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Abstract. Establishing certified uncertainty quantification (UQ) in imag-
ing processing applications continues to pose a significant challenge.
In particular, such a goal is crucial for accurate and reliable medical
imaging if one aims for precise diagnostics and appropriate interven-
tion. In the case of magnetic resonance imaging, one of the essential
tools of modern medicine, enormous advancements in fast image acqui-
sition were possible after the introduction of compressive sensing and,
more recently, deep learning methods. Still, as of now, there is no UQ
method that is both fully rigorous and scalable. This work takes a step
towards closing this gap by proposing a total variation minimization-
based method for pixel-wise sharp confidence intervals for undersampled
MRI. We demonstrate that our method empirically achieves the pre-
dicted confidence levels. We expect that our approach will also have
implications for other imaging modalities as well as deep learning ap-
plications in computer vision. Our code is available on GitHub https:
//github.com/HannahLaus/Project_UQ_TV.git.

Keywords: Uncertainty Quantification · Imaging Processing · Magnetic
Resonance Imaging

1 Introduction

In recent years, the field of magnetic resonance imaging, like many other imaging
modalities, has undergone a significant paradigm shift towards a unified design
of the acquisition-reconstruction pipeline. That is, the data to be acquired is
selected based on the computational methods used for reconstruction. A promi-
nent example of this interplay is compressive imaging, where sampling trajecto-
ries chosen to be suitable for imaging reconstruction via sparse recovery schemes
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allowed for significant undersampling [45]. Later, the same type of subsampling
techniques have also proven successful in the context of deep learning reconstruc-
tions [33]. Thanks to these approaches, the retrieval of fast, undersampled MRI
in clinical settings is now a reality. Indeed, in 2017, the FDA approved the first
scanners employing acceleration techniques with compressive sensing [2, 3], and
since then, several products and algorithms for retrieving highly undersampled
images have emerged. In these advancements, mathematical theory has played
a driving role, so this development has sometimes been described as from black-
board to bedside [18]. The main objective driving the design of the reconstruction
algorithms is to use nonlinear optimization to find solutions adhering to struc-
tural constraints describing real images. These constraints could explicitly arise
from a unified model, such as wavelet or gradient sparsity, or be implicitly learned
from training data.

When the measurements are affected by noise, these methods search for so-
lutions adhering to these constraints within the feasibility regions. That is, the
imaging recovery method will search in the space of possible solutions and look
for reconstructions that resemble natural images, which also makes potential
reconstruction artifacts harder to identify. Especially unexpected localized fea-
tures could correspond to real pathological abnormalities or arise in the interplay
of noise and recovery methods. For this reason, quantifying the uncertainty via
certified confidence intervals is of increasing importance not only for MRI but
for a variety of problems in imaging and computer vision [59].

At the same time, classical approaches for assessing the confidence of the solu-
tion that could allow to distinguish these two causes, abnormalities and artifacts,
are not applicable. The reason is that they typically require some knowledge of
the distribution of the random distortion and, consequently, of the generated
image. While the measurement error is well modeled by Gaussian noise, the dis-
tribution of the resulting distortion in the reconstruction cannot be modeled as
easily due to the nonlinearity of the procedure, see, e.g ., [22, Theorem 2] and the
discussion therein. This poses a significant issue when the reconstructed image
is directly employed for downstream tasks, such as automating the extraction of
quantitative parameters for clinical analysis.

Imaging with confidence, a novel rigorous method tailored to UQ:
It is only recently that the first attempts to derive non-asymptotic confidence
intervals for the pixel values of the reconstruction, without imposing prior knowl-
edge have been successful (see Section 2 for a discussion). So far, most works
have focused on sparsity models with respect to some known basis, as they
are natural, for example, in angiography and reconstruction via variants of the
LASSO [7]. In this work, we leverage these approaches to address the uncertainty
quantification problem for recovery via total variation minimization, a standard
recovery scheme for MR images in current industrial implementations [4] that
has also conceptually inspired various machine learning-based approaches reach-
ing state-of-the-art results such as variational networks [25]. To the best of our
knowledge, for the first time, we provide rigorous confidence intervals for un-
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dersampled acquired MR images and test the results with synthetic and in vivo
data.

