
DynMF: Neural Motion Factorization for
Real-time Dynamic View Synthesis with 3D

Gaussian Splatting

In this part, we present a few more important ablation studies that are es-
sential for the understanding of our method’s functionality. First and foremost,
this section is accompanied by a video presentation that briefly explains the
methodology of our framework and demonstrates a plethora of dynamic ren-
dering results and ablations. This summarizes and demonstrates our results in
rendering, tracking, and decomposition in the best possible way. Next, we offer
a series of ablations studies. We show a few visual comparisons between using
or not the L1 loss regularization on the motion coefficients, we present a big
ablation on the usage of each one of the three aforementioned losses, and we
finally visualize the 10 basis trajectories a scene is comprised of, in the case
where they are linearly combined to produce motions, independently combine
to produce motions (sparsity) or explicitly defined by the Fourier series. At the
end of the supplementary material, we demonstrate a few more rendering results
and present analytic quantitative results for every scene on each dataset for the
three main metrics, PSNR, SSIM, and LPIPS.

1 Ablations

L1 Loss Regularization: As described in the main paper, Gaussians tend to
choose a trajectory and move, even if they are part of the background. This
is feasible without hurting the photometric accuracy. We regularize the motion
coefficients to penalize unnecessary movements. Figure 1 and 2 show some qual-
itative comparisons between enforcing or not an L1 regularization. We observe
that the L1 loss is enough to enforce points on the background to remain static
during the process.

Rigid Loss: We strongly believe our method encourages locality and rigid-
ity properties between points in the dynamic scene, given a small but adequate
number of basis trajectories. We conduct experiments with and without the rigid
loss and observe that the latter offers no additional expressiveness in the render-
ing quality of the dynamic scenes, while at the same time, it severely increases
the training time especially when the number of Guassians is substantial. For
the quantitative results refer to Table 1.

Fourier basis: Instead of having a learned basis, we decided to experiment with
an explicit basis as well; namely the Fourier series. We demonstrated that Fourier
can somehow model the complex motions of a dynamic scene, which is expected
from a global trajectory approximator. Nonetheless, it falls behind in terms of
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Fig. 1: Qualitative comparison between using or not the L1 loss for regularizing the
motion coefficients of each Gaussian. Results for the D-NeRF dataset.



DynMF: Dynamic Neural Motion Factorization 3

Fig. 2: Qualitative comparison between using or not the L1 loss for regularizing the
motion coefficients of each Gaussian. Results for the N3DV dataset.
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Fig. 3: More visualizations on per-point trajectory tracking for the synthetic D-NeRF
dataset.
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Fig. 4: Visualization of the basis trajectories’ trace, along time, in the 3D world space.
The results refer to the ’Mutant’ scene on the D-NeRF dataset. (a) The 10 basis
trajectories without applying a sparsity loss and allowing each Gaussian to linearly
combine all 10 of them to model its motion. (b) The 10 basis trajectories with the
application of the sparsity loss, to enforce each Gaussian to choose only one trajectory
for its motion. (c) The 10 basis trajectories explicitly modeled by the Fourier series
instead of a smalled learned MLP.
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expressivity and rendering quality compared to a learned basis through a small
MLP. Figure 4 depicts the learned or explicit trajectories that can model the
dynamics of a scene. Specifically, each Gaussian can choose one or more of these
10 trajectories to model its unique motion in the dynamic scene. When we allow
a linear combination of the 10 trajectories, then the basis functions are uniformly
spread in the 3D world as depicted in Figure 4 (a). This is because each Gaussian
can model its unique motion by linearly combining these motions, which lets it
uniformly move in the space of the dynamic scene. If we restrict each Gaussian
to choose only one trajectory, then these become more odd and specific to the
motion needs of the corresponding scene, as in Figure 4 (b). Finally, in Figure
4 (c) we clearly see the periodic trace of the Fourier basis functions that are
explicitly defined instead of learned by a small efficient MLP. We hypothesize
that the complexity of the formed motion produced by the Fourier signals does
not allow a sufficient convergence to an expressive enough solution. To model
the roughly 3D linear trajectories produced by the MLP a much higher number
of frequencies would be needed, making the optimization problem even more
challenging.

