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Abstract. Diffusion models have become the State-of-the-Art for text-
to-image generation, and increasing research effort has been dedicated to
adapting the inference process of pretrained diffusion models to achieve
zero-shot capabilities. An example is the generation of panorama im-
ages, which has been tackled in recent works by combining indepen-
dent diffusion paths over overlapping latent features, which is referred to
as joint diffusion, obtaining perceptually aligned panoramas. However,
these methods often yield semantically incoherent outputs and trade-
off diversity for uniformity. To overcome this limitation, we propose
the Merge-Attend-Diffuse operator, which can be plugged into differ-
ent types of pretrained diffusion models used in a joint diffusion setting
to improve the perceptual and semantical coherence of the generated
panorama images. Specifically, we merge the diffusion paths, reprogram-
ming self- and cross-attention to operate on the aggregated latent space.
Extensive quantitative and qualitative experimental analysis, together
with a user study, demonstrate that our method maintains compati-
bility with the input prompt and visual quality of the generated im-
ages while increasing their semantic coherence. We release the code at
https://github.com/aimagelab/MAD.
Keywords: Image Generation · Diffusion Models · Text-to-Image

1 Introduction

Diffusion models [23,48,51,53] have achieved impressive performance in various
domains, including image generation [4,12,44,45,47], video generation [13,25,58],
and audio synthesis [10, 29, 42], especially when guided by a natural language
prompt. Once trained on large-scale datasets, these models can be exploited
for zero-shot adaptation in downstream tasks, such as inpainting [33], image
editing [1, 3, 20], 3D modeling [31,59], and video manipulation [28,57].

The most popular text-to-image diffusion models are trained to generate
fixed-size images. Although some methods are trained with different image reso-
lutions and aspect ratios [9,40], not all image dimensions can be provided during
training. This is especially true for oddly-shaped images, such as panoramas.
Note that obtaining large or oddly-shaped images by simply applying rescaling
or superresolution techniques to a generated square image can lead to unsatis-
factory results due to the artifacts that would be introduced, the lack of detail,
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Fig. 1: MultiDiffusion [5] blends the mountains with the clouds, lacking semantic co-
herence (top). Applying the proposed MAD leads to semantic coherence (bottom).

and the uneven enlargement that long images require. In light of these consider-
ations, and as the size of the models (and the associated training cost) continues
to increase, there is a growing research effort toward inference-time strategies to
exploit pretrained models for generating images with unseen shapes and sizes.

Among those, iterative diffusion methods [1, 61] involve generating an ini-
tial image and then, with a series of outpainting steps, generating the whole
panorama image. However, this strategy struggles to maintain global coherence
and tends to repeat similar patterns [30]. Another family of approaches, referred
to as joint diffusion methods [5, 30], entails considering the panorama image
canvas, splitting it into overlapping views, performing the diffusion denoising
process on each view independently, and combining the resulting scores or latent
features at each timestep. This strategy achieves better-blended transitions be-
tween adjacent views. However, these are still processed independently, and thus,
the resulting image still lacks global coherence and sometimes presents evident
artifacts (e.g., a mountain smoothly turning into a cloud as in Fig. 1-top). Note
that, by coherence, one can mean perceptual coherence, i.e., exhibiting similar
colors, illumination conditions, and texture throughout the image, or semantic
coherence, i.e., containing the right amount of elements (objects or parts) with
a consistent layout and arranged in a meaningful position in the image. Achiev-
ing perceptual coherence has been approached in [30] by performing gradient
descent during the denoising process with a perceptual loss. Instead, obtaining
semantic coherence is still an open challenge, which entails modeling long-range
relations among the elements (for example, the images in Fig. 1 are both per-
ceptually coherent, but the first one, which is obtained with the State-of-the-Art
MultiDiffusion [5] strategy, contains semantic inconsistencies).

In this work, we take a step towards the generation of long images that are
both perceptually and semantically coherent while maintaining variability and
realism. To this end, we devise a joint diffusion pipeline to exploit pretrained
diffusion models by manipulating their attention operators. Similar to previous
approaches [5,30], we combine the predictions over multiple, strided views. Unlike
those approaches, which process the views independently and combine them
at the end of each denoising step, we devise a strategy to provide additional
interaction points within the denoising step. This way, our approach can both
model the long image as a whole and focus on the details in each view. In
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particular, our strategy is based on our proposed Merge-Attend-Diffuse (MAD)
operator, which can be selectively applied to the attention layers inside the
noise prediction network of a pretrained diffusion model. MAD takes as input
the latent features corresponding to the different panorama views, merges them
into a single tensor by averaging the overlapped regions, and feeds it to the self-
or cross-attention layer it is applied to. Finally, the obtained latent tensor is split
back into views for the next layers, which can follow the standard joint diffusion
paradigm. Our proposed strategy based on the MAD operator can be applied
to different types of pretrained diffusion models to generate perceptually and
semantically coherent montages. In this work, we utilize as backbone a pretrained
Latent Diffusion Model (LDM), namely, the popular Stable Diffusion [45], and
a Latent Consistency Model (LCM) [34] and demonstrate its effectiveness via
qualitative and quantitative evaluations, as well as a user study. The code for
our approach is available at https://github.com/aimagelab/MAD.