2 Related Work

There were other attempts available in the literature to tackle the aleatoric
uncertainty quantification of high-dimensional parsimonious problems, such as
in undersampled imaging generation. For example, a series of works developed
the so-called generalized fiducial inference [26, 27, 41]. Such a method creates
a relationship between the data and the parameters for which the UQ can be
rigorously performed and establishes confidence intervals from such a relation-
ship. However, high-dimensional Monte Carlo makes this method intractable in
the high-dimensional imaging regime. Bayesian sparse learning techniques were
also developed for undersampled imaging problems [43]. An inherent challenge
with the Bayesian approach arises when inappropriate prior distributions, which
fail to accurately reflect the prior physical knowledge of the problem, are em-
ployed. In such cases, the performance and reliability of the approach may dete-
riorate. Another line of research on UQ is conformal prediction, which generates
distribution-free prediction sets for regression and classification problems [9].
However, choosing the score function in imaging problems can be challenging.
Such a technique is more directly applied to epistemic uncertainty rather than to
the aleatoric one [31]. Our work builds on the urgency of providing rigorous UQ
to imaging problems in computer vision and image processing. Such necessity
can be seen in the several workshops for UQ in computer vision and imaging
that took place over the last few years dedicated to this theme [1, 5, 6].

Our uncertainty quantification extends a line of research about non-asymptotic
confidence intervals for high-dimensional problems known as debiased estimators,
which was initiated in a series of papers [11,35,60,65]. The key idea is that given
an estimator to retrieve noisy image retrieval from a few measurements; one can
characterize the distribution of a modified estimator based on the KKT condi-
tions of the underlying inverse problem; see Section 3.2. Such works established
sharp confidence intervals for i.i.d. (sub-)Gaussian variables with Gaussian noise
by assuming that the object to be retrieved is s-sparse in the canonical basis.
However, such variables do not represent typical constraints imposed by the
physics behind the acquisition procedure. Later, this was extended to imaging
applications, where UQ was rigorously obtained for ℓ1 model-based MRI [28,29].
In this paper, we harness results for UQ obtained in previous works to more re-
alistic scenarios where the images are reconstructed via the minimization of the
total variation semi-norm, an idea introduced in the seminal paper [53]. This
imaging retrieval technique was extensively explored in tasks such as inpainting,
denoising, and deblurring; see [14, 32] and references therein. This method has
been rigorously proven to yield state-of-the-art results in MRI reconstruction –
see [40] and [7, Chapter 17] – and was consistently tested in several applications
such as parallel imaging [12], free-breathing three-dimensional cardiac MRI [16],
non-contrast-enhanced angiography [17], spectroscopy [54] and metabolite maps
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of the human brain [47], to name a few. Recently, in the context of learning
algorithms, the work [57] proposed a latent Bayesian model with a variational
autoencoder to obtain posterior distributions for the generated images and the
work [21] proposed hierarchical conditional variational autoencoders for UQ, but
no theory is available for such methods. Finally, [30] developed a non-asymptotic
theory for constructing confidence intervals for high-dimensional learning prob-
lems.

3 Background: Sparse Imaging Retrieval

In this section, we summarize the tools we need to construct confidence intervals
for images. Throughout the paper, we consider the following high-dimensional
linear model that is a discretized version of the Bloch equations, which models
the MR acquisition process [42]

b = PFx0 + ε with N ≫ m. (1)

Here, b ∈ Cm is the k-space data, PF ∈ Cm×N is a subsampled Fourier matrix,
x0 ∈ CN is the underlying ground truth image, and ε ∼ CN (0, σ2IN×N ) is
complex Gaussian noise. The goal in fast undersampled MRI is to retrieve x0

having m < N k-space measurements b when PF and σ are known.

3.1 Total Variation

As described in Sec. 2, several image modalities can be modeled by gradient-
sparse images. Also, such guiding principle is behind modern deep learning ar-
chitectures that learn higher-order statistics of images, e.g ., those based on the
fields of experts framework [52]. Therefore, we extend the results to the total-
variation setting to create rigorous UQ schemes for MRI. More precisely, for
a given image x0 ∈ CN , we consider the finite gradient operator D that gives
Dx0 = (x∗

2 − x∗
1, . . . , x

∗
N − x∗

N−1)
T ∈ CN−1 and we solve the total variation

problem, i.e.,
argminx∈CN

µ

2
∥b− PFx∥22 + ∥x∥TV (2)

with a regularization parameter µ > 0 for balancing the data fidelity term ∥b−
PFx∥22 and the regularization term ∥x∥TV := ∥Dx∥1, which is referred to as the
anisotropic formulation [7]. We use such a formulation due to the resemblance
with the LASSO estimator. Still, the same techniques described here hold for
other discretizations of the total variation, such as the isotropic one, e.g ., see [15].

