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Abstract. In this study, we investigate the task of active testing for
label-efficient evaluation, which aims to estimate a model’s performance
on an unlabeled test dataset with a limited annotation budget. Previous
approaches relied on deep ensemble models to identify highly informative
instances for labeling, but fell short in dense recognition tasks like seg-
mentation and object detection due to their high computational costs.
In this work, we present MetaAT, a simple yet effective approach that
adapts a Vision Transformer as a Meta Model for active testing. Specif-
ically, we introduce a region loss estimation head to identify challenging
regions for more accurate and informative instance acquisition. Impor-
tantly, the design of MetaAT allows it to handle annotation granularity
at the region level, significantly reducing annotation costs in dense recog-
nition tasks. As a result, our approach demonstrates consistent and sub-
stantial performance improvements over five popular benchmarks com-
pared with state-of-the-art methods. Notably, on the CityScapes dataset,
MetaAT achieves a 1.36% error rate in performance estimation using only
0.07% of annotations, marking a 10× improvement over existing state-
of-the-art methods. To the best of our knowledge, MetaAT represents
the first framework for active testing of dense recognition tasks.

1 Introduction

The success of modern machine learning is largely driven by extensive annotated
datasets [18]. However, accurate and detailed instance annotations remain slow
and expensive [9, 25, 26]. In efforts to improve efficiency and reduce costs, sub-
stantial research in active learning (AL) has been carried out to optimize the
selection of training data [2]. However, the selection of test data has been mostly
overlooked. In this work, we focus on the practical task of active testing (AT) for
label-efficient evaluation (Figure 1a). The core objective is to select instances for
labeling from an unlabeled test dataset, enabling accurate estimation of model
performance across the entire dataset within a limited annotation budget. This
task is crucial in the lifecycle of machine learning, as it promises to significantly
reduce the time and costs associated with label annotation [18].
⋆ Work done while interning at Bosch Research North America.
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Fig. 1: Overview of active testing framework and comparison between previous ap-
proaches and our approach. (a) Active Testing selects a subset of test instances to be
labeled by the acquisition function, to estimate test performance on the entire test
dataset. (b) Previous approaches are typically designed for classification tasks, requir-
ing multiple iterations of ensemble model training and entire image labeling. (c) Our
approach can be used for dense recognition tasks. With a meta model, it enables a
single-pass evaluation that requires only selected regions of the image to be labeled.

The state-of-the-art approaches in AT [23, 24] have focused mainly on im-
age classification models, using deep ensemble models to identify informative
(high-loss) instances for labeling (Figure 1b). For instance, the Active Surrogate
Estimator (ASE) [23] employs a weighted epistemic uncertainty score, estimated
by ensemble models, to efficiently pinpoint informative instances. A key feature
of these approaches is the iterative updating of ensemble models with newly ac-
quired labels, which helps reduce overconfidence and enhances the prediction for
unseen test data. While these methods demonstrate strong performance in evalu-
ating image classification model, their effectiveness is limited in dense recognition
tasks, such as segmentation and object detection, due to inherent challenges in
both instance and label acquisition stages.

First, regarding instance acquisition, deep ensemble models are often im-
practical due to high computational costs [37,40] and the challenge of achieving
sufficient diversity within the ensemble models for dense recognition tasks [1].
Additionally, updating these models with few newly labeled instances per itera-
tion may provide insufficient information for retraining [16]. Second, from a label
acquisition perspective, iterative processes increase the communication overhead
between researchers and annotators. Moreover, previous approaches that involve
labeling entire images are inefficient for tasks where only specific regions, such
as borders and areas of ambiguity, carry the majority of the test error [35].

To overcome these limitations, we propose a meta-model-based active testing
method for label-efficient evaluation, MetaAT, which is carefully designed for
evaluating dense recognition tasks. The core idea is to develop a meta model
that can be used to identify highly informative images or regions by estimating
the loss over the unlabeled test dataset in a single pass.
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Specifically, we adapt a vision transformer (ViT) [12] as our meta model for
its strength in addressing long-range dependencies. This capability is crucial for
linking small, critical regions like object boundaries that often lead to errors in
dense recognition tasks [7,36], thus resulting in more accurate test error estima-
tion. Furthermore, MetaAT offers several additional key advantages compared to
previous approaches in both the instance and label acquisition stages (Figure 1c).
First, it significantly reduces the additional training cost of deep ensemble mod-
els. Importantly, the consistent performance of our model eliminates the need for
iterative retraining, thereby greatly reducing the communication overhead men-
tioned before. Second, the inherent characteristics of the ViT, which processes
images in small patches, allow us to estimate image level and region level losses
simultaneously. This approach enables us to select only informative regions in
the image for labeling, thus largely reducing annotation costs.

