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Abstract. Accurately and efficiently modeling dynamic scenes and mo-
tions is considered so challenging a task due to temporal dynamics and
motion complexity. To address these challenges, we propose DynMF, a
compact and efficient representation that decomposes a dynamic scene
into a few neural trajectories. We argue that the per-point motions of a
dynamic scene can be decomposed into a small set of explicit or learned
trajectories. Our carefully designed neural framework consisting of a tiny
set of learned basis queried only in time allows for rendering speed similar
to 3D Gaussian Splatting, surpassing 120 FPS, while at the same time,
requiring only double the storage compared to static scenes. Our neu-
ral representation adequately constrains the inherently underconstrained
motion field of a dynamic scene leading to effective and fast optimization.
This is done by biding each point to motion coefficients that enforce the
per-point sharing of basis trajectories. By carefully applying a sparsity
loss to the motion coefficients, we are able to disentangle the motions
that comprise the scene, independently control them, and generate novel
motion combinations that have never been seen before. We can reach
state-of-the-art render quality within just 5 minutes of training and in
less than half an hour, we can synthesize novel views of dynamic scenes
with superior photorealistic quality. Our representation is interpretable,
efficient, and expressive enough to offer real-time view synthesis of com-
plex dynamic scene motions, in monocular and multi-view scenarios.

Keywords: gaussian splatting · dynamic rendering · motion decompo-
sition

1 Introduction

The generation of a photorealistic representation, from an unseen point of view,
also known as Novel View Synthesis, poses a long-standing challenge to the
graphics and computer vision community. While there exist early methods that
tackle this problem, both for static [22, 38] and dynamic scenes [10, 23], neural
rendering has received widespread attention only after the pioneering work of
NeRF [29]. Following the latter, numerous methods have contributed to the
static neural rendering problem, by tackling aliasing problems [4,5], generalizing
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to larger scales [6, 42, 56], and to new scenes [48] and increasing efficiency and
rendering speed [8, 9, 16,30,40].

Fig. 1: Our framework can efficiently model all motions in a 3D dynamic scene (Figure
1a) through its neural motion decomposition scheme. We can synthesize photorealistic
novel views, both for synthetic and real scenes in real-time, surpassing 120FPS for 1K
resolution (Figure 1b). Our simple representation allows for novel motion synthesis
by disentangling motions in the scene (Figure 1c). Notice how only the left hand or
the green ball are moving in the ‘Jumpingjacks’ and ‘Bouncingballs’ D-NeRF scenes
respectively.

While the advance in novel view synthesis of static scenes has been rapid,
the high-quality efficient photorealistic rendering of dynamic scenes still poses
a vivid challenge to the aforementioned communities. The numerous applica-
tions, including but not limited to augmented reality/virtual reality (AR/VR),
robotics, self-driving, content creation, and controllable 3D primitives for use
in video games or the meta-verse, have kept the interest in expressive dynamic
novel view synthesis to high levels. From recent pioneers of neural dynamic ren-
dering [24,34] to the latest [28], numerous efforts have been made to drastically
improve this field and bring it one step closer to real applications. Altering
the scene representation from MLPs [24, 34] to grids [46], or other decomposi-
tions [3,7,15,36] for efficiency and faster training, proposing expressive deforma-
tion representations [1, 31, 32, 39, 52] or using template guided methods [50, 59]
are just a few of the approaches taken the last few years.