3.2 Debiased Estimators for Image Retrieval

If the underlying image to be retrieved from a few samples is sparse in the canon-
ical basis, several methods in the sparse learning literature can be used, with
the LASSO being arguably the most famous one [58]. However, given a certain
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noise level σ, it is provably impossible to have a practical characterization of the
LASSO distribution since it depends on the support of the ground truth, which
is not known in advance [22]. Moreover, a bias is introduced by the shrinkage
procedure of the ℓ1-norm [23, Chapter 4]. Several works in the statistical litera-
ture developed strategies to debiase such estimators, e.g ., [35,36,60,65]. Roughly
speaking, such works introduce a correction term to the LASSO estimator x̂ that
aims to retrieve x0 from b = Ax0 + ε. It is given by x̂u = x̂ + 1

mMA∗(b − Ax̂),

where, for a given sample covariance matrix Σ̂ = A∗A
m , M should be chosen (as

discussed in Sec. 4), such that MΣ̂ ≈ IN×N . From that, the decomposition
√
m(x̂u − x0) =

1√
m
MA∗ε−

√
m(MΣ̂ − IN×N )(x̂− x0), (3)

where 1√
m
MA∗ε ∼ N (0, σ2MΣ̂M∗), follows. The work [36] showed that in the

not realistic case of a measurement process A being described by a real Gaus-
sian matrix with known covariance matrix Σ, the remainder term

√
m(MΣ̂ −

IN×N )(x̂ − x0) vanishes with probability converging to 1 as m = m(N) → ∞
provided m ≥ Cs

√
logN for a constant C > 0.6 This means that, given a certain

noise level, the difference between this new estimator and the underlying image,
x̂u − x0, is approximately a Gaussian variable. Such distance can be quantified
in a non-asymptotic way, which means that non-asymptotic sharp confidence in-
tervals can be derived for such an estimator. In the case of realistic measurement
operators given by a subsampled Fourier matrix, the works [28, 29] proved that
the remainder term in ℓ1-regularization also vanishes under slightly stronger as-
sumptions in the number of acquired k-space points as compared to the case of
Gaussian measurements. From that, confidence intervals for sparse MR images
can be constructed but only in the context of ℓ1-regularized recovery. In particu-
lar, these results do not cover variational approaches such as the total variation
minimization problem Eq. (2), which continues to be the method of choice for
many applications due to its simplicity and good numerical performance and
which also plays a foundational role for many machine learning approaches to
MRI recovery in realistic settings, as discussed in Section 2.

In this paper, we step towards closing this gap by leveraging previous de-
biasing approaches to quantify the uncertainty for MR images recovered from
undersampled data via the variational problem Eq. (2). We introduce the esti-
mator in Sec. 4 and establish non-asymptotic confidence intervals for every pixel
of the image to be retrieved in Sec. 5. In Sec. 6, we discuss the role of noise
estimation in MRI, and, finally, in Sec. 7, we numerically illustrate our findings
on in vivo brain data.

4 Debiased Total Variation Estimator

Since most MR images are not sparse in the pixel domain, the standard debiased
LASSO is limited in practice. Thus, inspired by [28, 29], we propose to use a
6 The notation m(N) considers a sequence of regression problems, where both dimen-

sions m and N are growing with the rate s
√

logN
m

→ 0.
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Algorithm 1 Construction of correction matrix M

1: Input: Sampling mask P , regularization parameters λ1 . . . λN

2: For i ∈ [N ] solve x̂i ← minx∈CN−1
1

2m
∥(PF)i − (PF)−ix∥22 + λi∥x∥1

3: Set T̂ 2 = diag
(
τ̂2
1 , . . . , τ̂

2
N

)
with τ̂2

i = 1
m

(
(PF)i − (PF)−ix̂

i
)∗

(PF)i
4: For i ∈ [N ] let ĉi ∈ CN , set ĉij = −x̂i

j for j < i, ĉij = −x̂i
j−1 for j > i and ĉii = 1.

5: Set Ĉ = (ĉ1, . . . , ĉN )T ∈ CN×N

6: Compute M = T̂−2Ĉ
7: Output: Correction matrix M

debiased TV estimator of the form x̂u = x̂ + 1
mM(PF)∗(b − PF x̂), where x̂

denotes the solution of Eq. (2). The decomposition

√
m(x̂u − x0) =

1√
m
M(PF)∗ε−

√
m(MΣ̂ − IN×N )(x̂− x0). (4)

consists of a remainder term R :=
√
m(MΣ̂ − IN×N )(x0 − x̂) and of W :=

1√
m
M(PF)∗ε which is complex Gaussian distributed with zero mean and co-

variance matrix σ2

mM(PF)∗(M(PF)∗)∗ = σ2MΣ̂M∗ due to the Gaussian dis-
tribution of the noise. The remainder term vanishes provided that, for a given
correction matrix M , the term max

ij∈[N ]
|(MΣ̂ − IN×N )ij | is small and that the

solution to the variational problem Eq. (2) accurately describes the underlying
image, i.e., x0 − x̂ is small.