2 Related Work

Diffusion models [12,23,38,48,51–53] are powerful generative probabilistic mod-
els that have achieved drastic performance improvements compared to previous
methods, such as Generative Adversarial Networks [7, 17, 27], especially in the
case of text-to-image generation, where the generation process is conditioned
on a natural language prompt [9, 40, 44, 45, 47]. The introduction of LDMs [45]
has even increased the popularity of diffusion models. LDMs perform the diffu-
sion process in the latent space and thus require fewer computational resources
for both training and inference. Moreover, recent works have introduced strate-
gies for fine-tuning diffusion models over additional guiding signals to gain better
controllability [2,8,15,60] and for manipulating the diffusion process at inference-
time to obtain zero-shot capabilities [1, 3, 11, 20, 33, 36, 37, 54]. Some of the pro-
posed strategies for inference-time adaptation exploit the attention layers of
pretrained models to perform tasks such as image editing [20], varied-size image
generation [26], or zero-shot video generation [28]. Inspired by these works, we
propose to modify the attention operations of diffusion models pretrained on
square images for generating coherent panorama images in a zero-shot fashion.
Inference-Time Panorama Generation. With most of the available diffusion
models trained to generate images with limited aspect ratio ranges, being able to
exploit such models to generate larger images, possibly at different, odd aspect
ratios, without retraining has received increasing interest [1,5,19,26,30,61]. One
of the most commonly considered pretrained models in this context is Stable
Diffusion [45], which is adapted at inference-time to generate long images by fol-
lowing either an iterative diffusion paradigm [1,61] or a joint diffusion one [5,30],
as we do in this work. It is worth noting that large-scale pretrained models can
generate long images to some extent, but these images lack variability, which hin-
ders their realism. To overcome this limitation, the authors of [5] introduced the
joint diffusion paradigm with MultiDiffusion, an efficient inference-time adap-
tation strategy to generate long images with variability. This entails generating
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overlapped squared views and then recombining them in the final panorama im-
age by averaging the noise at the overlap. However, MultiDiffusion can introduce
artifacts and lead to perceptually incoherent outputs. To tackle this issue, the
recently-proposed SyncDiffusion [30] entails providing guidance in the form of
the gradient from a perceptual similarity loss [62] between the central view of
the panorama and the other views. However, SyncDiffusion does not provide
guidance for semantic coherence. Moreover, its perceptual coherence guidance is
computationally expensive to obtain and requires schedulers that compute the
foreseen denoised observation, like [52]. In this work, we aim to generate vary-
ing and both perceptually and semantically coherent long images. To this end,
different from the previous methods tackling this task, we modify the attention
operations inside the backbone used to predict the noise at each sampling step.

3 Preliminaries

In this section, we briefly review diffusion and consistency models to provide
relevant preliminaries to our pipeline.
Diffusion Models. Diffusion models [23,48,49,53] are a family of probabilistic
models that learn to gradually transform a Gaussian noise input xT∼N (0, I)
into a data sample x0 by approximating the data distribution q, x0∼q in T
steps. In particular, the diffusion models framework defines a forward process
that gradually injects noise into the data, transforming the data distribution
q(x0) into the marginal distribution via the transition kernel

q(xt|x0) = N (xt;αtx0, σ
2
t I),

where (αt, σt) specifies a differentiable noise schedule such that q(xt)≈N (0, I).
The model is trained to reverse this process by learning to denoise xT∼q(xt|x0).
Predicting x0 is done iteratively in the reverse diffusion process by estimating
xt−1 starting from xt. A possible strategy is to use the ϵ-prediction param-
eterization for sampling, as done in Denoising Diffusion Probabilistic Models
(DDPMs) [23]. This entails parametrizing both xt and xt−1 as a combination of
x0 and the noise ϵ, scheduled according to the noise schedule. In this way, the
model can be trained to estimate ϵ directly, which is obtained by optimizing