In summary, the main contributions of this paper are threefold.

1. We propose the meta-model-based approach for active testing for label-
efficient evaluation. To the best of our knowledge, MetaAT is a pioneering
work designed to efficiently evaluate dense recognition tasks, including both
segmentation and object detection.

2. We demonstrate MetaAT’s remarkable flexibility across various levels of an-
notation granularity for testing datasets, ranging from labeling entire regions
in an image to annotating only a few portions of these regions. The latter sig-
nificantly lowers the costs without compromising performance, representing
a substantial leap in label-efficient evaluation.

3. We extensively benchmark our method using various models and datasets,
where our method consistently outperforms current state-of-the-art methods.

2 Related Work

Active Learning actively selects the highest-value training instances for label-
ing during the training process and thus optimizes the balance between annota-
tion costs and model performance. In general, AL strategies can be categorized
into two main lines: The first line involves methods [4,38,42] that employ a score
function, such as loss or uncertainty, to identify and select informative instances.
The second line, represented by works [5, 34], focuses on selecting a diverse set
of instances that represent the overall distribution of the dataset. Notably, some
studies [22,32] have attempted to address both informativeness and diversity.
Active Testing represents a pioneering paradigm in label-efficient model eval-
uation, where the objective is to estimate the model’s performance on the entire
unlabeled test dataset with a limited annotation budget. The distinction between
active learning and active testing highlights key challenges in directly applying
active learning methods to active testing tasks. Active learning typically aims
to select the most challenging or uncertain instances, focusing on the ranking of
all instances. In contrast, active testing requires accurate value estimation. For
instance, LLAL [42] introduced a loss prediction approach for active learning.
They developed a ranking-based loss function that prioritizes the relative value
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of the loss of two instances, rather than estimating their true loss value. How-
ever, this approach can lead to a shift in the loss distribution across all instances,
resulting in a highly biased estimation of performance. Conversely, AT focuses
on precisely estimating the loss value, providing a more accurate understanding
of the loss distribution for all instances.

Of particular relevance are two current state-of-the-art approaches: Active
Testing Surrogate (ATS) [24] and Active Surrogate Estimator (ASE) [23]. These
methods leverage deep ensemble capabilities to identify informative (high-loss)
test instances for labeling. ATS, for instance, computes the cross-entropy loss be-
tween the predicted distribution of deep ensemble models and the target model
output to select informative instances. On the other hand, ASE expands this ap-
proach by using deep ensemble models to assess the epistemic uncertainty of un-
labeled instances. It introduces an eXpected WEighted Disagreement (XWED)
score that combines estimated loss and epistemic uncertainty for more effective
instance acquisition. Both methods improve their ensemble models by iteratively
updating with information from newly labeled test instances during evaluation.

Although their methods achieve great performance in assessing classification
models, they are not suitable for more dense recognition tasks such as segmen-
tation and object detection. As discussed in Section 1, the main reason is the
difficulty of training ensemble models in those tasks, both in terms of compu-
tational cost and performance. In addition, they are designed for labeling the
entire instance, which can be unnecessary, as usually only small regions from
each image contribute most to the test error in dense recognition tasks.

3 Methodology

An overview of our approach is shown in Figure 2. In this section, first, we for-
mally define the active testing task. Next, we present the framework of MetaAT.
Finally, we provide a detailed explanation of two key components of MetaAT:
the Vision Transformer-based Meta Model and the Subsample Risk Estimator.

