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Abstract. Machine learning models are vulnerable to tiny adversar-
ial input perturbations optimized to cause a very large output error.
To measure this vulnerability, we need reliable methods that can �nd
such adversarial perturbations. For image classi�cation models, evalu-
ation methodologies have emerged that have stood the test of time.
However, we argue that in the area of semantic segmentation, a good
approximation of the sensitivity to adversarial perturbations requires
signi�cantly more e�ort than what is currently considered satisfactory.
To support this claim, we re-evaluate a number of well-known robust
segmentation models in an extensive empirical study. We propose new
attacks and combine them with the strongest attacks available in the
literature. We also analyze the sensitivity of the models in �ne detail.
The results indicate that most of the state-of-the-art models have a dra-

matically larger sensitivity to adversarial perturbations than previously
reported. We also demonstrate a size-bias: small objects are often more
easily attacked, even if the large objects are robust, a phenomenon not
revealed by current evaluation metrics. Our results also demonstrate that
a diverse set of strong attacks is necessary, because di�erent models are
often vulnerable to di�erent attacks. Our implementation is available at
https://github.com/szegedai/Robust-Segmentation-Evaluation.

1 Introduction

It has long been known that deep neural networks (and, in fact, most other
machine learning models as well) are sensitive to adversarial perturbation [37,39].
In the case of image processing tasks, this means that�given a network and
an input image�an adversary can compute a speci�c input perturbation that
is invisible to the human eye yet changes the output arbitrarily. This is not
only a security problem but, more importantly, also a clue that the models
trained on image processing tasks have fundamental �aws regarding the feature
representations they evolve [18, 24]. In the context of image classi�cation, this
problem has received a lot of attention, leading to a large number of attacks
under various assumptions (just to mention a few, [7�9,15,34]) and defenses (for
example, [13, 30]).

In image segmentation, the vulnerability to adversarial perturbation attacks
has also been demonstrated many times, for example, [2, 12, 20, 23, 36, 38, 41].
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Fig. 1: Single image mIoU distributions of the `small' adversarially trained model of
Croce et al. [17] over the PASCAL VOC 2012 validation set. The image-wise (NmIoU)
and class-wise (CmIoU) aggregated mIoU metrics are shown using vertical lines (see
Sec. 5). The lack of robustness is apparent and the gap between the two aggregated
mIoU metrics for adversarial input indicates a size-bias (see Sec. 5).

However, interestingly, the problem of training models that are robust to adver-
sarial perturbation has not received a lot of attention until recently. The �rst
work that focuses on this problem in depth is by Xu et al. [42] where the DDC-
AT method was proposed, followed by the improved SegPGD-AT method by
Gu et al. [22]. More recently, Croce et al. [17] also experimented with several
con�gurations for adversarial training.

These methods all use adversarial training [21,30], a method that has stood
the test of time in image classi�cation. On clean input samples, all of the resulting
models perform similarly to normally trained models. At the same time, they
are reported to have a non-trivial robustness. This is rather surprising, because
in image classi�cation, it is well-known that there is a tradeo� between accuracy
and robustness [43]. This motivates our hypothesis that these models are in fact
not robust and the current methodology for evaluating robustness is insu�cient.

To test this hypothesis, we perform a thorough empirical evaluation address-
ing two shortcomings of current practice. First, we apply the combination of
the strongest attacks available in the literature, along with our own attacks, to
get state-of-the-art upper bounds on the robust performance. The recently pro-
posed attacks in our set include the ALMAProx attack [36] and the Segmentation
Ensemble Attack (SEA) [17]. We apply the attack set in an ensemble fashion,
attacking each input with all the attacks. We then select the most successful
attack for each input, according to a given metric.

