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A Appendix - Overview

This appendix is organized as follows: Sec. B discusses the limitations and fu-
ture works; Sec. C presents the societal impacts our work can have; Sec. D shows
additional results including video results, comparison with single-view methods,
ablations on number of outer scaffolds, ablation study with different loss super-
vision, ablations on the number of input views at inference time, and runtime at
inference. Sec. E provides information regarding reproducibility, which includes
implementation details.

B Limitations and Future Works

Although our method achieves state-of-the-art results in terms of visual quality
and runtime, it is not free from limitations. (1) While our method effectively
compensates for minor inaccuracies in SMPL-X estimations through the use of
multi-scaffolds, significant deviations in SMPL-X from the input images could
compromise the quality of our results, as our Gaussians are anchored to the
SMPL-X surface. (2) Currently, the number of scaffolds is determined empir-
ically. It would be an interesting direction to explore adaptive scaffolds based
on subject attributes (e.g., loose or tight clothing). (3) The performance of our
inpainting network is constrained by the small number of ground truth texture
maps available during training, which in turn limits its ability to generate de-
tailed hallucinations when given a single-view input. Therefore, integrating and
fine-tuning generative models trained on extensive datasets (e.g., Stable Diffusion
model [7]) could substantially improve our network’s hallucination capabilities
and generalizability, which is a promising direction for future work.
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C Societal Impacts

Our proposed method can push immersive entertainment and communication to
a more affordable setting. For example, our work has the potential to enhance
the accessibility of telepresence experiences by facilitating the creation of avatars
from minimal RGB images. Moreover, the technology presents benefits to film
and game production by enabling efficient synthesis of large-scale 3D human
avatars with low costs.

However, our work might also introduce potential challenges, primarily re-
lated to the accessible creation of realistic human images. This could lead to
deep-fake human avatars on social media, with implications for misinformation
and the degradation of trust in digital content. To mitigate such risks, it is urgent
to promote ethical guidelines and regulations on synthetic media. We strongly
appeal transparent use of such technology as it should align with societal inter-
ests and foster trust rather than skepticism.

D Additional results

D.1 Video results

Video results of comparison with the state-of-the-art baselines on the in-domain
generalization task (i.e., trained and tested on THuman 2.0 dataset [10]) and
cross-dataset generalization task (i.e., trained on THuman 2.0 and tested on Ren-
derPeople [6]) can be found in the project website . For the in-domain general-
ization task, we compare our GHG with (1) human template-conditioned NeRF,
generalization from sparse view methods NHP [3] and NIA [4], and (2) general-
izable 3D Gaussian Splatting for human rendering method GPS-Gaussian [11].
Note that GPS-Gaussian is trained and tested with 5 input views due to the rec-
tification requirement. NHP, NIA, and ours are trained and tested with 3 input
views. For the cross-dataset generalization task, we show comparison with our
main baselines NHP and NIA. Our method can recover sharp and fine details
compared to human template-conditioned NeRF baselines. Due to the lack of full
3D prior, GPS-Gaussian suffers in maintaining multi-view consistency between
the novel views generated using different input views. On the other hand, ours
maintains robust and accurate geometry reconstruction utilizing the 3D human
template.

D.2 Comparison with single-view methods

Fig. 1 shows comparisons with SOTA single-view reconstruction methods that
are based on 3D human prior: ECON [8], TECH [2], and SiTH [1]. We used their
officially released implementation for the comparison. Our sparse-view work out-
performs in terms of accuracy and faithfulness to the observed data, as can be
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Input ECON SiTH Ours

Fig. 1: Comparison with single-view reconstruction methods: ECON [8], TeCH [2], and
SiTH [1]. Our method outperforms the baselines in terms of faithfulness to the given
observation.

Table 1: Ablation study on the number of outer scaffolds used. We trained
and tested variants with different numbers of scaffolds that are outside the original
SMPL-X surface. The variant with only the base template is denoted as “0 scaffold”.
The performance increase is saturated as more than 5 outer scaffolds are used.

## Out scaffolds. PSNR{ LPIPS] FIDJ

0 2230 14574  84.38
1 22.77  139.16  75.66
2 2228  137.65  73.54
3 21.87  136.38  65.19
4 (Ours full)  21.90 133.41 61.67
5 2213 13473 63.80
6 22.09 13552  64.81

seen in Fig. 1. Also, the single-view methods either require per-subject optimiza-
tion (ECON, TeCH) or run at relatively slow speed (e.g., ECON 3 min / TeCH
4 hr / SiTH 2 min). On the other hand, ours is a feed-forward method that runs
at 4 fps, which is x480 faster than SiTH.