Eq(x0)[∥ϵθ(xt, t)− ϵ∥22].
In our pipeline for long image generation, we exploit a diffusion model that has
been trained with this strategy. However, in our inference-time adaptation, we
use the sampler presented in Denoising Diffusion Implicit Models [49]. This is
also adopted by other works tackling the long image generation task since it is
more efficient than DDPM for requiring fewer sampling steps (usually 25 or 50).
Latent diffusion models. Training diffusion models in the high-resolution
pixel-space can be computationally prohibitive. Latent diffusion models (LDMs)
[40, 45] tackle this issue by operating in the latent space of an autoencoder,
typically a VQ-GAN [14] or a VQ-VAE [55]. These models achieve good per-
formance while using a fraction of the GFlops required by pixel space diffusion
models [9,39,40,45]. Here, we rely on the pretrained Stable Diffusion [45] LDM.
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Conditional Generation. Text-to-image diffusion models are able to gener-
ate images whose content is specified via a natural language prompt. This is
represented by an embedding e obtained from the text encoder of a pretrained
multimodal model (CLIP [43], in our case). In this work, we exploit diffusion
models trained with the Classifier-Free Guidance [24] strategy for conditioning.
This entails obtaining the noise prediction as a linear combination of conditional
and unconditional predictions, with weight s, i.e.,

ϵ̂θ(xt, e, t) = ϵθ(xt, ∅, t) + s(ϵθ(xt, e, t)− ϵθ(xt, ∅, t)),
where ∅ is the embedding of the null prompt. Note that the conditional genera-
tion is implemented by performing cross-attention with the embedding e inside
the noise estimation network. In light of this, by applying our devised MAD
operator to the cross-attention layers, we enforce all the latents of the views to
jointly attend the prompt, thus favoring semantic coherence.
Consistency Models. Our proposed MAD operator can be applied to different
kinds of diffusion models. As an example, in this work, we apply it also to the
recently proposed Consistency Models (CMs) [50], which can achieve impressive
generation results. In particular, a consistency model fθ estimates a function
that can directly map any intermediate noisy sample xt in the forward process
to the origin x0, which is parameterized as

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t),

where Fθ(x, t) is a neural network and cskip(t), cout(t) are differentiable func-
tions. This way, given an arbitrarily small timestep tδ, the model respects self-
consistency fθ(xt, t)=fθ(x

′
t, t

′) ∀t, t′∈[tδ, T ] and boundary condition f(xtδ , δ) =
xtδ , allowing CMs to generate high-quality images in a few steps. CMs can be ei-
ther trained from scratch or distilled from pretrained diffusion models. Moreover,
Latent Consistency Models (LCMs) [34], which work on the latent space, are also
available. In this work, we use an LCM distilled from Stable Diffusion [45].

4 Proposed Approach

In this section, we describe our pipeline for generating large images by exploit-
ing a pretrained diffusion model at inference-time (see Fig. 2). Then, we give
the details of our proposed MAD operator, which is the key component of the
pipeline for obtaining perceptual and semantic coherence.
Joint Diffusion for Panorama Generation. Diffusion models do not scale
well to resolutions and aspect ratios not seen in training [5,30]. As a result, gener-
ating panorama images by simply applying a model trained on squared ones [45]
leads to excessive, unrealistic uniformity in the final output and a lack of vari-
ability between images generated from the same prompt, as shown in Sec. 5.1
and in [30]. Thus, for generating larger images, we average the predictions on
multiple views at every reverse process step, similar to [5]. Formally, to generate
an image x̂ ∈ RH×W×C , we produce a denoised latent vector xt ∈ RH

n ×W
n ×C′

where n and C ′ are, respectively, the scaling factor and the channels input of the
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Fig. 2: Overview of our inference-time pipeline (left) and its pseudo-code (right). Dur-
ing the diffusion process, the image is split into overlapping views, and each is fed to
the model separately. Within the attention layers, MAD provides interaction points
between the views, enforcing global coherence in the generated panorama.

decoder D and t ∈ [0, T ], is the timestep in the denoising process of the latent
vector. The final image is obtained as x̂ = D(x0). To generate panorama im-
ages, we split xt into I squared overlapped views xi

t ∈ RL×L×C′
where i ∈ [1, I]

denotes the i-th view, and L is its width and height. We set L = H
n for the hor-

izontal panoramas and L = W
n for the vertical ones. For simplicity, we consider

the noise predictor module as an alternating sequence of convolutional blocks
and attention blocks, plus a final convolutional block. Each of the convolutional
blocks, dubbed Convj∈[1,J+1], contains one or more convolutional layers, while
each of the attention blocks, dubbed Attentionj∈[1,J], contains one or more
cross-attention or self-attention layers. In the following, we use the notation
Convj([. . . ]) and Attentionj([. . . ]) to indicate that the block is applied to a
list of vectors independently. We define as vt,j ∈ RHj×Wj×Cj the feature vec-
tor output of the j-th block and as vi

t,j ∈ RLj×Lj×Cj its i-th view. We remark
that Hj , Wj , Lj , and Cj depend on depth and type of the j-th block. Finally,
we define the Split and Merge functions. For simplicity, we give their defini-
tion by using the latent xt, but they can be applied also to the vt,j features.
Split : xt → [x1

t , . . . ,x
I
t ] divides its input tensor into multiple overlapping views.