Second, we demonstrate that the usual practice of using only pixel accuracy
and class-wise aggregated mIoU over the test set hides an important robustness
problem, because these metrics are relatively insensitive to the misclassi�cation
of small objects. We therefore propose to examine the image-wise average mIoU
as well when evaluating robust models, because it balances between smaller and
larger objects better, especially over datasets where some classes have only a few
instances in most images.
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1.1 Contributions

In stark contrast with the results reported previously, using a thorough evalua-
tion methodology we demonstrate that the best-known models proposed in the
literature cannot be considered signi�cantly robust. We focus on the state-of-the-
art adversarial training methods including DDC-AT [42] and SegPGD-AT [22],
as well as the approach of Croce et al. [17]. We show that

� using 50% adversarial and 50% clean samples during training�the setup
used by DDC-AT and SegPGD-AT�results in a complete lack of robustness
regardless of which performance metric is considered

� using 100% adversarial samples might result in some robustness according
to some of the metrics, but in terms of the image-wise average mIoU metric
these models are also vulnerable

� the models of Croce et al.�that have the highest robust pixel accuracy
among the models we examine�are vulnerable in terms of image-wise aver-
age mIoU, which suggests that these models sacri�ce the small objects and
focus on protecting the large ones (see Fig. 1)

� the diversity of our attack set is essential, because di�erent scenarios and
models might require di�erent attacks, no attack dominates all the others

Our results indicate that, in the case of semantic segmentation models, a very
thorough robustness evaluation is necessary using a diverse set of attacks, and
the distribution of the mIoU values over the dataset should also be examined.

1.2 Related work

Here, we overview related work speci�cally in the area of adversarial robustness
in semantic segmentation.

Attacks. Adaptations of the gradient-based adversarial attacks using the
segmentation loss function have been proposed relatively early [2, 20, 41]. The
Houdini attack by Cissé et al. uses a novel surrogate function more tailored to
adversarial example generation [12]. Agnihotri et al. propose the cosine similarity
as a surrogate [1]. The ALMAProx attack proposed by Rony et al. [36] de�nes a
constrained optimization problem to �nd the minimum perturbation to change
the prediction over a given proportion of pixels. This is a fairly expensive, yet
accurate baseline to evaluate defenses. The dynamic divide-and-conquer (DDC)
attack by Xu et al. [42] is based on grouping pixels dynamically during the
attack. The segmentation PGD (SegPGD) attack by by Gu et al. [22] is an
e�cient adaptation of the PGD algorithm for the segmentation task. Finally,
the Segmentation Ensemble Attack (SEA) by Croce et al [17] is a collection of
four di�erent adaptive attacks with the goal of serving as a reliable ensemble for
evaluating robust models.

Special purpose attacks. Some works introduce di�erent versions of the
adversarial perturbation problem with speci�c practical applications in mind.
Metzen et al. study universal (input independent) perturbations [33]. Cai et
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al. [6] study semantically consistent (context sensitive) attacks that can fool
defenses that are based on verifying the semantic consistency of the predicted
scene. Chen et al [11] also consider semantic attacks where the predicted scene
is still meaningful, only some elements are deleted, for example.

Detection as a defense. Klingner et al. proposed an approach to detect
adversarial inputs based on the consistency on di�erent tasks [26]. Another de-
tection approach was suggested by Bär et al. [4, 5] where a speci�cally designed
ensemble of models is applied that involves a dynamic student network that ex-
plicitly attempts to become di�erent from another model of the ensemble. While
detection approaches are useful in practice, they are not hard defenses because
adversarial inputs can be constructed to mislead multiple tasks or multiple mod-
els as well simultaneously, as the authors also note.

Multi-tasking as a defense. Another approach involves multi-task net-
works, with the underlying idea that if a network is trained on several di�erent
tasks then it will naturally become more robust [25, 31]. While this is certainly
a very promising direction for defense, many uncertainties are involved such as
generalizability to di�erent tasks and datasets, and the critical number of tasks.

Adversarial training. In image classi�cation, the most successful approach
is adversarial training [30]. In semantic segmentation, a notable application of
adversarial training is the DDC-AT algorithm by Xu et al. [42]. More recently, the
SegPGD-AT algorithm was proposed by Gu et al. [22], where SegPGD was used
to implement adversarial training. Croce et al. [17] have also proposed techniques
for adversarial training such as using a robust backbone. These approaches are
the subject of our study.

2 Background

Here, we brie�y summarize the basic notions of adversarial attacks and adversar-
ial training. We focus on the white-box setting, and we assume that the model
to be attacked is di�erentiable and deterministic. Let the pre-trained model be
fθ : X 7→ Y and the loss function L(θ, x, y) ∈ R that characterizes the error of
the prediction fθ(x) given the ground truth output y ∈ Y.