D.3 Ablations

Ablation on the number of scaffolds. In Tab. 1, we study the impact of
number of outer scaffolds. Variants with different number of outer scaffolds are
trained and tested. The performance increase is saturated as more than 5 outer
scaffolds are used. Therefore, we use 4 outer scaffolds as our final model. In
Fig. 2, we show how the number of scaffolds affects the reconstruction of offset
details such as hair (a,c) and loose clothing (b,c).

Ablation on the supervision. Tab. 2 shows the impact of different loss super-
vision employed during training. Note that our variant with Li-only supervision
(Tab. 2-a) already outperforms the human template-conditioned generalizable
NeRF methods NHP and NIA, which are also trained with L;-only supervision,
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Fig. 2: Multi-scaffold helps reconstruct hair and loose clothing. S denotes the number
of outer scaffolds.

in terms of perceptual metrics LPIPS and FID. This validates that our gain is
not only from the different supervision but also from our proposed multi-scaffold.
Our full model that leverages multi-view supervision with L;, SSIM, and mask
loss achieves the highest performance on the perception-based metrics. Note that
multi-view supervision is possible by leveraging the fast 3D Gaussian splatting.

Ablation on the number of input views at inference. We trained our
model using 3 input views and tested with different number of input views at
inference time in Tab. 3. The performance improves as more observations are
available. However, note that our performance when only given two views is
still comparable to the 3-view results. This demonstrates the effectiveness of our
method under sparse view setting.

Performance on the randomly selected input views. During evaluation,
we followed the convention of previous sparse view 3D human reconstruction
works [3,4] that use 3 uniformly distributed inputs. However, we additionally
ran the evaluations given 3 random views 10 times and computed the mean
metrics. We verified that the performance difference between the uniformly and
randomly sampled inputs is minimal — PSNR is 1.5%, and LPIPS is 0.3%.

D.4 Runtime at inference

Our GHG runs at 4 fps for rendering a single 1K (1024 x 1024) image on a single
NVIDIA RTX A4500 GPU. However, note that inpainting network takes most
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Table 2: Ablation study on the supervision. X//indicates completely re-
move/keep the loss supervision. Our Li-only supervision result (a) still outperforms
the human template-conditioned NeRF methods NHP and NIA, which are also trained
with Li-only supervision. This validates the effectiveness of our proposed multi-scaffold.

Li SSIM Mask Multiview PSNRt LPIPS|  FID|

NHP 4 X X X 23.32 184.69 136.56
NIA 4 X X X 23.20 181.82 127.30
a v X X X 23.05 142.57 71.97

v v X X 22.69 136.44 69.50
c v 4 X v 22.03 134.82 62.04
Ours full v v v v 21.90 133.41 61.67

Table 3: Ablation study on the number of input views at inference. We
trained our model using 3 input views, and tested with different numbers of input
views at inference time. The performance improves as more observations are available.

4 Inputs. PSNR{ LPIPS| FIDJ

20.08 152.54 99.13
21.79 132.61 78.56
21.90 133.41 61.67
22.01 133.68 53.40
22.07 131.80 35.00

Tk W N~

of our runtime (74%). Without the inpainting network, ours runs at 15 fps. More
efficient inpainting model can be explored to further reduce the runtime.

The detailed breakdown of runtime is as follows. Our pipeline can be divided
into three stages: (1) constructing multi-scaffold (2) Gaussian parameter map
generation (3) rasterization. (1) Constructing multi-scaffold: RGB map for
each scaffold is aggregated on the UV space of human template. Our inpaint-
ing network inpaints the missing regions of the innermost scaffold RGB map
in 180.89 ms. (2) Gaussian parameter map generation: Multi-Gaussian
parameter maps are generated in 57.97 ms. (3) Rasterization: Rasterization
takes 5.78 ms. In total, GHG takes 244.65 ms to render a single 1K image.

We would like to highlight that our method runs faster than the sparse-view
generalizabl human NeRF methods NHP and NIA (0.01fps to render a single
1K image) while outperforming their visual quality.

E Implementation details

E.1 Gaussian parameter map generation

The architecture design of our Gaussian parameter map generation network is
presented in Fig. 3. Our network is composed of two encoders E,ppr, Egeo and one
decoder Dyec. The feature maps extracted by Eappr and Egeo are added together
before being fed into Dgye.. Moreover, Mg and M, are sent into Softplus and
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Fig. 3: Network architecture for Gaussian parameter map generation.

Sigmoid activation layers, respectively, after the convolution layers. Note that
in the figure, the number following each layer name and sitting in the bracket
denotes its output channel size.

E.2 Inpainting

Pseudo ground truth generation To create the pseudo ground truth texture
map on the SMPL-X UV space, we follow the approach proposed in Lazova et
al [5]. The process is illustrated in Fig. 4. For each point on the SMPL-X model,
we identify the nearest point on the scanned object. Next, we determine the
corresponding position of this point on the scan’s UV map. We then transfer the
color from this position on the scan’s UV map to the corresponding location on
the SMPL-X’s UV map.