Merge : [x1
t , . . . ,x

I
t ] → xt, merges its input sequence of overlapping views in a

single tensor by averaging the overlapped regions. The number of views depends
on the extent of the overlap. The more the views overlap, the more seamless the
transition between them will be in the final image, at the cost of increasing the
inference-time. As a trade-off, we use an overlap of 3

4L as in [30].
Note that in previous diffusion approaches for large image generation [5,30],

each of the views is processed independently by the noise prediction model. Then,
the outputs of the prediction model at the t-th step, [x1

t , . . . ,x
I
t ], are combined

back into xt by averaging the overlapping regions of the views. This averaging
procedure allows sharing information between the views. However, in this way,
the interactions between the views are infrequent and may be insufficient, which
may lead to inconsistent results. Different from these approaches, we introduce
interaction points between the views also inside the noise prediction model, which
are implemented via our proposed MAD operator.
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Merge-Attend-Diffuse Operator. We design the MAD operator to be an
alternative to the attention layers in the noise prediction module of a pretrained
diffusion model when this is used in a joint diffusion setting to generate long im-
ages. Through MAD, we enforce consistency between the views while keeping the
variability introduced by the convolutional layers, which operate on the views in-
dependently. Moreover, note that the MAD operator can be integrated at differ-
ent stages of the noise prediction network and for a varying number of denoising
steps starting from T , defined by a threshold τ . Note that the views are pro-
cessed jointly by the attention layers where MAD is applied and independently
otherwise. In this way, it is possible to choose the prompt-adequate trade-off
between uniformity and variability. Specifically, MAD takes as input the feature
vectors coming from the (j−1)-th block run over the views, [v1

t,j−1, . . . ,v
I
t,j−1],

and feeds the j-th attention block with the merged latent vector vt,j−1. When
the operator is integrated with a cross-attention layer, the cross-attention is
performed between the merged tensor and the prompt embedding. When the
operator is integrated with a self-attention layer, the self-attention is performed
on the merged tensor. In this way, the noise estimation over each view is in-
fluenced by the information coming from the other views, thus enforcing global
coherence. Finally, the obtained latent vector vt,j is split back into the views
[v1

t,j , . . . ,v
I
t,j ]. The pseudocode of our approach is in Fig. 2.

5 Experiments

Implementation Details. In our experiments, as the pretrained diffusion mod-
els, we use Stable Diffusion 2.0 [45] and Latent Consistency Dreamshaper v7
(distilled from Stable Diffusion 1.5) [34] from HuggingFace [56]. Both models
are based on a U-Net [46] architecture, and we apply MAD to all its attention
layers. For Stable Diffusion, we perform 50 denoising steps and apply MAD for
the first τ=15 steps. For Latent Consistency Dreamshaper, we consider 1, 2,
and 4 generation steps and apply MAD with τ=2 over 4 steps for the qualita-
tives. We empirically found that these values of τ are a good cutoff point, as the
global semantic coherence mainly depends on high-level features, defined dur-
ing the first generation steps. For generating the panoramas, we consider image
views of size 512×512, which correspond to 64×64 latents, and a stride of 16
on such latents, following [30]. For the quantitative evaluation, we use the same
prompts as for SyncDiffusion [30] and MultiDiffusion [5], which also exploit our
LDM backbone, and report the mean and standard deviation of the performance
scores obtained on each prompt. For the comparative analyses, we generate the
competitors’ images with their official codebases.
Evaluation Scores. We adopt the following scores for quantitative evalua-
tion. Mean-CLIP-S (mCLIP) [21], to evaluate the adherence with the textual
prompt; Intra-LPIPS (I-LPIPS) [62] and Intra-Style Loss (I-StyleL) [16], to mea-
sure the intra-image perceptual coherence; FID [22], KID [6], and Mean-GIQA
(mGIQA) [18], to estimate the perceptual similarity and variability with respect
to a target distribution. The I-LPIPS and I-StyleL are computed by splitting
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Fig. 3: Long images generated by the con-
sidered LDM with MAD, with τ=15, ap-
plied in different blocks of the noise predic-
tion model for the prompt A snowy winter
landscape with frosted trees and a frozen
lake. None is the setting where MAD is
never applied.
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Fig. 4: Long images generated by the con-
sidered LDM with MAD applied, in all
the U-Net attention layers, up to different
numbers of inference steps for the prompt
A herd of Mustang horses crossing a river
at sunset. τ=0 is the setting where MAD
is never applied.