2.1 Adversarial Attacks

Intuitively, the goal of an adversarial attack is to �nd a very small perturbation
of a given input x in such a way that the prediction of the model fθ(x) is
completely wrong. Clearly, for an input x ∈ X and a perturbation δ we require
that x + δ ∈ X as well. For simplicity, we will omit this constraint from the
discussion below.

The most common type of attack is based on solving the constrained maxi-
mization problem

δ∗ = argmax
δ∈∆

L(θ, x+ δ, y), (1)

which gives us the perturbed input x+ δ∗ that causes the most damage in terms
of the loss function within a small domain ∆. Here, the set ∆ captures the idea
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of �very small perturbation�. Throughout the paper, we adopt the widely used
de�nition ∆ϵ = {δ : ∥δ∥∞ ≤ ϵ} that de�nes the neighborhood of an input x in
terms of the maximum absolute di�erence in any tensor value.

Another possible type of attack is de�ned by the constrained minimization
problem

δ∗ = argmin ∥δ∥∞ s.t. C(fθ(x+ δ), fθ(x)) > 0, (2)

where the function C expresses the amount of damage. This allows the de�nition
of constraints that, for example, require that the predicted label is wrong (in
classi�cation) or that 99% of the predicted pixel labels are wrong (in segmenta-
tion). Many early approaches adopted this formalism, for example, [7, 34,39].

Note that Eq. (2) does not guarantee the perturbation to stay within a certain
small domain ∆. Since here, we are interested in perturbations from a given ∆ϵ,
we will use the clipped perturbation max(δ∗, ϵ δ∗

∥δ∗∥ ) in the case of the attacks

that solve the minimization problem in Eq. (2).

2.2 Adversarial Training

Adversarial training has proven to be a reliable heuristic solution to achieve
robustness [21, 30]. The idea behind adversarial training is to use adversarial
examples during training as a form of augmentation. The adversarial examples
are always created based on the current model in the given update step. Formally,
we wish to solve the following learning task:

θ∗ = argmin
θ

Ep(x,y)[max
δ∈∆

L(θ, x+ δ, y)], (3)

where p(x, y) is the distribution of the data and we assumed the more usual
maximum damage attack formalism.

In the outer minimization (learning) task one can use an arbitrary learning
method, and in the inner maximization task one can select any suitable attack
to perturb the samples used by the learning algorithm.

3 Our Battery of Segmentation Attacks

Every attack is constrained to the perturbation set ∆ϵ = {δ : ∥δ∥∞ ≤ ϵ} with
ϵ = 8/255, in line with general practice.

We build on the notions in Sec. 2, noting that in semantic segmentation,
X = [0, 1]H×W×3, that is, the inputs are 3-channel color images of width W and
height H, with all the values normalized into the interval [0, 1]. The output space
Y is [0, 1]H×W×C , where C is the number of possible categories for each pixel.
Note that Y is the softmax output, which de�nes a probability distribution for
each pixel over the categories that can be used to compute the �nal segmentation
mask by taking the maximum probability category.
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3.1 PAdam attacks

We include two attacks of our own: PAdam-CE and PAdam-Cos. PAdam stands
for Projected Adam. It is an algorithm similar to projected gradient descent
(PGD) [27,30], but it uses the Adam optimizer [3] instead of the vanilla gradient
descent used by PGD. PAdam can be thought of as an alternative to APGD [16]
for adaptive step-size control. Our two PAdam attacks both use the AMSGrad
variant [35] of Adam with 200 iterations and a step size of 2/255, projected onto
the feasible solution set ∆ after each update like in PGD.

PAdam-CE solves the problem in Eq. (1) using PAdam assuming the cross
entropy loss

LCE(θ, x, y) =
1

HW

H∑
h=1

W∑
w=1

C∑
c=1

−yh,w,c log fθ(x)h,w,c, (4)

while PAdam-Cos solves the problem

δ∗ = argmin
δ∈∆

CosSim(OneHot(y), Fθ(x+ δ)) (5)

using PAdam, where Fθ computes the logit layer of fθ, CosSim(x, y) = x·y
∥x∥2∥y∥2

,

and OneHot(y) computes the one-hot encoded ground truth label so that the
dimensions of the label match the logit tensor dimensions.

PAdam-Cos is not to be confused with CosPGD [1] where cosine similar-
ity is also used but in a di�erent way, combined with cross entropy. Croce et
al. [17] found that SEA dominates CosPGD. However, PAdam-Cos is clearly not
dominated as we demonstrate later.