Despite all these approaches, dynamic novel view synthesis is still a challeng-
ing problem, with quick training, real-time rendering, and highly accurate and
visually appealing novel views yet to be achieved. Dynamic scenes require disam-
biguating displacements, and disentangling overlapping motions, especially due
to non-rigid objects and monocular captured scenes that make this even more
challenging. We propose a compact, simple, and expressive neural representation
that can adequately tackle the previous challenges. Namely, we propose a sparse
trajectory decomposition of all the motions in the dynamic scene, to accurately
represent displacements, overlapping and non-rigid motions. Our framework is
strategically designed to offer extremely fast training and real-time rendering of
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a dynamic scene. Specifically, we argue that a scene consists of only a few ba-
sis trajectories (even less than 10) and every point/motion shall be adequately
mapped to one of them or a linear combination of them. The basis motions are
learned through a tiny MLP queried only in time leading to superfast conver-
gence during training (less than 5 minutes for photorealistic results, and half an
hour for superior to the state-of-the-art ) and superfast rendering during infer-
ence (higher than 120 FPS for resolutions of 1K). By strategically constraining
an inherently underconstrained problem in this way, we are able to successfully
optimize for cases with very few correspondences (e.g. monocular videos). Simul-
taneously, being able to efficiently factorize all the motions of a dynamic scene
into a few basis trajectories, allows us in turn, to control them, enable or disable
them, opening a road to applications like video editing, scene controllability,
interactive and real-time motion control, efficient animation and so on.

In this work, we present DynMF (DYNamic neural Motion Factorization).
The contributions of this paper can be summarized as follows:

– We manage to expressively model scene element deformation of complex
dynamics, through a simple and interpretable framework. Our method en-
ables robust per-point tracking, overcoming displacement ambiguities, over-
lappings, and non-rigid complex motions. It also enables the synthesis of
novel motion scenes, that have never been seen before through disentangling
motion and carefully enforcing sparsity.

– DynMFis extremely efficient. The carefully designed time-only queried MLP
allows for training in less than 30 minutes while the rendering speed remains
comparable to 3D Gaussian Splatting [20]. This allows for real-time rendering
of static and dynamic scenes.

– We propose a neural representation that can effectively constrain the ill-
posed nature of dynamic 3D motion reconstruction and requires no prior
knowledge of the scene. Our method achieves high-quality real-time dynamic
rendering, while significantly surpassing the state-of-the-art benchmarks on
the D-NeRF dataset and achieving comparable results on the real-scene
datasets.

2 Related Work

Dynamic Neural Rendering: The recent works on NeRF [29] and D-NeRF
[34] both proposing a coordinate-based neural network, the former for querying
points on a ray to produce color and density for static scenes and the latter to
model the deformation field and create an expressive mapping between a canoni-
cal space and a dynamic scene, have provoked an explosion of interest in the field
of static and dynamic novel view synthesis. On the dynamic side, we can distin-
guish three main approaches: (i) methods that construct a deformation field to
warp a canonical space to every timestep [31,32,34,47,52] (ii) methods that try
to model the dynamic scene as a whole, implicitly or explicitly [3,7,15,24,46] and
(iii) point-based methods [1, 28, 57] that due to dense correspondence over time
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between frames and due to their Lagrangian representation, can achieve consis-
tent and expressive dynamic scene modeling. We relax that latter restriction by
proposing a point-based method that can construct an efficient and expressive
deformation field, explicit or learned, without the need for dense correspondences
through multiple frames or multiple views.

Motion Factorization: Decomposing a complex motion field into a linear com-
bination of basis trajectories has been a well-established approach from Math-
ematics and Physics to Signal Processing and Computer Vision. In the latter
field, [2] has proposed an explicit trajectory-based factorization for non-rigid
structure for motion in which every point in space can be linearly expressed by a
combination of DCT trajectories. Clustering trajectories into a small number of
subspaces has been argued by [21] for the same task, while [60] has explored tra-
jectories’ convolutional structure. Following [2, 44], [45] has also exploited DCT
trajectory basis for the task of dynamic novel view synthesis, by predicting a
per-point trajectory using an MLP to acquire the DCT coefficients. Our method
argues that a per-point trajectory is redundant and can only work given a lot of
correspondences or strong regularization. In fact, [45] leverages optical flow in
their optimization scheme.