each image into non-overlapping squared views and then calculating the average
LPIPS and Style Loss of all possible combinations of views (e.g., for a 512×3072
image, the pairs are 15). The FID, KID, and mGIQA are computed by consid-
ering, for each prompt, 500 squared images obtained with the baseline LDM or
LCM model as reference and single-view-sized random crops from the generated
images, one per image. These crops are also used to compute the mCLIP with
the input textual prompt. For comparison, we compute the FID, mGIQA, and
KID scores for the baseline LDM and LCM by comparing two random halves of
the generated images and the average LPIPS and Style Loss by comparing 1000
random pairs of images for each prompt. Note that these scores capture differ-
ent, complementary, and somewhat contrasting characteristics of the generated
images. As a result, methods that perform well in terms of some scores might
achieve worse values for other scores.

5.1 Results

Variety-Uniformity Trade-off. The noise prediction model of the considered
backbone diffusion models is a U-Net, which features multiple attention layers
in the downsampling blocks (referred to as Down blocks), bottleneck block (re-
ferred to as Mid block), and upsampling blocks (referred to as Up Blocks). As
stated above, we apply MAD in all the U-Net blocks (referred to as All blocks).
Nonetheless, we design our approach to be modular so that it can be applied to
selected layers and for a desired number of timesteps, thus obtaining the desired
variety-uniformity trade-off. To explore this aspect, in Fig. 3, we show 512×3072
images generated by applying MAD in all the attention layers of different blocks
in the LDM backbone, thus varying the number of interaction points and the
stage at which these are performed. Fig. 3 shows different levels of global co-
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Table 1: Quantitative comparison on 512×3072 panorama generation using the LDM.
I-StyleL, KID, and mGIQA values are scaled by 103.

mCLIP ↑ I-LPIPS ↓ I-StyleL ↓ FID ↓ KID ↓ mGIQA ↑ Runtime

SD 31.63±1.89 0.74±0.07 0.74±0.07 28.31±10.89 <0.01±0.13 26.70±6.90 –

SD-L 32.01±1.67 0.50±0.11 0.58±0.40 87.64±30.25 76.83±30.52 27.72±7.83 88.2±0.1s

MD 31.77±2.32 0.69±0.09 2.98±2.41 33.52±12.43 9.04±4.23 28.54±7.99 41.8±0.2s
SyncD 31.84±2.19 0.56±0.06 1.39±1.15 44.60±18.45 21.00±11.06 27.17±6.66 392.4±0.6s

MAD (τ=0) 31.65±2.17 0.64±0.10 2.65±2.33 34.51±13.92 9.19±4.51 27.59±6.83 41.9±0.1s
MAD (τ=5) 31.86±2.22 0.59±0.10 2.07±1.31 38.10±13.71 13.75±4.00 28.32±7.64 42.9±0.2s
MAD (τ=15) 32.03±2.29 0.56±0.10 1.90±1.32 48.52±17.14 27.15±9.10 28.32±7.76 44.3±0.2s
MAD (τ=25) 32.15±2.25 0.53±0.10 1.43±1.04 61.76±23.73 43.31±17.41 28.10±7.84 45.6±0.2s
MAD (τ=40) 32.16±1.95 0.50±0.10 0.88±0.61 86.20±37.23 76.15±37.73 27.59±7.61 48.3±0.1s
MAD (τ=50) 32.14±1.72 0.49±0.10 0.71±0.47 98.01±43.64 91.51±49.95 27.05±7.28 49.8±0.1s