3.1 Active Testing

We start with a target model that we wish to evaluate, f : X → Y , which maps
inputs x ∈ X to its corresponding labels y ∈ Y . We make no assumption about
this target model; the only requirement is that we can obtain its prediction for
any given input. Our goal is to estimate some model evaluation statistics with a
limited annotation budget. For generality, we can estimate the expected loss of
the model predictions commonly as the risk [39]: R = E[Lf (f(x), y)], where Lf

is the loss function of f , and the expectation is over the true test distribution.
Because our objective is to estimate the risk of the target model f , the model
itself remains unchanged during the evaluation process. If we had all labels for
the entire test dataset, denoted as Dtest, we could simply compute the risk as
follows:

R̂test =
1

N

N∑
n=1

Lf (f(xn), yn), (xn, yn) ∈ Dtest, (1)
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which is an unbiased estimate of the true risk where N is the number of instances
in Dtest. However, evaluating R̂test in this manner is prohibitively expensive,
as the cost associated with label acquisition makes it impractical to label all
instances in Dtest. Instead, AT methods strategically select a subset of instances
Dobserved

test ⊆ Dtest to be labeled. Typically M = |Dobserved
test | ≪ |Dtest| = N .

A naive approach to reduce annotation cost would be randomly sampling
(RS) M instances in the test dataset for labeling and then calculating the sub-
sample empirical risk:

R̂iid =
1

M

M∑
m=1

Lf (f(xm), ym), (xm, ym) ∈ Dobserved
test . (2)

Although this Monte Carlo estimation is unbiased since selected instances
are independently and identically distributed (i.i.d.), its variance can be unac-
ceptably high under the setting of M ≪ N [17].

3.2 Overview of MetaAT

Our MetaAT integrates two key components: the Meta Model and the Sub-
sample Risk Estimator. The meta model is designed to reduce the high vari-
ance associated with limited labels in AT, while the subsample risk estimator
counters potential biases from the meta model. Together, they create an estima-
tor with both low variance and minimal bias.

Fig. 2: The framework of our MetaAT.

Figure 2 displays the MetaAT workflow. Given an unlabeled test dataset,
our vision transformer-based meta model accurately predicts the losses for all
instances. It leverages the output of the target model, either independently for
object detection or in combination with input images for semantic segmenta-
tion. This allows the identification of highly informative (high-loss) instances,
significantly cutting down the variance from the RS mentioned before. However,
directly selecting highly informative instances for labeling and computing the
risk R̂ could introduce high bias, as these instances may be treated as "hard
cases", potentially leading to an overestimation of the risk R̂ for the entire test
dataset. To mitigate this, our subsample risk estimator doesn’t simply average
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all losses equally as outlined in Eq. 2; it computes a weighted average based
on the loss distribution predicted by the meta model. The specifics of the meta
model and the subsample risk estimator are detailed in subsequent subsections.

3.3 Meta Model

Backbone. As discussed in the previous subsection, our meta model aims to
predict losses for unseen test data (without labels). In dense recognition tasks,
these losses often stem from small, uncertain regions like object boundaries [13].
To address this, we have adapted the Vision Transformer (ViT) as our meta
model due to its proficiency in handling long-range dependencies in images. This
capability allows meta model to effectively relate those regions to the broader
image context, thus improve the accuracy of error prediction. Furthermore, ViT’s
unique approach to processing images in discrete patches enables the concurrent
estimation of losses at both the image and regional levels, serving as mutual
regularization during training and enhancing the overall loss estimation.
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Inputs. Under the AT setting, it is assumed that there are no labels at the
beginning of the evaluation. As shown on the left side of Figure 3, our meta
model estimates the segmentation loss based on (1) the input image, (2) the tar-
get model’s output, and (3) the output entropy, which measures uncertainty [8].
Specifically, the RGB channels of the input image, the class predictive distribu-
tion, and its corresponding entropy value are concatenated together. We then
split these combined inputs into E flattened patches, with each patch corre-
sponding to a distinct region within the image. These patches undergo a train-
able linear projection, mapping them to tokens of D dimensions, which are then
added with position embeddings as the input for the transformer encoder. Note
that a class token is added at position 0 to serve as a representation of the entire
image, which can be used to predict the whole image loss later. For object detec-
tion, we employ object query features extracted by the target model, as detailed
in [7]. These query features, which serve as input for the meta model, represent
the learned representations of potential objects in corresponding regions [43].
Outputs. Labeling the entire image may not be necessary and can be resource-
intensive in the context of segmentation and object detection [30, 35]. To facil-
itate region level selection and annotation, we have modified the original ViT
model by introducing a trainable Multilayer Perceptron (MLP) head as our re-
gion loss estimation head after the transformer encoder. This head estimates
the region level loss for all split patches or object queries within the input image.
With this region level estimation, instead of selecting highly informative images
to label, we can now focus on selecting highly informative regions to label, thus
significantly reducing the annotation cost. On the other hand, for training the
meta model, as shown in Figure 3, we generate a ground truth loss map using a
segmentation or object detection loss function from the target model. This map
is then split and arranged in the same order as the input.