Network architecture Fig. 5 shows the inpainting module architecture. The
inpainting network follows the DeepFillv2 design [9]. The inpainting network
is composed of a generator Ginpaint and a discriminator Diypaint. In the gener-
ator, all convolutions are gated convolutions with a kernel size of 3 x 3 if not
specified, where GatedConv, DilateGatedConv, GatedConvDown, GatedConvUp
have a stride of 1, 1, 2, 0.5, respectively. The four DilateGatedConv layers in
DilatedBlock have a dilation of 2, 4, 8, 16, respectively. The Attention layer is a
self-attention layer. In the discriminator, all convolutions are common 2D con-
volutions, where Conv, ConvDown have a stride of 1, 2, respectively. Besides, all
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GT mesh Transferred
SMPL-X texture map

Fig. 4: Illustration of texture transfer on to the SMPL-X UV space. For each
point on the SMPL-X model (a), the nearest point on the scanned mesh (b) is found.
Then, we get the corresponding position of this point on the scan’s UV map (e), which
will be mapped to the matching location on the SMPL-X’s UV map (d). Resulting on
the transferred texture map (f) and the colored mesh (c).

convolution layers are followed by ELU activation. Note that in the figure, the
number following each layer name and sitting in the bracket denotes its output
channel size.



Kwon et al.

(€) yuer

() Auoppazen
(8%) dnAuodpalen

(96) Auodpazed

(96) dnAuoopares

(z6T) AuoDpateD

(z6T) Auodpatepaie|ig
(z6T) AuoDpa1eDPalR|IQ
(z6T) AuoDpa3eDpPale|Iq

(z6T) AuoDpatepaie|iq

(z6T) AUODpalen
(26T) umogauo)pales
(96) Auopales
(96) umogauoypaien
(8%) Auoppaizen

(8%) §xSAuODpalen

Decoder

DilatedBlock

Encoder

int Stage 2

g inpai

lﬁ

(z6T) AuoDpa1eD

3]eUd)eIU0d

(z6T) AUODpateD

(z6T) Auopazes

(z6T) uonuany

(z6T) 0

Iapaie|ia 7 7 (87) Auodpaien

(z6T) 49p0odu3

7 7 (z6T) 49podu3

o502y

g inpaint Stage 1

i

(z6T) 49p023g

1

(26T) Auodpies

(z61) Y20i1gpatelia

(z6T) Auopazes

(z61) Jopoou3

,256) ‘

H W

32’32

Real or Fake tensor of shape (:

4.{

(T) ¥ xpyumogauod

(26T) yxyumogauo)

(26T) txyumogauo)

(Z6T) yxyumogauo)

(96) ¥xyumogauo)

(8%) Lx/Au0)

e e e e e

i

t

———t

inpain

[ P

twork

inting ne

ig. 5: Inpai

F



Generalizable Human Gaussians (GHG) 9

References

10.

11.

. Ho, H.I., Song, J., Hilliges, O.: Sith: Single-view textured human reconstruction

with image-conditioned diffusion. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2024) 2, 3

Huang, Y., Yi, H., Xiu, Y., Liao, T., Tang, J., Cai, D., Thies, J.: Tech: Text-guided
reconstruction of lifelike clothed humans. arXiv preprint arXiv:2308.08545 (2023)
2,3

Kwon, Y., Kim, D., Ceylan, D., Fuchs, H.: Neural human performer: Learning
generalizable radiance fields for human performance rendering. Advances in Neural
Information Processing Systems 34, 24741-24752 (2021) 2, 4

Kwon, Y., Kim, D., Ceylan, D., Fuchs, H.: Neural image-based avatars: General-
izable radiance fields for human avatar modeling. In: International Conference on
Learning Representations (2023) 2, 4

Lazova, V., Insafutdinov, E., Pons-Moll, G.: 360-degree textures of people in cloth-
ing from a single image. In: 2019 International Conference on 3D Vision (3DV).
pp. 643-653. IEEE (2019) 6

RenderPeople. http://renderpeople.com (2018) 2

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684-10695 (2022) 1
Xiu, Y., Yang, J., Cao, X., Tzionas, D., Black, M.J.: Econ: Explicit clothed humans
optimized via normal integration. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 512-523 (2023) 2, 3

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. arXiv preprint arXiv:1806.03589 (2018) 6

Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4d: Real-time human
volumetric capture from very sparse consumer rgbd sensors. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR2021) (June 2021) 2

Zheng, S., Zhou, B., Shao, R., Liu, B., Zhang, S., Nie, L., Liu, Y.: Gps-gaussian:
Generalizable pixel-wise 3d gaussian splatting for real-time human novel view syn-
thesis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2024) 2


http://renderpeople.com

	 Generalizable Human Gaussians  for Sparse View Synthesis  – Supplementary Material –

