the
region-16 level. As the percentage of acquired labels increases, the ER converges
to zero, with MetaAT consistently achieving the best performance. Specifically,
Table 6 presents the ER of all approaches under a 1% region-16 level annotation
budget. The ER of our MetaAT is very close to zero. Moreover, MetaAT achieves
up to a 72% ER reduction compared to competitors under this large annotation
budget, demonstrating the robustness of our approach.

Model RS ASE ATS Ours
PSPNet 1.79 ± 1.72 3.56 ± 2.05 2.67 ± 1.38 0.40 ± 0.34
UNet 0.23 ± 0.11 1.06 ± 0.55 1.96 ± 0.27 0.75 ± 0.59

SEGNet 1.63 ± 1.07 1.60 ± 0.33 0.89 ± 0.39 0.42 ± 0.33
FCN 0.90 ± 0.59 2.17 ± 1.40 1.88 ± 1.33 0.74 ± 0.54

Average 1.14 ± 0.87 2.10 ± 1.08 1.85 ± 0.84 0.58 ± 0.45
Table 6: The mean of ER and standard deviation of segmentation model evaluation
for the region-16 level annotation under 1% test labels of ADE20K dataset. The best
results are highlighted in bold.
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