3.2 The SEA attack set

We include the four attacks in SEA introduced by Croce et al. [17]. The authors
propose an improved version of APGD [16] that uses progressive radius reduction
and apply it for 300 iterations. They include four attacks de�ned by four loss
functions: balanced cross-entropy (SEA-BCE) as used in SegPGD, masked cross-
entropy (SEA-MCE), where pixels that are incorrectly classi�ed are excluded,
Jensen-Shannon divergence (SEA-JSD) between the softmax output and the
one-hot encoded label, and masked spherical loss (SEA-MSL), where the logit of
the correct class is minimized, but �rst the logit is projected on the unit sphere.
The parameter settings we used were identical to those in [17].

3.3 Clipped Minimum Perturbation Attacks

We include a number of attacks that solve the problem in Eq. (2), also clipping
the result into the bounded perturbation space ∆, as described in Sec. 2.1. The
attacks we include are ALMAProx [36], DAG [41], and PDPGD [32].

Proposed by Rony et al. [36], the ALMAProx attack is a proximal gradient
method for solving the perturbation minimization problem in Eq. (2), where
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the constraint requires a 99% pixel label error. The problem is transformed into
an unconstrained problem by moving the constraints into the objective using
Lagrangian penalty functions. The parameter settings we used were identical to
those in [36].

Xie et al. proposed the dense adversary generation (DAG) algorithm [41],
which attempts to attack each pixel using a gradient method that takes into
consideration only the correctly predicted pixels in each gradient step. The algo-
rithm terminates when reaching the maximum iteration number, or when all the
targeted pixels are successfully attacked. We can use this algorithm in our eval-
uation framework by recording the perturbation size at termination, along with
the ratio of the successfully attacked pixels. The maximum iteration number was
set to 200, and we used two step-sizes: 0.001 and 0.003.

Matyasko and Chau proposed the primal-dual proximal gradient descent ad-
versarial attack (PDPGD) [32] that, like ALMAProx, also uses proximal splitting
but uses a di�erent optimization method. PDPGD was adapted to the semantic
segmentation task in [36] via introducing a constraint on each pixel. We applied
the same parameter settings as [36].

3.4 Aggregating the Attacks

We use our set of ten di�erent attacks by running each attack on each input and
taking the most successful result. Depending on the metric in question, the most
successful attack is the one with the smallest pixel accuracy, or the smallest mean
IoU, respectively. Note that the aggregated performance of the set of attacks can
in principle be much better than any of the individual attacks.

4 Investigated Models

We investigate the best known state-of-the-art robust models [17, 22, 42]. We
also include a number of our own models to illustrate the e�ect of some design
choices. Our model-set includes 22 robust models as described below.

DDC-AT. Xu et al. [42] propose the DDC attack and design an adversarial
training algorithm based on DDC. We include their model checkpoints in our set.
These checkpoints are trained over the Cityscapes dataset [14] and the PASCAL
VOC 2012 [19] dataset with the PSPNet [45] and DeepLabv3 [10] architectures,
using a ResNet-50 backbone pretrained on ImageNet. Thus, we include four
DDC-AT model instances altogether. DDC-AT uses a sophisticated method to
create the training batches with 50% adversarial samples and we do not include
any modi�ed versions of the published method.

PGD-AT. Xu et al. [42] include a simple baseline adversarial training algorithm
that uses the 3-step PGD attack. The implementation uses training batches with
50% adversarial and 50% clean samples. Here, we also include the checkpoints the
authors shared in all the four settings similar to those of DDC-AT. In addition,
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we train our own robust models as well in all the four settings with an identical
con�guration, except using 100% adversarial batches during training. Thus, we
include eight PGD-AT models altogether.

SegPGD-AT. Gu et al. [22] improve DDC-AT with the help of the SegPGD
attack. They publish measurements with models trained using the 3-step and
7-step SegPGD, using batches with 50% adversarial and 50% clean samples.
Since the checkpoints used in the paper are not available publicly, we trained
our own models using the implementation provided by the authors. We created
eight models altogether using con�gurations that are identical to those of the
PGD-AT models.