Fig. 3: The training process for the meta-model: "labels" refer to the labels used in
the target model (segmentation/object detection), whereas "ground truth" pertains to
the actual loss values that the meta-model aims to predict.

Loss Function. As mentioned, small and challenging regions disproportionately
impact test errors in segmentation and object detection, leading to a highly im-
balanced loss distribution at the region level. This imbalance presents the chal-
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lenge for training the meta model using regression on original loss values. The
issue arises because regression techniques are particularly sensitive to skewed
distributions and can be overly influenced [41]. To address this issue, we apply
the equal-width binning [18] technique to convert the ground truth loss into
discrete classes, denoted as c. During training, the transformer encoder gener-
ates one class ĉ0 for the entire image and E classes {ĉe}Ee=1 for all regions. These
classes can then be converted back to numerical values during the inference. To
further mitigate the highly imbalanced issue, we employ the focal loss func-
tion [27], which focuses on hard examples by dynamically reweighing the loss
during the training. Additionally, we train the image head and the region head
simultaneously as a multitask learning approach. Thus, they can serve as each
other’s regularizers. The final loss function is formulated as follows:

LV iT = Limage + Lregion = FL(c0, p̂0) +
1

E

E∑
e=1

FL(ce, p̂e) (3)

where FL is the focal loss function, c0 and p̂0 are the ground truth and predicted
class distributions for the entire image, while ce and p̂e are those for each region.

3.4 Subsample Risk Estimator

After estimating the losses for all unlabeled test instances, the pivotal task in-
volves sampling from Dobserved

test for labeling, followed by computing the risk R̂. To
avoid bias introduced by selecting instances with high loss, we employ LURE [15]
as our Subsample Risk Estimator

R̂MetaAT =
1

M

M∑
m=1

vmLf (f(xm), ym), (xm, ym) ∈ Dobserved
test , (4)

vm = 1 +
N −M

N −m
(

1

N −m+ 1
qim − 1), im ∈ [1, N ]. (5)

where qim is the predicted loss of given images or regions. As proved in [15],
LURE effectively mitigates selection bias through corrective weighting with vm.
Furthermore, its capability extends to variance reduction, given its foundation
on importance sampling, a technique explicitly crafted to diminish variance [31].

4 Experiments

4.1 Experimental Setups

Target Model and Dataset. We assess the effectiveness of our MetaAT ap-
proach through comprehensive experiments on both semantic segmentation and
object detection tasks. In semantic segmentation, we evaluate various classical
target models, including UNet [33], PSPNet [44], SEGNet [3], and FCN [29], op-
erating on diverse datasets such as Pascal VOC [14], CityScapes [10], ADE20K [45],
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and COCO [6]. For the object detection task, we utilize target models, including
DETR [7], Deformable-DETR [46] and DINO [43], and estimate their risks on
the COCO Detection dataset [28]. In both cases, we measure the ground-truth
risk using the loss function inherent to each specific target model.
ViT-based Meta Model. For segmantic segmentation, we use the ViT-B_32
and ViT-B_16 models [12] as our backbones for different levels of granularity.
The former splits the entire input image into 225 non-overlapping regions, each
with a size of 32x32 pixels, while the latter divides it into 900 non-overlapping
16x16-pixel regions, resulting in a more fine-grained region level annotation. For
object detection, we only use the ViT-B_32 as our backbone and each patch
corresponds to one object query from the target model. At the beginning of
training, we initialize our ViT-based meta-model with pre-trained weights from
ImageNet [11]. For the initial weights of the region loss estimation head, we
randomly sample from a uniform distribution [20]. All parameters are set to be
trainable during the training process.
Evalution Metric. We compute the absolute error rate (ER) to the true risk
of the entire test dataset as the measurement of AT, which is ER = |R̂ −
R̂test|/R̂test×100%, where R̂ is the estimated risk and R̂test is the ground truth
risk on the entire labeled test dataset as shown in Eq. 1. To assess the robustness
and reliability of all methods, we report the mean and standard deviation of
multiple runs with different random seeds for all experiments.
Baseline. To validate the efficiency of our MetaAT approach, we conduct the
comparison with three baseline methods which are introduced in Sections 2
and 3: Random Sampling (RS), Active Testing Surrogate (ATS) [24] and Ac-
tive Surrogate Estimator (ASE) [23]. The original ATS and ASE methods were
designed for whole-image annotation. For region-level tasks, we adapted these
by dividing the images into smaller, equal sections. Since ATS and ASE can’t
handle the classification and regression losses in object detection simultaneously,
we only compare our MetaAT method with RS in this task.