Dynamic 3D Gaussians and Concurrent work: During the past few months,
numerous works have emerged to utilize 3D Gaussian Splatting [20] for Dynamic
Neural Rendering. First, Dynamic 3D Gaussians [28] uses online training and
rigidity losses to synthesize novel views timestamp per timestamp. For their
method to work, though, they require multiple cameras and depth information
to reconstruct the first frame, while at the same time, their method cannot
handle the appearance of new objects in the scene. DynMF works on scenes
captured by a single monocular camera and with random initialization incorpo-
rating information from all frames simultaneously. [54] uses a coordinate-based
MLP similarly to D-NeRF [34] as a deformation field. This approach may be slow
and inefficient because it requires querying MLP for each Gaussian. Our method
is extremely time-efficient and does not significantly depend on the number of
Gaussians. [53] is optimizing 4D primitives to treat the spacetime as an entirety,
while [51] is connecting adjacent Gaussians via a HexPlane to model position
and shape deformations. Our neural representation is simple and interpretable
by decomposing all the complex motions of a dynamic scene into very few neural
trajectories. Other concurrent works include [19] that uses Fourier approxima-
tion and flow estimation, [55] which decomposes the scene’s objects by designing
a control-masking pipeline, while our method inherently enables the disentan-
gling motion and controllability of the scene, and [18] which uses local points
that act as local bases to edit the deformable Gaussians. Other notable mentions
are [11–13,25–27,35,37,41].
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Fig. 2: Overview of DynMF. The underlying dense motion field (left-top) of a dynamic
scene is factorized into a set of globally shared learnable motion basis (left-bottom) and
their motion coefficients stored on each Gaussian (right-bottom). Given a query time t,
the deformation can be efficiently computed via a single global forward of the motion
basis and the motion coefficient blending (middle-bottom) to recover the deformed
scene (top-right).

3 Method

We propose a compact representation that is shared across all points and models
the dynamics of a scene. We argue that every scene is comprised of a limited fixed
number of trajectories. In other words, we can model a 3D dynamic scene by a
few universal trajectories that are shared between the 3D world points. In this
section, we first formally present the representation of our motion field, DynMF,
which is able to model the 3D dynamic scene and synthesize novel views (Section
3.1). In Section 3.2 we review the framework in which we bundle our motion field
representation to efficiently learn the 3D world, namely 3D Gaussian Splatting,
while in Section 3.3 we present the optimization and regularization details.

3.1 Motion Representation Fields

Let a dynamic scene be represented by a point cloud of N points x ∈ RN×3. We
assume a sequence of frames in the interval t ∈ [0, T ], taken from one or multiple
viewpoints. Assuming a canonical space xc ∈ RN×3 we define B trajectories
bj(t) : [0, T ] → R3 such that for every x ∈ R1×3 we have:

x(t) = xc +

B∑
j=1

cjbj(t), (1)
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where cj ∈ RN×1 are the motion coefficients for each point, and x(t) are the
points’ motion trajectories across the entire sequence. We let the basis be shared
across all points arguing that the dynamic motions of a scene can be explicitly
represented by a linear combination of B trajectories. This factorization problem
becomes an overconstrained low-rank factorization as soon as the number of
points N exceeds the number of basis trajectories B. This is easy to see if
we discretize the time into T timestamps and write only the x-coordinates as
matrices X,Xc ∈ RN×T

X = Xc +C ·B, (2)

with C ∈ RN×B and B ∈ RB×T and B much lower than N or T .
We reason that given enough correspondences and expressive basis functions,

we can jointly learn the canonical space and each point’s motion by reconstruct-
ing its trajectory across the whole sequence. Sharing the basis across all points
enables the representation to produce physically plausible motions that stay
consistent across all frames.

If we let

bj(t) =

{
cos

(
2πj
T t

)
, if j is odd

sin
(
2πj
T t

)
, if j is even

(3)

the factorization is equivalent to modeling the dynamic motion trajectories of a
scene with Fourier series. While Fourier bases are global approximators for any
trajectories and have been shown to be a compact representation for dynamic
scenes with deformations [49,58], we argue that a learned basis will be smoother
and more expressive for this task (see Section 4.5 for ablations). Thus, we let:

bj(t) = MLP
(

t

T
;wj

)
, (4)

be a small multilayer perceptron queried only over time. While the learned func-
tions are not strictly a basis, we empirically observe that they span a large
enough space that covers the variation of deformations in the scene. Overall, we
propose a representation of the dynamic scene in which a small MLP predicts
along all timestamps a few compact basis trajectories, and all the points in the
scene are bound to linearly choose between these to model their motion across
time.