The so-called nodewise LASSO, here adapted to complex subsampled Fourier
matrices, and described in Algorithm 1, guarantees that max

ij∈[N ]
|(MΣ̂− IN×N )ij |

is small [36,60]. There, (PF)i denotes the i−th column of the matrix (PF) and
(PF)−i denotes this matrix without the i−th column. For the latter, i.e., to
understand when x0−x̂ is small, a series of works, e.g ., [39,48,49] and [7, Theorem
17.5] show that TV minimization provably retrieves a gradient-sparse image. The
above results combined lead to the construction of pixel-wise sharp confidence
intervals as described in Sec. 5. A remarkable advantage of such estimators is
that once the image is retrieved as a solution to a convex optimization problem,
one only needs to add the term 1

mM(PF)∗(b−PF x̂) to the estimator x̂ in order
to obtain confidence intervals. The inexpensive cost of such a debiased strategy
comes from the fact that, for a given subsampling pattern P, the matrix M
needs to be computed only once, and it is independent of the image and the
noise level.

5 Confidence Intervals Implementation

The construction of confidence intervals relies on the asymptotic normality of
the debiased TV estimator. If the remainder term is small, then

√
m(x̂u − x0) ∼ CN (0, σ2MΣ̂M∗). (5)



Imaging with Confidence 7

The goal is to derive a confidence interval for every pixel. We start with a
confidence region Ci(α) for the complex pixel value x0

i that depends on the
significance level α ∈ (0, 1), such that

P(x0
i ∈ Ci(α)) ≥ 1− α for every image x0, (6)

where P denotes the probability due to the random noise. According to Eq. (5),
the new estimator x̂u induces a complex Gaussian distribution on the differ-
ence x̂u − x0. This means that it is possible to derive confidence intervals for
the magnitude and the phase of the MR images. Since both the real part and
the imaginary part are Gaussian distributed, the absolute value |x̂u

i − x0
i | =√

ℜ(x̂u
i − x0

i )
2 + ℑ(x̂u

i − x0
i )

2 follows a Rician distribution with zero-mean. This

special case simplifies to a Rayleigh distribution with variance σ ·
√

(MΣ̂M∗)ii
[8]. The corresponding radius δi of the confidence region Ci(α) is given by

δi(α) =
σ
√

log (1/α)
√
m

√
(MΣ̂M∗)ii

. (7)

Therefore, Ci(α) is a circle centered around the debiased TV reconstruction x̂u
i

with radius δi(α), i.e. Ci(α) = {z ∈ C | |z − x̂u
i | ≤ δ}. The confidence intervals

for the magnitude, which is what is typically visualized by radiologists, can be
constructed due to the following inequality:

P
(
|x0

i | ∈ [|x̂u
i | − δi(α), |x̂u

i |+ δi(α)]
)
≥ P(x0

i ∈ Ci(α)) ≥ 1− α. (8)

Hence, the 1 − α confidence interval for the magnitude is given by Ji(α) =
[|x̂u

i | − δi(α), |x̂u
i |+ δi(α)]. Please note, however, that the confidence regions are

given in the complex plane. This means that we could also have CIs for the phase
φ0 of the image, which contains information, e.g ., on motion or electromagnetic
properties of biological tissues [55]. With the same argument as in Eq. (8), and
by denoting φ̂i := arcsin

(
ℜ(x̂u

i )
|x̂u

i |
.
)

and γi = arccos
(
1− δ2i

2|x̂u
i |2

)
, we obtain

P
(
φ0
i ∈ [φ̂i − γi, φ̂i + γi]

)
≥ 1− α. (9)

For a detailed derivation of the confidence intervals, refer to Section 2 of the
supplementary material. This paper focuses on visualizing magnitudes, so we
adhere to the confidence intervals presented in Equation 8.