4.2 Semantic Segmentation

We first present the results of our MetaAT and three baseline methods for the
semantic segmentation task, applied to four target models and four datasets,
considering both image and region level annotation settings. For region level, we
explore two patch sizes: 32x32 and 16x16 pixels, resulting in 225 and 900 patches
per single image, named region-32 and region-16 for simplicity.
Performance with Respect to Annotation Budget. Figure 4 presents the
main results of the average Error Rate (ER) calculated across all four target
models. The budget range for each annotation level was chosen to keep the
Error Rate (ER) under 10% for most methods at the highest budget point.
Specifically, we use annotation budget ranges of ≤ 5%,≤ 0.2%, and ≤ 0.08%
for image, region-32, and region-16 level experiments, respectively. Overall, our
MetaAT consistently outperforms other competitors in risk estimation under all
settings. Notably, it achieves a reduction of up to 87% in ER compared to the
suboptimal baseline, specifically on CityScapes at the region-16 level experiment.
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Fig. 4: Performance comparison between MetaAT and three competitors with respect
to various annotation budgets for the semantic segmentation task. The results represent
the average Error Rate (ER) computed across four distinct target models. In every
scenario, our MetaAT surpasses the performance of all other competitors.

Further analysis shows that region level annotation is much more efficient
than image level annotation. For instance, in the Pascal VOC dataset, achieving
an average ER below 10% requires at least 2.5% of ground truth labels for
image level annotation. However, for region-32 and region-16 level annotations,
less than 0.05% and 0.02% of ground truth labels are needed to attain similar
performance. This indicates a saving of about 99% in annotation costs.
Numerical Comparison of Performance. To facilitate direct quantitative
comparison, Table 1 presents the average ER across the annotation budget range
shown in Figure 4, equivalent to calculating the area under the ER curve. We also
report the corresponding standard deviation from multiple runs with random
seeds. It is evident that our approach achieves the best performance among all
other methods in most settings, in terms of both ER and variance. Specifically,
at the image level, region-32 level, and region-16 level, our MetaAT achieves a
reduction of 39%, 37%, and 39% in ER, and 33%, 40%, and 59% in standard
deviation, respectively, compared to the suboptimal approach.

Among the few scenarios where our approach is not the optimal choice, there
is only one setting in which RS has a lower mean ER than us (ADE20K dataset
with FCN target model). However, the difference (7.85± 3.81 vs 8.08± 2.09) is
not statistically significant, with RS exhibiting almost double the variance. It’s
noteworthy that while ATS and ASE may occasionally outperform our method,
their advantage largely stems from the iterative training of additional deep en-
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Image Level (Budgets ≤ 5%)
Dataset Model RS ASE ATS Ours Dataset Model RS ASE ATS Ours

VOC

PSPNet 16.48 ± 7.87 19.30 ± 5.46 16.42 ± 3.22 10.57 ± 2.57

CityScapes

PSPNet 8.09 ± 2.97 4.39 ± 1.77 12.39 ± 5.05 4.88 ± 0.92
UNet 11.60 ± 3.74 11.62 ± 2.67 7.60 ± 2.95 6.21 ± 0.79 UNet 24.59 ± 6.47 7.77 ± 1.86 16.17 ± 10.39 6.89 ± 2.75

SEGNet 25.39 ± 5.31 27.20 ± 13.47 24.48 ± 16.01 17.52 ± 2.09 SEGNet 6.96 ± 0.42 20.91 ± 9.54 16.97 ± 10.37 5.58 ± 1.97
FCN 20.04 ± 6.49 24.08 ± 18.63 23.84 ± 11.11 13.70 ± 4.46 FCN 6.48 ± 0.72 7.05 ± 1.64 15.10 ± 13.03 5.35 ± 2.06