PSNR ↑
DynMF Hell Warrior Mutant Hook Balls Lego T-Rex Stand Up Jumping Jacks Mean

B=10 w Ldecomp 31.60 40.01 29.89 41.05 24.49 32.93 38.52 33.61 34.01
B=64 w Ldecomp 34.70 40.16 31.83 42.14 25.58 33.96 38.97 35.53 35.36
B=10 w L1 36.60 41.00 31.30 41.01 25.27 35.10 41.16 35.75 35.90
B=64 w L1 37.51 41.68 33.91 41.95 25.51 35.82 41.00 37.74 36.89
B=10 w Lrigid 36.10 40.11 32.01 39.85 25.20 34.89 40.50 34.74 35.43
B=64 w Lrigid 37.10 40.64 33.15 41.41 25.31 34.99 40.79 37.41 36.35
B=10 w no Losses 36.51 40.79 31.36 40.03 25.29 35.08 41.10 35.74 35.74
B=64 w no Losses 37.31 41.32 33.94 41.95 25.37 35.19 41.16 38.04 36.79

Table 1: Ablation study on the L1 regularization loss, on the Ldecomp sparsity loss
and on the Lrigid rigid loss. B refers to the number of basis trajectories for the scene.
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Table 2: Per-scene quantitative comparisons on D-NeRF monocular synthetic dynamic
scenes.

Hell Warrior Mutant Hook Bouncing Balls
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

D-NeRF [9] 25.02 0.95 - 31.29 0.97 - 29.25 0.96 - 32.80 0.98 -
K-Planes [4] 25.70 0.952 - 33.79 0.983 - 28.50 0.954 - 41.22 0.992 -
TiNeuVox [3] 28.17 0.97 0.07 33.61 0.98 0.03 31.45 0.97 0.05 40.73 0.99 0.04

V4D [5] 27.03 0.96 - 36.27 0.99 - 31.04 0.97 - 42.67 0.99 -
[6] 34.15 0.948 - 37.45 0.982 - 33.19 0.967 - 33.29 0.983 -
[12] 36.85 - - 39.26 - - 33.33 - - 36.30 - -

4DGS [11] 28.71 0.973 0.04 37.59 0.988 0.02 32.73 0.976 0.03 40.62 0.994 0.02
DynMF (ours) 37.51 0.975 0.02 41.68 0.996 0.01 33.91 0.979 0.02 41.95 0.994 0.01

Lego T-Rex Stand Up Jumping Jacks
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

D-NeRF [9] 21.64 0.83 - 31.75 0.97 - 32.79 0.98 - 32.80 0.98 -
K-Planes [4] 25.48 0.948 - 31.79 0.981 - 33.72 0.983 - 32.64 0.977 -
TiNeuVox [3] 25.03 0.92 0.07 32.70 0.98 0.03 35.43 0.99 0.02 34.23 0.98 0.03

V4D [5] 25.62 0.95 - 34.53 0.99 - 37.20 0.99 - 35.36 0.99 -
[6] 22.21 0.837 - 26.22 0.964 - 39.10 0.987 - 30.95 0.970 -
[2] 25.24 - - 31.24 - - 38.89 - - 33.37 - -

4DGS [11] 25.03 0.938 0.04 34.23 0.985 0.02 38.11 0.990 0.01 35.42 0.986 0.01
DynMF (ours) 25.51 0.941 0.03 35.82 0.991 0.01 41.00 0.993 0.01 37.74 0.992 0.01

Split-Cookie Lemon Chicken 3D Printer
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HyperNeRF [8] 31.5 - 0.220 31.4 - 0.230 28.8 - 0.145 20.2 - 0.109
TiNeuVox [3] 28.4 0.801 0.281 28.0 0.811 0.271 28.3 0.778 0.371 22.8 0.611 0.542
DynMF (ours) 32.5 0.928 0.141 32.3 0.920 0.144 27.7 0.829 0.254 23.1 0.698 0.301

Table 3: Per-scene quantitative comparisons on HyperNeRF monocular real dynamic
scenes.

Table 4: Per-scene quantitative comparisons on N3DV multi-view real dynamic scenes.

Coffee Martini Cook Spinach Cut Beef
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DyNeRF [7] - - - - - - - - -
MixVoxels-L [10] 29.36 0.946 - 31.61 0.965 - 31.30 0.965 -
K-Planes [4] 29.99 0.943 - 32.60 0.966 - 31.82 0.966 -
Hexplane [1] - - - 32.04 - 0.08 32.55 - 0.08
4DGS [12] 28.33 - - 32.93 - - 33.85 - -
DynMF (ours) 29.26 0.931 0.156 32.56 0.960 0.117 32.50 0.963 0.117

Flame Salmon Flame Steak Sear Steak
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DyNeRF [7] 29.58 0.961 - - - - - - -
MixVoxels-L [10] 29.92 0.945 - 31.21 0.970 - 31.43 0.971 -
K-Planes [4] 30.44 0.945 - 32.38 0.970 - 32.58 0.974 -
Hexplane [1] 29.47 - 0.08 32.08 - 0.07 32.39 - 0.07
4DGS [12] 29.38 - - 34.03 - - 33.51 - -
DynMF (ours) 30.11 0.937 0.149 32.78 0.970 0.103 32.69 0.972 0.108
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Fig. 5: More qualitative rendering results on the HyperNeRF dataset from novel test
views.

Fig. 6: More qualitative rendering results on the N3DV dataset from novel test view.
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