Rigorously, Eq. (6) should be interpreted in the following way: The random
quantity in Eq. (6) is the confidence region Ci(α) since it is based on the de-
biased TV estimator, which, in turn, is reconstructed by data that is affected
by random noise. In contrast, the underlying image x0

i is fixed. Therefore, one
should consider an experiment that is conducted l times, and every time the
noise is different, it leads to a (slightly) different reconstruction. Hence, also to
a (slightly) different confidence interval. In the end, the confidence region will
contain the underlying image in at least 1− α of the l cases.
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Algorithm 2 Confidence intervals for MR images
1: Input: Sampling mask P, k-space data b, regularization parameter µ, (estimated)

noise level σ̂, significance level α, correction matrix M
2: solve x̂← minx∈CN

µ
2
∥b− PFx∥22 + ∥x∥TV

3: debias reconstruction x̂u ← x̂+ 1
m
M(PF)∗(b− PF x̂)

4: For each pixel i compute radius δi ← σ̂
√
m
√

(MΣ̂M∗)ii

√
log(1/α) with covariance

matrix Σ̂ = (PF)∗(PF)/m
5: For each pixel i obtain confidence circle Ci(α)← {z ∈ C | |z − x̂u

i | ≤ δ}
6: For each pixel i compute its confidence interval for the magnitude Ji(α)← [|x̂u

i | −
δi(α), |x̂u

i |+ δi(α)]
7: Output: Reconstructions x̂, x̂u and confidence circles Ci(α) for x0

i and confidence
intervals Ji(α) for the magnitude |x0

i | for every pixel i

Imaging with confidence, summarized in Algorithm 2, computes confidence
intervals for the given pixels of an image retrieved via total variation minimiza-
tion. More precisely, we propose an estimator that has an asymptotic Gaussian
distribution, and from that, we derive pixel-wise uncertainty quantification for
the magnitude and the phase of MR images. To visualize such a UQ procedure,
we choose lines in the image, draw the confidence intervals, and measure the hit
rate of how many pixels lie inside the given interval.

6 Estimating the Noise Level

Despite advances in hardware and image acquisition techniques for MRI, the
problem of noise in MR images persists, making noise estimation and analysis
crucial tasks in MR image reconstruction [8]. Notably, MR noise estimation in-
creases in complexity if advanced MR reconstruction approaches (e.g. parallel
imaging) are employed and, especially, if the underlying individual coil raw data
is not available. This is the default case for the clinical use of MRI since usually,
only the magnitude data of the image after reconstruction is stored in clinical
databases for diagnostic purposes. For our conceptual work on UQ, we ensured
the consistent availability of the MR raw data by obtaining it directly from the
MR scanner. Therefore, we were able to utilize image regions without imaging
objects to retrieve the Gaussian distributed noise characteristics directly, obtain-
ing noise levels of 5% − 15% for the available data. For future implementation
on any MR scanners, our proposed method for UQ can be directly amended to
the regular image reconstruction when raw data is still available.

7 Numerical Experiments

We numerically illustrate our imaging with confidence method by applying it
to obtain pixel-wise confidence intervals for clinically feasible MR images recon-
structed from noisy measurements. In line with our discussion above, we work
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with noise levels between 6% and 12.5%. We retrieve the image by minimizing
the TV-regularized objective, Eq. (2), and we consider two different sampling
schemes, radial and spiral sampling, which are both among the most popular
for MRI applications. The code for reproducing all the experiments is available
on GitHub 7. More information about the implementation can be found in the
supplementary material in Section 3.

The radial k-space masks were generated according to the golden angle radial
scheme proposed by [63]. Each mask is created by adding lines going through the
center of the mask by placing a new line in an angle of 111.246◦ (the golden angle)
to the previously added one. As for the latter, k-space masks for spiral sampling
were generated by first simulating readout gradients in 2D and computing the
resulting k-space trajectories. The trajectories were regridded to the Cartesian
grid and transformed to boolean masks. Undersampling factors were adjusted
by changing the number of spokes and fine-tuned by adjusting the maximum
radius

√(
k2x + k2y

)
. Again, individual spokes were rotated by the golden angle

relative to the previous one. Each spiral spoke forms a 3/4 rotation. The masks
were fit to the size of our images, i.e., 156× 156.

As we will observe below, the confidence intervals appropriately capture the
difference between ground truth and reconstruction, as predicted. Note that in
the plots displaying this finding, the ground truth is only added as a comparison
to assess UQ but never used for designing our method.