SEA-AT. Croce et al. [17] test their SEA ensemble attack using their own adver-
sarially trained models. Note that instead of the SEA attack, they use PGD for
adversarial training. The dataset is an extended PASCAL VOC 2011 dataset,
and the architecture of the model is UPerNet [40] with a ConvNeXt [28] pre-
trained ImageNet backbone. All the training batches are 100% adversarial. We
include in our set two checkpoints provided by the authors that were both trained
for 50 epochs with a 5-step PGD and a robust backbone initialization. The two
models use the tiny and the small version of the ConvNeXt architecture, respec-
tively.

Normal. We also include models trained on clean samples for all the possible
combinations of databases and architectures mentioned above. The normal PSP-
Net and DeepLabv3 models are identical to the ones used in [42]. The normal
UPerNet models were trained by us using the implementation of [17] for 50
epochs.

4.1 General Notes on Training

The internal attacks applied in adversarial training used the ℓ∞-norm neighbor-
hood ∆ = {δ : ∥δ∥∞ ≤ ϵ} with ϵ = 0.03 ≈ 8/255, the same perturbation set the
attacks use. The input channels are scaled to the range [0, 1].

We note that on the PASCAL VOC dataset adversarial training was imple-
mented assuming that the background class is a regular class, both in terms
of training and attack. However, the Cityscapes models were all trained with
masking the `void' class out. We adopt this slightly inconsistent methodology
from related work in order to obtain comparable results. For more details on the
training methodology, please refer to the supplementary material (Sec. S.7 and
the implementation).

5 Evaluation

Our models, datasets and attacks allow for 280 possible combinations. We eval-
uated all these combinations. Here, we present a representative sample of our
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Table 1: Clean / robust metrics (%). PN: PSPNet, DL: DeepLabv3, P: PASCAL VOC
2012, CS: Cityscapes,�B: pixels with background ground truth label ignored.

A
cc
u
ra
cy

C
m
Io
U

N
m
Io
U

Normal DDC-AT PGD-AT SegPGD-AT PGD-AT-100 SegPGD-AT-100

PN+P 91.85 / 0.00 91.42 / 0.00 91.23 / 0.51 88.19 / 0.19 79.26 / 39.25 79.12 / 46.15
DL+P 91.81 / 0.00 91.45 / 0.01 89.81 / 0.00 88.23 / 0.01 80.08 / 46.16 79.37 / 48.04
PN+P�B 87.63 / 0.00 86.98 / 0.00 86.71 / 0.04 67.34 / 0.00 40.59 / 8.15 38.46 / 9.06
DL+P�B 87.84 / 0.00 86.71 / 0.00 85.58 / 0.00 67.87 / 0.00 39.81 / 8.20 39.68 / 9.46
PN+CS 93.09 / 0.00 92.80 / 0.01 92.52 / 0.03 91.77 / 0.01 83.83 / 51.45 83.32 / 69.84
DL+CS 93.08 / 0.00 92.78 / 0.04 92.62 / 0.01 91.83 / 0.00 84.69 / 48.38 84.04 / 68.76

PN+P 68.87 / 0.00 67.53 / 0.00 66.73 / 0.06 51.59 / 0.02 24.31 / 5.37 23.27 / 5.88
DL+P 68.80 / 0.00 67.30 / 0.00 63.24 / 0.00 52.50 / 0.01 24.70 / 5.70 24.15 / 6.20
PN+P�B 78.84 / 0.00 78.12 / 0.00 77.28 / 0.02 53.82 / 0.00 25.10 / 4.50 23.59 / 4.98
DL+P�B 79.08 / 0.00 77.46 / 0.00 75.28 / 0.00 55.26 / 0.00 24.70 / 4.60 24.51 / 5.02
PN+CS 66.28 / 0.00 63.90 / 0.01 61.85 / 0.04 59.71 / 0.01 32.74 / 16.37 31.19 / 20.29
DL+CS 66.96 / 0.00 64.01 / 0.04 63.29 / 0.01 59.87 / 0.00 34.79 / 15.73 33.32 / 20.72