herence, ranging from a very coherent scene when MAD is applied on all the
blocks (which is our selected setting) to a more varied image when MAD is ap-
plied only in the Mid block. Quantitative results on the application of MAD
at different stages of the U-Net are reported in the supplementary. Moreover,
in Fig. 4, we show 512×3072 images generated by applying MAD up to a differ-
ent number of inference steps, defined by the threshold τ (recall that τ=15 in
our selected setting). With a low threshold, the images are not globally coher-
ent because the views interactions are insufficient. With increasing thresholds,
the images become more and more coherent. We give a quantitative analysis
in Tab. 1 and further substantiate this claim in the supplementary. Both Figs. 3
and 4 reflect the trade-off between variety and uniformity. When the views in-
teractions are reduced, either by applying MAD to a few attention layers or for
a few timesteps, the resulting image contains several perceptually varying views.
When such interactions between the views increase, the global semantic layout
and the perceptual patterns are more coherent.
Quantitative Comparison. We compare the performance of our method on
512×3072 images with different values of τ against applying Stable Diffusion to
generate the whole panorama image directly (which we refer to as SD-L) and the
joint diffusion methods MultiDiffusion (MD) [5] and SyncDiffusion (SyncD) [30],
which are the closest to our approach. For numerical reference, we also compute
the scores on the squared images from Stable Diffusion (SD). The results of
this analysis are reported in Tab. 1. From the table, we observe that MAD
achieves the best or second-best performance on all the scores, depending on the
parameter τ , which determines how many times it is applied in the denoising
process. In particular, with respect to perceptual and semantic coherence of
the generated images, we observe that the more MAD is applied, the more the
images are compatible with the textual prompt, as measured by the mCLIP. The
obtained values are always superior to those obtained with the competitors and
slightly inferior w.r.t. SD-L only in the case of a few application steps. Moreover,
the I-LPIPS and I-StyleL values indicate that MAD also leads to increasingly
perceptually coherent images the more it is applied. It is worth noting that MAD
performs on par or better than SyncD in terms of the I-LPIPS, although SyncD
specifically entails optimizing this score. As for FID, KID, and mGIQA, note that
these measure different aspects of the generated images w.r.t. the other three
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Fig. 5: Qualitative results of our approach, MD, and SyncD. MD generates panoramas
with smooth but incoherent transitions. SyncD increases perceptual coherence but lacks
semantic coherence. MAD generates perceptually and semantically coherent images.

considered scores. In particular, I-LPIPS and I-StyleL evaluate the perceptual
similarity within each image, while FID, KID, and mGIQA the distance of the
distributions of random crops from the images generated by the approach under
evaluation and SD. If a long image is composed of many perceptually varying
views (as those by MD), it is more likely that its crops resemble the squared
SD reference images. However, this characteristic does not ensure perceptual
coherence between the views in the same long image (measured by I-LPIPS and
I-StyleL) nor adherence with the textual prompt (measured by the mCLIP). In
summary, the results in Tab. 1 suggest that our approach is able to generate
semantically and perceptually coherent panoramas (which is the goal of our
work), regardless of the similarity of their single crops to SD squared images.

Qualitative Comparison. Fig. 5 shows a qualitative comparison among the
joint diffusion methods on two of the six evaluation prompts (more qualitatives
are provided in the supplementary). We generate the images using the same seed
for each comparison to ensure consistency. As we can see, MD generates images
with smooth but incoherent transitions. SyncD generally enhances the percep-
tual coherence of the panoramas but does not address semantic coherence. For
instance, in the anime-style landscape of the last row, we can see a lake morphing
into clouds. Conversely, our approach generates perceptually and semantically
coherent panoramas with these prompts.

Different Aspect Ratios. We also evaluate our approach for the generation of
images with different aspect ratios. Tab. 2 shows the performance of our method
and the joint diffusion competitors when generating 512×1024, 512×2048, and
512×4096 images. As we can see, MAD is consistently better in terms of mCLIP
and competitive in I-LPIPS. The visual quality of the generated images can also
be appreciated in Fig. 6, where we report 512×1024, 512×2048, and 512×3072
images for the same prompt and seed. It can be observed that our approach can
generate perceptually and semantically coherent images at different aspect ratios,
while the competitors struggle to achieve this capability even in shorter images.
We also compare our method with SyncD on long vertical images in Fig. 7 by
generating 2048×512 images. We chose to compare only with SyncD because,
compared to MD, it enforces perceptual coherence. Nonetheless, it struggles to
maintain semantic coherence and to generate long images with subjects that
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Fig. 6: Qualitative comparisons between
our approach with LDM, MD, and SyncD
at different aspect ratios for the prompt
Top view of a loaf of bread.

SyncD MAD SyncD MAD

A waterfall at sunset Milky way

Fig. 7: Qualitative comparison on ver-
tical 512×2048 images between our ap-
proach applied to the LDM and SyncD for
prompts requiring semantic coherence.

Table 2: Quantitative comparison on the generation of images at different aspect ratios
with the LDM. The I-StyleL, KID, and mGIQA are scaled by 103.

mCLIP ↑ I-LPIPS ↓ I-StyleL ↓ FID ↓ KID ↓ mGIQA ↑

512×1024

MD 31.73±2.22 0.66±0.09 2.57±1.97 30.66±11.79 5.24±3.04 28.17±7.54
SyncD 31.71±2.01 0.53±0.06 1.09±0.77 40.35±16.43 13.20±7.61 26.41±6.38
MAD 31.82±2.09 0.55±0.10 1.47±0.89 37.53±14.72 12.63±5.74 27.58±7.04

512×2048

MD 31.77±2.14 0.69±0.09 2.96±2.41 33.07±12.38 8.58±3.99 28.33±7.79
SyncD 31.77±2.14 0.55±0.06 1.39±1.19 43.33±17.98 18.77±10.19 27.08±6.65
MAD 31.97±2.23 0.56±0.10 1.79±1.21 44.26±16.26 21.80±7.54 28.13±7.61

512×4096

MD 31.64±2.18 0.64±0.10 2.18±1.16 34.87±13.56 9.12±3.72 27.89±7.08
MAD 32.05±2.30 0.56±0.10 1.91±1.35 49.61±16.98 28.34±8.05 28.33±7.94

should have a beginning and an end, such as the waterfall. Please refer to the
supplementary for more qualitative results at different aspect ratios.