7.1 UQ for in vivo Complex MRI Data

To assess UQ in realistic scenarios, we simulate the MRI data acquisition and
reconstruction process using in vivo data as the underlying ground truth image,
see Fig. 1a. We use existing in vivo data acquired with an inversion recovery spin
echo (IR-SE) sequence with single-shot spiral readout as described by the works
[19, 46]. Brain data of a healthy 32-year-old female were acquired on a Siemens
Magnetom Skyra Connectome 3T system with a 32-channel head coil8 with
a matrix of 156 × 156. Images with complex (magnitude and phase) data were
reconstructed using an oversampled ridge-regression estimator that uses a higher
order signal model that accounts for spatio-temporal field dynamics [50, 61, 62].
This high-quality complex-valued reconstruction serves as ground truth data for
validating our uncertainty quantification method. Moreover, all in vivo scans
were performed in accordance with local ethics guidelines and the Institutional
Review Board (IRB) after obtaining the volunteer’s written informed consent.

The data acquisition process in the MRI scanner is simulated by taking the
2D Fourier transform of the image, adding Gaussian noise with noise level σ = 0.1
(see Fig. 1b) and subsampling this k-space data using the spiral and radial sam-
pling scheme, respectively. The sampling masks are visualized in Fig. 1c for 43%
spiral subsampling and in Fig. 1d for 50% radial subsampling. These subsam-
pling rates are inspired by studies about the limitations of compressive sensing
7 https://github.com/HannahLaus/Project_UQ_TV.git
8 Siemens Healthineers, Erlangen, Germany.

https://github.com/HannahLaus/Project_UQ_TV.git
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approaches for MRI based on expert Radiologists’ scoring [34]. The resulting
relative noise levels are ∥ε∥2

∥PFx0∥2
≈ 6.5% for spiral and 7% for radial sampling.

Since the sampling patterns are fixed, we calculate, for both masks, the ma-
trix M according to Algorithm 1 with λ1 = . . . = λN = 0.0035 ·

√
m√

12 log (N)
using

FISTA [10] with 1000 iterations. The dimensional scaling
√
m√

12 log (N)
comes from

theoretical works on debiased estimators, e.g ., [28]. The constant 0.0035 was
found via cross-validation. To reconstruct the image by the subsampled spiral
and radial data, respectively, we solve Eq. (2) with the Split-Bregman algo-
rithm [24] since it allows for complex-valued solutions. We use the parameters
µ̂ = µ

20 , λ1 = λ2 = 0.05. For further information on the parameters and the
optimization problem, see Section 1 of the supplementary material. The param-
eter µ =

√
m

σ
√
12 logN

was theoretically calculated for a subsampled Fourier matrix
in [28]. After this reconstruction step, we compute the debiased TV estimator
according to Algorithm 2.
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Fig. 1: Model of experimental setting 1a: Magnitude of complex ground truth data 1b:
Full k-space affected by Gaussian noise with noise level σ = 0.1 1c: Spiral subsampling
mask which samples 43% of k-space 1d: Radial subsampling mask which samples 50%
of k-space.

To examine the distribution of the debiased TV estimator, a Q-Q plot (see
Fig. 2d) compares the quantiles of the input sample, i.e. every component√

2mℜ(x̂u−x0)i

σ·
√

(MΣ̂M∗)ii
with the quantiles of a standard Gaussian distribution. It indeed

confirms that the input is Gaussian distributed. Since the same is true for the
imaginary part, it holds that

√
m(x̂u − x0) ∼ CN (0, σ2MΣ̂M∗), which means

that the error of the debiased TV follows a Gaussian distribution with mean
zero and covariance structure σ2MΣ̂M∗. The same behavior can be observed
for radial sampling. The Q-Q plot is shown in Fig. 4d.

Algorithm 2, then, constructs confidence regions for the complex pixel values
from which confidence intervals for the magnitudes and phases can be derived by
using the fact that the new debiased estimator follows a Gaussian distribution
given by

√
mx̂u ∼ CN (

√
mx0, σ2MΣ̂M∗). Here, we choose the confidence level

α = 0.05. For clarity, we show confidence intervals for all the pixels, correspond-
ing to magnitudes, lying in a small rectangular region in the image. See Fig. 2a
together with the corresponding confidence intervals in Figs. 2b and 2c in the



Imaging with Confidence 11

(a)

0 10 20 30 40 50
0.004

0.006

0.008

0.010

0.012

0.014

(b)

0 10 20 30 40 50

0.004

0.006

0.008

0.010

0.012

0.014

(c)

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

(d)

Fig. 2: Confidence intervals for 43% spiral sampling 2a: Ground truth image with
rectangle for showing confidence intervals for pixels lying in this region 2b & 2c: 95%
confidence intervals for the magnitude of pixels in the rectangle. The red crosses are the
ground truth values, the blue circles are the corresponding estimates of the debiased
TV estimator. 2b is for a reconstruction with 6.5% noise and 2c is for a reconstruction
with 10% noise. 2d: Q-Q plot for input samples
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Fig. 3: Empirical probability P̂i(α) = 1
100

∑100
j=1 1{x0

i∈Ci(α,ε(j))} for every image pixel
each time with a different realization 3a for 43% spiral undersampling and for 3b for
50% radial undersampling.

spiral undersampling setting as well as Figs. 4a, 4b and 4c for the radial case,
respectively.