PN+P 70.70 / 0.00 69.32 / 0.00 68.46 / 0.12 55.76 / 0.05 37.01 / 11.35 36.10 / 13.31
DL+P 69.00 / 0.00 67.92 / 0.00 64.01 / 0.00 54.94 / 0.01 35.23 / 11.61 33.85 / 12.21
PN+P�B 43.41 / 0.00 42.25 / 0.00 41.86 / 0.02 28.00 / 0.01 14.50 / 3.14 13.55 / 3.59
DL+P�B 42.89 / 0.00 41.59 / 0.00 39.26 / 0.00 27.89 / 0.01 13.73 / 3.06 13.41 / 3.52
PN+CS 52.57 / 0.00 50.97 / 0.01 49.14 / 0.02 47.27 / 0.01 33.13 / 17.64 32.41 / 22.67
DL+CS 51.18 / 0.00 49.63 / 0.02 48.28 / 0.01 45.91 / 0.00 33.37 / 15.86 32.68 / 21.82

Table 2: Clean / robust metrics of SEA-AT (%).�B: pixels with background ground
truth label ignored.

Normal-Tiny SEA-AT-Tiny Normal-Small SEA-AT-Small

Accuracy 93.10 / 0.00 92.75 / 71.84 93.78 / 0.00 93.10 / 70.57
Accuracy�B 88.21 / 0.00 86.39 / 52.99 90.12 / 0.00 88.53 / 55.50
CmIoU 72.49 / 0.00 72.09 / 32.79 75.40 / 0.00 73.53 / 32.66
CmIoU�B 80.55 / 0.00 79.68 / 43.14 83.20 / 0.00 81.76 / 43.76
NmIoU 73.33 / 0.00 74.07 / 13.20 77.08 / 0.00 75.11 / 12.89
NmIoU�B 43.10 / 0.00 42.29 / 7.31 45.54 / 0.00 43.48 / 7.51

results to support our main �ndings, the complete set of results is presented in
the supplementary material.

We apply the same evaluation methodology for every model we study, as
we discuss below. This methodology di�ers from the ones used in the original
evaluations of these models. We present the details of the original methodologies
in the supplementary material in Sec. S.8, noting here that some of these details
are not documented and had to be learned directly from the implementation.

The evaluation procedure. Following general practice, we evaluate over
the validation sets of the PASCAL VOC 2012 and Cityscapes datasets. On PAS-
CAL VOC, before evaluation, the longer dimension of each image is scaled to
512 pixels, but no further rescaling or cropping is applied. On Cityscapes, the
images are scaled down to 1024x512. After computing the prediction mask, no
augmentation method is applied to improve the mask.

Here, we deviate from related work in that Croce et al. [17] resize to 512x512
and then crop to 473x473, and Gu et al. and Xu et al. [22,42] use a tiled evalu-
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ation with overlapping tiles, and in addition, over the clean inputs further aug-
mentations are applied based on mirrored inputs. Due to these di�erences, our
measurements are not identical to those published in the original works. How-
ever, when applying these techniques, we are able to reproduce the published
values.

How to aggregate IoU? We use Pixel Accuracy (or simply accuracy) and
mean intersection over union (mIoU) as our performance metrics. Regarding
mIoU, the aggregation procedure to compute the global mIoU value based on
the images in the evaluation set is often overlooked. We will demonstrate that in
the case of evaluating robustness, this aggregation procedure plays an important
role. The usual approach, also used in [17, 22, 42], performs an aggregation over
the images to compute the global IoU of each class, and then computes the
average:

CmIoU =
1

C

C∑
c=1

∑N
n=1 TPcn∑N

n=1 FPcn + TPcn + FNcn

, (6)

where N is the number of images and C is the number of classes.
However, we will also apply a di�erent aggregation to emphasize the errors

made on individual images, which is the main goal of adversarial attacks. Here,
we simply average the image-wise IoU values:

NmIoU =
1

NC

N∑
n=1

C∑
c=1

TPcn

FPcn + TPcn + FNcn
. (7)

This metric captures the image-wise performance much better, especially over
datasets where there are only a few objects in most images, some of which are
large and some are small. This is the case, for example, in the PASCAL VOC
dataset.

5.1 Results

Tab. 1 contains our results with the DDC-AT and SegPGD-AT models, along
with baselines (normal model and PGD-AT models). As described in Sec. 4, the
two models that use 100% adversarial batches during training (PGD-AT-100
and SegPGD-AT-100) were trained by us, just like SegPGD-AT. The remaining
models are checkpoints from [42].

Tab. 2 shows our results with the SEA-AT models. These models are all
checkpoints taken from [17]. The normal models were trained by ourselves.