Joint Diffusion vs Direct Inference. When generating long images at inference-
time directly with models trained on squared images, a train-test discrepancy
can occur, which is more evident as the desired output image width increases.
This can be seen in Fig. 8, where we compare the FID and KID on long image
generation for MAD and SD-L. As the width increases, the generation perfor-
mance of SD-L is increasingly impacted. This effect is reduced with our approach.
Another issue with directly generating long images by simply applying a model
trained on squared images is that this can lead to excessive, unrealistic unifor-
mity in the final output and a lack of variability between images generated from
the same prompt as their size increases [30]. To explore this aspect, we run the
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Fig. 8: Mean FID and
KID on images of different
widths by MAD and SD-L
for the prompts used in the
quantitative analysis.

Fig. 9: T-SNE analysis of
crops from images by MAD
and SD-L w.r.t. squared
images from SD for the
same prompt.

Fig. 10: Inference time at
increasing output widths
for SD-L and MAD: for
τ=0, MAD is not applied,
τ=50 is the upper bound.

t-SNE analysis [35] reported in Fig. 9 and in the supplementary. Specifically, we
extract inception features from square images by SD and compute their t-SNE
representations [35]. Then, we consider all the squared crops obtainable from
512×5120 images by SD-L and MAD and represent all their inception features
in the same space using openTSNE [32, 41]. As we can see, images generated
using MAD (represented by the red dots) cover a bigger portion of the SD dis-
tribution (the grey circles) compared to SD-L (the blue dots). Note that in Fig. 9,
the dark areas represent an overlap between MAD and SD-L. The t-SNE anal-
ysis and the perceptual and semantic scores in Tab. 1 suggest that MAD leads
to both intra-image coherence and inter-image variability.
Runtime. We also analyze the computation times of our approach and the com-
petitors, all run on the same NVIDIA RTXA5000-24GB for generating 512×3072
images with the LDM backbone (reported in Tab. 1). MAD runtime ranges from
∼43s to ∼50s, depending on the threshold τ , which is comparable to MD (41.9s).
The small computational overhead is due to the multiple merging and splitting
operations and the larger tensors on which self- and cross-attention are per-
formed. Compared to SyncD, which runs in 391.9±0.1s, MAD is more than 8×
faster for not requiring the expensive gradient computation. Moreover, in Fig. 10,
we report the runtime analysis at increasing output width w.r.t. performing di-
rect inference (SD-L) and never applying MAD in joint diffusion (τ=0). Note
that convolutions and attentions are linear w.r.t. the output width when applied
to split views and quadratic when applied to the merged latent. MAD entails
convolutions on split views and attentions on merged latents only for t < τ (on
splits afterward) and thus the computation grows slower than for SD-L.

Complex Scenes. Moreover, we evaluate on the generation of 512×3072 images
from a set of 1000 prompts describing complex scenes, which we automatically
obtain with ChatGPT-4 (referred to as GPT1k). We argue that such scenes
allow to better highlight the challenges of the panorama generation task. The
results are reported in Table 3 and highlight the superiority of our approach over
the competitors. They also demonstrate that the task is far from being solved,
and thus, we release the GPT1k set for fostering its exploration. Note that the
qualitatives in this paper (excluding those in Fig. 5) are obtained with prompts
in GPT1k. For more qualitative comparisons, see the supplementary.
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Table 3: Quantitative comparison on 512×3072 GPT-1k panorama generation using
the LDM. I-StyleL, KID, and mGIQA values are scaled by 103.

mCLIP ↑ I-LPIPS ↓ I-StyleL ↓ FID ↓ KID ↓ mGIQA ↑

SD 32.45 0.67 12.76 49.32 <0.01 12.98

SD-L 31.89 0.52 0.73 68.03 6.61 12.58
MD 32.46 0.63 4.81 49.41 0.42 13.22
SyncD 32.34 0.55 4.24 53.52 1.11 12.98
MAD 32.47 0.58 3.89 54.44 1.28 13.03

Fig. 11: Qualitative results on different
prompts of our approach by exploiting
LCD as backbone.