Interpretation of the UQ Procedure. The quality of the confidence re-
gions is quantified by counting how many confidence regions contain the true
ground truth pixel value x0

i on and off the support. These hit rates are cal-
culated for one realization of the noise by h = 1

N

∑N
i=1 1{x0

i∈Ci} and hS =
1
s

∑
i∈supp(x0) 1{x0

i∈Ci}, where s denotes the amount of pixels that are different
from zero. But in view of the interpretation of a confidence interval as described
in Sec. 5, we also estimate the probability P(x0

i ∈ Ci(α)) by the empirical prob-
ability P̂i(α) = 1

100

∑100
j=1 1{x0

i∈Ci(α,ε(j))} for every pixel i ∈ [0, 156]2 with ε(j)

denoting the dependency on the j-th realization of the noise. In contrast to the
hit rates, which are computed for one realization of the noise over all pixels, here
we fix a pixel and observe how often the random confidence regions contain this
pixel averaged over 100 different realizations of the noise. The image containing
the empirical probability values for all pixels is shown in Fig. 3a for the spiral
and in Fig. 3b for the radial case, respectively. In both cases, the maps seem to
contain residual image information. In the spiral setting, the empirical probabil-
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Fig. 4: Confidence intervals for 50% radial sampling 4a: Ground truth image with
rectangle for showing confidence intervals for pixels lying in this region 4b & 4c: 95%
confidence intervals for the magnitude of pixels in the rectangle. The red crosses are the
ground truth values and the blue circles are the corresponding estimates of the debiased
TV estimator. 4b is for a reconstruction with 7% noise and 4c is for a reconstruction
with 10.5% noise. 4d: Q-Q plot for input samples

√
2mℜ(x̂u−x0)i

σ·
√

(MΣ̂M∗)ii
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ity averaged over all support pixels is 90.64%, the one averaged over all pixels is
93.82%. For the radial case, the values are 91.95% and 94.20%, respectively.

7.2 Qualitative Evaluation

The general idea of debiasing, is that after the transformation, the reconstruction
error can be decomposed as x̂u−x0 = R+W , where R is a small residual term and
the dominating term W is Gaussian distributed. In fact, by inspecting Fig. 5,
it is possible to visualize this debiasing step. On the one hand, the difference
between the biased solution of Eq. (2) (see its magnitude in Fig. 5a for spiral
and in Fig. 5e for radial sampling) and the ground truth has a very structured
error, i.e. |x̂−x0| still displays much of the brain structure, which can be seen in
Figs. 5b and 5f. On the other hand, the difference between the unbiased estimator
(see its magnitude in Fig. 5c for spiral and Fig. 5g for radial sampling) and the
ground truth in Figs. 5d and 5h is much more unstructured, and one can see that
it is dominated by random noise. Moreover, as we increase the number of k-space
points or we increase the noise, this difference becomes more unstructured. The
distribution can be measured in the Q-Q plots in Figs. 2d and 4d, which, indeed,
shows the Gaussianity of x̂u − x0.

To test our findings, the same experiment as in Sec. 7.1 is conducted 100
times, each time with a different realization of the noise vector ε. In the spiral
case, we do so for the subsampling rates 43% and 62%, and in the radial setting,
we choose the masks according to 50%, 70%, and 90% k-space undersampling.
For every mask, we select σ ∈ {0.1, 0.15} resulting in relative noise levels ∥ε∥2

∥PFx0∥2

between 0.06 and 0.125. In these settings the ℓ2 and ℓ∞-norm of the errors x̂−x0

and x̂u − x0, of the bias term R := (MΣ̂ − IN×N )(x̂− x0) and of the Gaussian
term W := 1

mM(PF)∗ε are computed and averaged. The resulting quantities,
including a more detailed analysis, can be found in Table 1 (spiral) and in Table
2 (radial) in Section 3 in the supplementary material.