The tables contain clean and robust metrics. The robust metrics were com-
puted over the adversarially perturbed inputs that were generated using the
aggregated attack of our set of ten attacks.

No robustness with 50% adversarial batches. The most striking obser-
vation is that our aggregated attack achieves a value of near zero according to
all the three metrics for all the models that use only 50% adversarial samples.
This means that the models published in [22, 42] show no sign of robustness.
(See Sec. S.10.2 in the supplementary material for further evidence.)
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Using 100% adversarial samples is not su�cient.While we can achieve
non-trivial robustness in terms of pixel accuracy, our attacks signi�cantly reduce
both the CmIoU and NmIoU metrics in the case of PGD-AT-100 and SegPGD-
AT-100, indicating a very low robustness. Also, the performance of these models
over the clean samples is much worse than that of the normal model.

In the case of the SEA-AT models (Tab. 2) the clean performance is very
close to that of the normal model according to all the metrics. However, robust
NmIoU drops to a fraction of the clean NmIoU, again, indicating a very low level
of robustness.

Size-bias in the SEA-AT models. In the case of the SEA-AT models the
robust CmIoU is signi�cantly higher than the robust NmIoU, while the rest of
the models show the opposite behavior. To understand this better, we take a
closer look at the distribution of the single image mIoU over the evaluation set.
Figs. 1 and 3 show a representative sample of such distributions, with CmIoU
and NmIoU indicated. (For more, please refer to Sec. S.9).

Label SEA-Tiny SegPGD-100

Fig. 2: Illustration of the size-bias on two bird sam-
ples. The predicted masks on adversarial input are
shown for two models. The small birds are deleted
completely by our adversarial attacks, while the
large bird is better preserved, especially by SEA-
AT-Tiny. The NmIoU metric captures this impor-
tant problem better than CmIoU or accuracy do.

It is striking that in the
case of the PASCAL VOC
dataset the robust single im-
age mIoU distributions of
SegPGD-AT-100 (Fig. 3) and
SEA-AT-S (Fig. 1) are very
similar but the aggregated
mIoU measures dramatically
di�er. Since the NmIoU met-
ric is more sensitive to er-
rors in the segmentation of
small objects, a possible ex-
planation is that the SEA-AT
model learns to protect the
largest objects while it sacri-
�ces the small ones. In other
words, the attacks essentially
remove smaller objects from the image, causing very low mIoU values on many
images. This problem is not captured well by the CmIoU or the accuracy met-
rics. Looking at the predicted masks con�rms this hypothesis. Fig. 2 shows an
example for this phenomenon.

The foreground is more vulnerable. In the PASCAL VOC dataset, the
images contain lots of pixels in the background class that might dominate our
measurements. In fact, the background pixels form 74% of all the pixels in the
validation set.

To examine the e�ect of the background class, in all the tables, we also
show the measurement results with the background pixels removed. That is,
the metrics are computed only on the foreground pixels, and the IoU of the
background class is not taken into account.
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Fig. 3: Distributions of single image mIoU with PSPNET for the Normal model and
for SegPGD-AT-100, for clean and adversarial inputs. CmIoU and NmIoU are shown
using vertical lines.

We can see that the accuracy and the NmIoU over the foreground are much
worse than on the complete image. This problem is more severe in the case of
SegPGD-AT-100 and PGD-AT-100. These models essentially focus on predicting
and protecting the background, which is not the intended behavior. The SEA-AT
models also show this e�ect to some extent.

Robustness-accuracy tradeo�. Our results con�rm that the apparent lack
of robustness-accuracy tradeo� can be explained by the insu�cient evaluation
methodology both in terms of using only weak attacks, or not using the right
performance metrics. Indeed, those models that have a good clean performance,
close to that of the normally trained models, turn out not to be very robust, when
measured appropriately. Clearly, the best models we examined are the SEA-AT
models, but even those models show a weak performance in the NmIoU metric
due to their mIoU distribution (Fig. 1).