COCO

PSPNet 22.67 ± 3.50 10.29 ± 1.01 22.69 ± 7.47 14.26 ± 6.17

ADE20K

PSPNet 7.64 ± 1.59 9.45 ± 1.24 17.24 ± 6.79 5.85 ± 2.48
UNet 8.55 ± 1.00 5.78 ± 3.41 5.49 ± 1.45 5.26 ± 1.58 UNet 7.33 ± 1.68 7.45 ± 2.06 5.44 ± 2.40 3.68 ± 0.70

SEGNet 14.12 ± 0.24 34.49 ± 15.50 5.92 ± 2.01 5.92 ± 0.75 SEGNet 9.37 ± 1.44 24.21 ± 20.79 10.00 ± 7.21 8.18 ± 0.49
FCN 18.54 ± 3.07 17.58 ± 8.21 11.77 ± 2.06 9.20 ± 2.57 FCN 7.85 ± 3.81 23.63 ± 18.99 15.14 ± 7.93 8.08 ± 2.09

Average RS 13.48 ± 3.89 ASE 15.95 ± 10.56 ATS 14.17 ± 8.07 Ours 8.19 ± 2.59
Region-32 Level (Budgets ≤ 0.2%)

Dataset Model RS ASE ATS Ours Dataset Model RS ASE ATS Ours

VOC

PSPNet 18.42 ± 6.75 21.51 ± 19.13 20.18 ± 5.52 11.72 ± 1.52

CityScapes

PSPNet 15.40 ± 5.67 9.98 ± 3.10 13.90 ± 1.61 9.89 ± 2.24
UNet 6.00 ± 3.69 5.02 ± 0.92 5.13 ± 1.41 5.36 ± 2.37 UNet 19.48 ± 12.18 11.74 ± 8.19 18.40 ± 13.96 8.70 ± 1.87

SEGNet 19.75 ± 10.24 32.34 ± 7.59 18.00 ± 7.69 13.14 ± 5.14 SEGNet 17.93 ± 4.16 26.82 ± 7.75 11.98 ± 2.90 7.74 ± 3.85
FCN 11.07 ± 4.78 16.24 ± 3.07 9.42 ± 2.43 9.69 ± 1.01 FCN 16.20 ± 4.48 13.05 ± 9.27 30.49 ± 31.03 10.19 ± 3.22

COCO

PSPNet 16.82 ± 5.11 12.56 ± 1.11 10.24 ± 3.97 8.74 ± 1.52

ADE20K

PSPNet 11.72 ± 1.27 10.62 ± 4.30 16.48 ± 7.78 6.20 ± 2.40
UNet 7.79 ± 2.16 3.11 ± 0.82 4.67 ± 1.20 3.74 ± 0.70 UNet 4.26 ± 0.78 4.74 ± 1.60 3.02 ± 1.20 4.27 ± 3.64

SEGNet 14.00 ± 2.82 26.79 ± 11.29 7.24 ± 2.17 5.67 ± 3.87 SEGNet 11.75 ± 1.55 18.67 ± 8.64 5.64 ± 0.90 6.60 ± 3.64
FCN 11.76 ± 2.56 12.32 ± 2.33 20.86 ± 13.24 10.74 ± 6.60 FCN 7.32 ± 0.98 7.69 ± 3.26 8.19 ± 3.66 5.35 ± 1.35

Average RS 13.10 ± 5.34 ASE 14.57 ± 7.49 ATS 12.74 ± 9.81 Ours 7.98 ± 3.21
Region-16 Level (Budgets ≤ 0.08%)

Dataset Model RS ASE ATS Ours

VOC

PSPNet 19.89 ± 12.77 9.36 ± 4.81 9.63 ± 4.36 8.12 ± 1.84

CityScapes

PSPNet 14.24 ± 3.59 14.71 ± 6.70 20.54 ± 11.59 8.88 ± 1.97
UNet 4.96 ± 0.56 4.12 ± 0.82 3.70 ± 0.80 4.27 ± 1.40 UNet 14.22 ± 3.52 5.49 ± 0.48 16.06 ± 10.64 7.94 ± 3.08

SEGNet 19.09 ± 6.50 24.43 ± 2.06 9.40 ± 3.09 9.13 ± 4.78 SEGNet 12.97 ± 4.28 27.35 ± 11.10 10.76 ± 3.66 9.02 ± 2.65
FCN 12.17 ± 6.32 13.77 ± 1.26 15.00 ± 5.09 9.65 ± 2.19 FCN 13.01 ± 6.07 6.24 ± 1.24 13.07 ± 5.45 5.71 ± 1.88