With these results we numerically verify that ∥R∥∞ is small as compared
to ∥W∥∞. Since the goal is to have pixel-wise confidence intervals, obtaining
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Fig. 5: Reconstruction and debiasing visualization for spiral mask with 43% subsam-
pling and 6.5% noise in the first row and for radial mask with 50% subsampling and 7%
noise in the second row 5a & 5e: TV Reconstruction 5b & 5f: Magnitude of difference
between ground truth and TV estimator 5c & 5g: Debiased TV Reconstruction, the
small enlargement at the top of the image visualizes the noise in the background 5d &
5h: Magnitude of difference between ground truth and debiased TV estimator.

estimators for which the residual is small in the ℓ∞-norm is crucial. In the
conducted experiments, both the biased and the unbiased estimator have ℓ∞-
errors compared to the ground truth that are of similar order. Despite this,
and the fact that the ℓ2-error is even larger in the debiased case, the debiasing
significantly reduces the non-quantifiable ℓ∞-error ∥x̂− x0∥∞. This is the error
for which no statistical information is available in closed form. Indeed, after the
reconstruction given by solving Eq. (2) and applying the debiased procedure, the
error is given by x̂u−x0 = R+W . Since, due to our method, R is much smaller
than W , which is Gaussian distributed, we can use the latter for the UQ.

The error ratio between the norm of R and of W depends on the quality of
the solution of Eq. (2). The more data is available, i.e., the larger m, the better
the reconstruction and the better the error ratio, reflected in the confidence
interval quality. A similar behavior is observed for the noise level added to the
data. The norm of the Gaussian vector W depends linearly on the noise level σ.
However, the reconstruction error does not seem to decrease at the same rate.
This is related to the matrix difference MΣ̂−IN×N , which is independent of the
noise level and hence, does not decrease when the noise decreases. We also test
our method on real valued brain, prostate and knee images for multiple patients,
the results of those experiments are available in Section 3 of the supplementary
material.

7.3 Discussion

As shown in the experiments above, our method for imaging with confidence is
able to provide 95% confidence intervals with hit rates above 90% for each pixel.
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We see such results for variational problems like Eq. (2) as particularly promis-
ing for the start of a UQ methodology for learned-based methods in MRI and in
other applications where deep learning is employed. In particular, the debiasing
procedure generates an estimator x̂u that follows approximately a Gaussian dis-
tribution with mean x0. This estimator enables us to quantify uncertainty for
the MR magnitude and phase of the signal. The latter constitutes the base input
data for subsequent processing steps, such as the estimation of tissue suscepti-
bilities.

The size of the given confidence intervals is σ̂√
m

up to a normalization con-
stant. Intuitively, the more measurements we have, the smaller the range of
uncertainty. Also, the dependency on σ̂ comes from the fact that noisy images
are more affected by uncertainty. Since, to the best of the authors’ knowledge,
we are the first to construct honest confidence intervals for gradient-sparse MR
images, there is a lack of comparing results. Still, confidence intervals of the same
size are known to be sharp, in the worst-case sense, for similar problems [13].

Limitations. One of the caveats of the imaging with confidence method
is the estimation of the matrix M for complicated covariance structures given
by other sampling schemes such as Lissajous curves [20, 37]. A more involved
analysis is necessary in order to apply schemes that are more computationally
efficient than the nodewise LASSO. Another crucial point is that since the size of
the confidence interval depends on σ̂, the method provides meaningless UQ for
very noisy regimes, i.e. data with more than 20% noise. Finally, we acknowledge
that the method should be tested in other imaging modalities, such as cardiac
MRI, chemical shift imaging, or MR fingerprinting.

8 Conclusion

In this paper, we propose a theory-inspired method for the construction of con-
fidence intervals for fast undersampled MRI. We verify experimentally with in
vivo MR data that the resulting confidence intervals are valid, i.e. that they
contain the true pixel parameter with high probability. A significant advantage
of the proposed method is that its application has very modest computational
requirements since it is performed without acquiring further data, no Monte
Carlo integration is necessary, and it does not require a prior distribution for
the underlying image class. Therefore, our method contributes to a higher level
of trustworthiness in medical imaging without increasing the scan time. We see
a number of promising directions for follow-up research. Firstly, we intend to
explore generalizations of our approach to quantitative MRI [56].

Secondly, we intend to extend the method to neural network approaches
to MRI, in particular, to variational networks [25] and to vision transformers
[38,44]. We feel that powerful methods for UQ are of particular importance here
due to the black-box nature of these approaches; they are a key missing building
block to make these often much superior methods [51, 64] widely available in
clinical applications.
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