Baseline MAD Baseline MAD

A tower in a colorful sky A river inside a canyon

Fig. 12: Qualitative comparison on ver-
tical images with LCD. Baseline entails
never applying MAD (τ=0).

User Study. Considering the sometimes subjective differences in image quality
and the partial nature of quantitative evaluations, we also conduct a user study
to evaluate the coherence of the generated images. Participants, presented with
pairs of images generated with our approach, MD, and SyncD, were asked which
was most coherent and best matched the textual prompt. Every user answered
six control questions to assess their understanding of the task. We collected
responses from 201 users and kept those with at least five correct answers to the
control questions (139 users). These provided 7807 answers, from which it has
emerged that MAD was preferred 80.92% of the times over MD and 66.54% over
SyncD (note that SyncD was preferred over MD 68.19% of the times, which is in
line with what found in [30]). For further details, please see the supplementary.

Results with LCMs. Finally, we apply our method with different τ to Latent
Consistency Dreamshaper (LCD) at varying generation steps with resolution
512×3072. The quantitative results are in Tab. 4, where we also report the
performance obtained by applying LCD to generate the whole panorama image
directly (referred to as LCD-L) and the scores on the squared images from LCD,
for reference. Applying MAD improves the mCLIP, generating more coherent
images (see also the qualitatives in Figs. 11 and 12 and in the supplementary).
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Table 4: Quantitative comparison on 512×3072 panorama generation with the LCM
for different numbers of inference steps. I-StyleL, KID, and mGIQA are scaled by 103.

mCLIP ↑ I-LPIPS ↓ I-StyleL ↓ FID ↓ KID ↓ mGIQA ↑

1 Inference Step

LCD 28.10±1.65 0.42±0.06 0.23±0.12 26.95±3.92 <0.01±0.33 42.52±3.97
LCD-L 29.50±1.48 0.40±0.08 0.21±0.18 67.54±15.53 66.86±21.22 32.21±4.50

MAD (τ=0) 28.42±1.75 0.45±0.06 0.25±0.17 54.65±24.64 50.56±33.30 32.27±4.38
MAD (τ=1) 29.01±1.66 0.40±0.07 0.37±0.28 72.43±23.75 75.47±33.24 32.23±4.95

2 Inference Steps

LCD 30.57±1.81 0.53±0.06 1.43±0.48 26.82±11.51 <0.01±0.32 44.30±14.31
LCD-L 30.77±2.09 0.47±0.06 0.56±0.29 49.98±25.20 44.29±26.88 35.45±11.94

MAD (τ=0) 30.75±2.16 0.52±0.05 0.84±0.35 27.95±12.07 13.39±7.40 35.78±10.70
MAD (τ=1) 30.97±2.15 0.50±0.06 0.85±0.34 35.69±17.88 23.74±15.82 35.32±11.49
MAD (τ=2) 30.87±2.18 0.47±0.06 0.60±0.23 52.88±26.12 48.03±27.75 35.48±11.77

4 Inference Steps

LCD 31.37±1.60 0.55±0.05 1.84±0.81 29.05±13.59 <0.01±0.23 45.00±12.97
LCD-L 31.30±1.63 0.50±0.06 0.58±0.24 55.52±32.82 51.71±37.79 35.44±12.94

MAD (τ=0) 31.36±1.83 0.55±0.05 0.90±0.35 31.35±15.42 13.27±10.05 35.44±12.38
MAD (τ=2) 31.48±1.87 0.52±0.05 0.71±0.26 38.77±19.85 27.41±16.19 35.23±13.15
MAD (τ=4) 31.41±1.94 0.48±0.06 0.46±0.19 62.82±36.24 61.69±42.07 35.06±13.61

6 Conclusions and Discussion

In this work, we have presented the Merge-Attend-Diffuse operator, which can
be applied to the attention layers of a pretrained convolutional-attentive diffu-
sion model for zero-shot generation of long images that are both perceptually
and semantically coherent. We have conducted extensive experimental analysis,
whose results demonstrate the effectiveness of the proposed approach especially
in terms of visual quality and adherence to the input prompt.
Limitations. Similar to other inference-time joint diffusion approaches [5,30], a
limitation of our method is that it relies on the diffusion paths of the base model
for realistic results and can be hindered by a bad seed or inappropriate text
prompts. Performing the attention operations on the merged tensor mitigates
this issue. For example, in Figs. 1, 3 and 4, the incoherent horizon lines of
independent diffusion paths (in the top images) are corrected by applying MAD.
Further discussion can be found in the supplementary.
Potential Negative Societal Impacts. Image generative models can produce
harmful content like deepfakes and NSFW images, violate copyrights, and reflect
existing societal biases. Further research is necessary to address these issues.
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