COCO

PSPNet 6.95 ± 1.29 11.62 ± 2.22 8.40 ± 1.40 3.55 ± 1.16

ADE20K

PSPNet 5.84 ± 4.96 12.58 ± 4.92 8.18 ± 1.83 3.05 ± 0.90
UNet 5.28 ± 1.60 4.22 ± 3.84 4.78 ± 2.45 4.76 ± 1.88 UNet 3.68 ± 1.79 3.09 ± 0.85 2.37 ± 1.13 3.05 ± 0.71

SEGNet 4.47 ± 1.69 12.26 ± 2.02 3.59 ± 0.20 3.97 ± 1.13 SEGNet 6.33 ± 4.31 8.74 ± 2.41 5.30 ± 1.17 4.81 ± 0.13
FCN 7.09 ± 1.35 12.52 ± 6.75 15.69 ± 9.36 4.80 ± 0.67 FCN 5.58 ± 3.10 13.20 ± 9.50 9.62 ± 3.43 4.10 ± 1.20

Average RS 9.74 ± 4.94 ASE 11.48 ± 4.94 ATS 9.76 ± 5.36 Ours 5.93 ± 2.04

Table 1: Performance comparison between MetaAT and three competitors for the
semantic segmentation task. We show the mean of ER and its standard deviation
among multiple runs with random seeds. The best results are highlighted in bold.
Our MetaAT outperforms others across various scenarios, demonstrating the smallest
average ERs and variances.

semble models, leading to considerable computational costs. On average, ASE
and ATS require 4.6 times more training time compared to MetaAT. Detailed
comparisons of training times are available in the supplementary materials.

4.3 Object Detection

We have extended the application of our approach to the object detection task.
Unlike in the segmentation task, where non-overlapping patches are used as input
for the meta model, we utilize an array of queries [46] from the object detection
model. These queries originally served as the features used to determine the
classification and localization of potential objects within various regions of the
image. The concept of region-level annotation in object detection is similar to
segmentation. The objective is to identify highly informative regions and label
the corresponding objects, thereby achieving efficient estimation of the test risk.

As mentioned before, it is nontrivial to adapt ASE and ATS for the object
detection task. Consequently, we only compare the performance of our MetaAT
with RS, applied to three target models and the COCO Detection dataset [28],
considering both image-level and region-level annotation settings.
Performance with Respect to Annotation Budget. Figure 5 presents ER
results calculated across three target models. We use annotation budget ranges ≤
4% and ≤ 1% for image and region level experiments, respectively. MetaAT con-
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Fig. 5: Performance comparison between MetaAT and RS for evaluating object detec-
tion model. The values in the upper right corner are the mean of ER and its standard
deviation. Here, ASE and ATS cannot be directly adapted to object detection as the
risk of object detection involves both classification and regression. We can observe that
our MetaAT outperforms the RS on both image and region level settings.

sistently outperforms RS in risk estimation under all settings, achieving up to a
96% ER reduction, notably in the DINO image-level experiment.
Numerical Comparison of Performance. The values in the upper right
corner of Figure 5 are the average ER across the annotation budget range and
its corresponding standard deviation. MetaAT always outperforms RS on bias
and variance. On average, it archives a reduction of 68% and 69% in ER, and
74% and 80% in standard deviation, at the image level and region level.

4.4 Qualitative Analysis

Accurate loss estimation is crucial for identifying the most informative instances
or regions for risk assessment. To provide a clear understanding of how MetaAT
functions, we present qualitative results related to loss estimation. In Figure 6,
we present a visualization of the estimated loss maps at the region level from
MetaAT, ATS, and ASE. Note that all the visualizations presented here share the
same color bar scale to ensure comparability and consistency in interpretation.

It is clear that our MetaAT consistently provides estimates closely aligned
with ground-truth losses and outperforms other approaches in the given exam-
ples. It is worth mentioning that when facing some challenging cases (bottom
left), ASE makes a reverse prediction that the plate incurs more loss than over-
lapping food. This is because ASE makes estimations based on epistemic uncer-
tainty, where the unusual background can also lead to high uncertainty values.
On the other hand, ATS has the worst performance as it cannot make distin-
guishable estimations among different regions. One potential reason for this is
that the deep ensemble models used in ATS lack diversity, thus reaching a con-
sensus on most regions and failing to identify the informative ones.
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Fig. 6: Examples of estimated loss maps obtained using ASE, ATS, and MetaAT.