5.2 A Closer Look at the Individual Attacks

Let us now examine how the individual attacks in our attack-set contribute to
the aggregated robust metrics. Tab. 3 shows the results of every attack sepa-
rately in one scenario (every scenario is similar in this regard, please refer to
the supplementary material in Sec. S.10.1). We can observe that the aggregated
attack is often much stronger than any of the individual attacks. Also, di�er-
ent attacks are e�ective against di�erent kinds of models. For example, for the
normal models PAdam-Cos tends to be the best individual attack, while for the
more robust models the SEA attacks perform better.
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Fig. 4: Best attack distribution over the validation set according to mIoU (PN: PSP-
Net). The attacks are 0: ALMAProx, 1: PAdam-CE, 2: PAdam-Cos, 3: DAG-0.001, 4:
DAG-0.003, 5: PDPGD, 6: SEA-JSD, 7: SEA-MCE, 8: SEA-MSL, 9: SEA-BCE.

Table 3: Attacks on Cityscapes with DeepLabv3
(NmIoU %).

N
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l

D
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D
-A
T

S
eg
P
G
D

-A
T

P
G
D
-A
T

-1
0
0

S
eg
P
G
D

-A
T
-1
0
0

clean 51.18 49.63 48.28 45.91 33.37 32.68
PAdam-CE 1.39 1.09 0.31 0.85 20.66 23.11
PAdam-Cos 0.00 0.64 0.30 0.43 22.58 25.40
SEA-JSD 0.67 0.74 0.58 1.12 17.15 25.14
SEA-MCE 1.51 1.03 0.67 0.79 18.13 26.23
SEA-MSL 1.53 0.73 0.62 0.83 20.95 28.41
SEA-BCE 1.73 2.81 1.20 2.43 17.74 25.48
ALMAProx 1.87 1.35 1.73 1.37 30.86 30.53
DAG-0.001 5.48 45.29 35.25 27.67 33.51 32.80
DAG-0.003 1.04 20.80 13.24 9.31 33.51 32.80
PDPGD 1.48 11.22 9.88 1.75 32.34 31.87
aggregated 0.00 0.02 0.01 0.00 15.86 21.82

Fig. 4 shows the distribu-
tion of the most successful at-
tack over the validation set
in a number of scenarios. In
other words, for each input
example, we determine which
attack was the most success-
ful and show the resulting dis-
tribution. The supplementary
material covers all the scenar-
ios in Sec. S.10.1.

It is striking how di�erent
these distributions are in the
various scenarios. The two at-
tacks proposed in this work,
PAdam-CE and PAdam-Cos,
dominate many scenarios in-
cluding normal and some robust models as well. Interestingly, the SEA-AT fam-
ily of models is most sensitive to the SEA attack set. Nevertheless, it is clear that
every attack has its contribution, and di�erent models require di�erent attacks.
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No Attack PAdam-CE PAdam-Cos SEA-JSD SEA-MCE SEA-MSL SEA-BCE

Fig. 5: Result of some attacks on an example PASCAL-VOC image on SEA-AT-Tiny.
Top row: perturbed images; bottom row: predicted mask on the perturbed image.

Normal DDC-AT PGD-AT SegPGD-AT PGD-AT-100 SegPGD-100 SEA-Small

Fig. 6: Result of PAdam-Cos attack on an example PASCAL-VOC image for various
PSPNet models and SEA-AT-Small. Top row: perturbed images; bottom row: predicted
mask on the perturbed image.

Figs. 5 and 6 illustrate the diversity of the attacks and the models through
an example image. The perturbations remain invisible in all the cases. For this
particular image, PAdam-Cos can completely alter the output of all the models.
Further examples are shown in the supplementary material in Sec. S.11.

6 Conclusions and Limitations

Our contribution was of a methodological nature. We empirically proved that
using a strong set of attacks can dramatically reduce the known upper bounds of
the robustness metrics of the state-of-the-art models, in many cases completely
diminishing them. We also pointed out that the choice of mIoU aggregation
method matters, because robust models tend to have a strong size-bias that is
not revealed by class-wise aggregation, only by image-wise aggregation (NmIoU).

We demonstrated our methodology mostly on public model checkpoints from
related work and we did only a limited exploration of variants. It would be very
informative to also study, for example, the e�ect of the proportion of adversarial
samples in the batches, or combinations of backbone models, architectures and
training hyperparameters. These limitations are mostly due to the prohibitive
cost of such a study.

We do believe that our thorough analysis of the highly cited models we
selected still provides a useful contribution to the community in terms of how to
move forward with the analysis of robust semantic segmentation models.
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