4.5 Ablation Study

Model Error Rate
Segmentation Detection

MetaAT 6.21 ± 0.79 1.52 ± 0.42

MetaAT w/o Lregion 10.95 ± 0.42 2.35 ± 0.92
MetaAT w/o binning 8.02 ± 1.68 2.12 ± 0.60

ResNet 7.69 ± 1.06 2.40 ± 1.06
MLP 10.73 ± 7.03 3.21 ± 2.06

Table 2: Ablation study for loss functions
and model architectures.

We carried out an extensive abla-
tion study to evaluate the individ-
ual impacts of different settings in
our MetaAT. For semantic segmen-
tation, we used UNet [33] and Pas-
cal VOC [14]; for object detection,
we used DETR [7] and COCO Detec-
tion [28]. Ablation studies for both the
loss function and model architec-
ture were limited to the image level,

as alternate architectures cannot inherently handle region level experiments. We
then broadened our study to include inputs ablation for semantic segmentation,
focusing on the more challenging region-16 level experiment.
Loss Function. We examined the impact of key elements in our loss function.
Initially, removing the region level loss from our meta model significantly wors-
ens performance, as shown in Table 2, almost doubling the ER. Applied as a
form of regularization, it encourages each patch to focus on its specific region,
thereby enabling more accurate region level predictions. Consequently, the meta
model can achieve a better overall representation of the entire image, leading
to improved image level estimation and resulting in a lower ER. Additionally,
the equal-width binning technique, transforming regression to classification, also
shows improved results in Table 2. It helps the model manage the uneven dis-
tribution of ground truth data, as discussed in Subsection 3.3.

Model Error Rate

MetaAT 4.27 ± 1.40
MetaAT w/o input image 4.54 ± 1.69
MetaAT w/o model output 5.38 ± 2.26
MetaAT w/o output entropy 10.36 ± 4.98

Table 3: Ablation study on different inputs
for the semantic segmentation task.

Model Architecture. Table 2 com-
pares various meta model architec-
tures, such as ViT, ResNet [21], and
MLP [19]. The results show that
ViT-based meta model outperforms
the rest, mainly due to its effective-
ness in handling long-range dependen-
cies. This feature enhances the meta

model’s ability to connect small but significant regions and discern complex pat-
terns in images, resulting in a more precise estimation of test errors. A qualitative
analysis of this is available in the supplementary materials.
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Fig. 7: Pearson correlations between loss and evaluation metrics (pixel accuracy, mIoU)
for different models on the Pascal VOC dataset.

Inputs. Table 3 shows results from using various inputs in our method at the
region-16 level for the semantic segmentation task. It is clear that the output
entropy emerges as a crucial factor because it provides an uncertainty estimation,
highly correlated with the test loss [8]. Conversely, the original image contributes
minimally, as most areas, such as the background, are easily classified and thus
offer redundant information for predicting the test loss.

4.6 Discussions and Limitations

We estimate the expected loss of model predictions on the testing dataset as
the model’s risk for two reasons: firstly, it is a standard benchmark in AT,
as demonstrated in the ATS and ASE studies. Secondly, we found that loss
strongly correlates with other evaluation metrics. For instance, in our analysis
of different models on the Pascal VOC dataset, we found a high correlation
between loss and metrics like pixel accuracy and mIoU, regardless of the models’
performance levels, as illustrated in Figure 7. This suggests that loss alone is a
reliable indicator of model performance. However, we have observed that the
direct estimation of mIoU and mAP is challenging and remains an unsolved
problem in AT. This is because these metrics cannot be computed by simply
averaging the metric for each individual instance, thereby circumventing the
need for Eq 4. This presents an opportunity for future research.

5 Conclusions

We introduce the MetaAT: an active testing method for label-efficient valua-
tion of dense recognition tasks. By leveraging a meta model and the subsample
risk estimator, it efficiently estimates model performance on unlabeled datasets
with minimal annotation. Demonstrating superior performance across diverse
benchmarks, MetaAT sets a new standard for label-efficient evaluation in dense
recognition tasks, marking a significant leap in active testing methodologies.
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