3.2 3D Gaussian Splatting

We choose to bind the aforementioned representation with 3D Gaussian Splatting
[20]. The latter is an explicit 3D scene representation used for efficient and
expressive neural rendering.

Static 3D Gaussians: The 3D space is described in the form of a point
cloud by a set of 3D Gaussians which are defined by a mean value µ and a 3D
covariance matrix Σ in the world space. The influence of one Gaussian with
parameters (µ,Σ) on a given spatial position x ∈ R3 is defined by:

f(x|µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ). (5)
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The anisotropic full 3D covariance matrix is decomposed into a rotation matrix
R and a scaling matrix S:

Σ = RSSTRT . (6)

To render the 3D Gaussians in a differentiable manner [20] Gaussians are splatted
on the image plane by approximating the 2D means and covariances from the 3D
ones. The center of the Gaussian is splatted using the standard point rendering
formula:

µ2D = K
Eµ

Eµz
, (7)

where K,E are the intrinsic projection matrix and the world-to-camera extrinsic
matrix, respectively. The 3D covariance matrix is splatted into 2D using [61]:

Σ2D = JEΣETJT , (8)

where J is the Jacobian of the point projection formula in 7. Finally, the color
of a specific pixel p can be computed as:

Cp =

N∑
i=1

ciαif
(
p|µ2D,Σ2D

) i−1∏
j=1

(
1− αjf

(
p|µ2D,Σ2D

))
, (9)

where ci, αi are the color and opacity, bound with each 3D Gaussian. Overall,
each Gaussian is characterized by the following attributes: i. a center mean
µ ∈ R3, ii. a scale factor s ∈ R3 and a rotation R ∈ SO(3) that we parametrize
with a unit quaternion in S3, iii. an opacity logit α ∈ R and iv. each color defined
by spherical harmonics coefficients cR,G,B ∈ R(L+1)2 where L is the maximum
degree of spherical harmonics.

Dynamic 3D Gaussians: The previous framework is capable of modeling
efficiently and expressively a 3D static scene. To use it for representing a 3D
dynamic scene we propose the following:

1. Substituting the mean µ with µ(t). The mean’s trajectory µ(t) will be de-
composed according to Equations 1 and 2:

µ(t) = µc +

B∑
j=1

cjb
µ
j (t), (10)

where µc ∈ R3 is the mean center of the Gaussian in the canonical space and
c = [cj ]j=1,...,B the motion coefficients, both stored as learned parameters
per Gaussian.

2. Substituting the rotation quaternion q with q(t). The rotation quaternion
will be decomposed similarly:

q(t) = qc +

B∑
j=1

cjb
R
j (t), (11)
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where qc ∈ R4 is the rotation quaternion of the Gaussian in the canonical
space stored as learned parameter per Gaussian. Note that the motion coef-
ficients are shared for both the translational and rotational decompositions.

3. Keeping density and spherical harmonic coefficients of each Gaussian fixed
along time. The basis functions {bµj (t)} and {bRj (t)} are chosen according to
Equations 3 and 4.

We argue that the proposed framework is a compact and expressive represen-
tation of 3D dynamic scenes that consist of multiple decoupled and complicated
motions. By sharing the basis functions between Gaussians, we constrain neigh-
bor Gaussians and rigid areas to choose similar trajectories, softly enforcing
locality and rigidity a priori. At the same time, sharing the motion coefficients
and keeping the number of basis trajectories low, dramatically softens the re-
strains of this ill-posed optimization problem. The efficient design of the basis
functions retains the rendering speed at the same levels as with the original
Gaussian Splatting, enabling real-time rendering not only for static scenes but
for dynamic as well.

3.3 Optimization Framework

Regularization: The optimization process will naturally converge to a linear
combination of all basis functions per Gaussian. Furthermore, Gaussians tend to
move, even if they are part of the background as long as they do not harm the
photometric accuracy with their movement (e.g. Gaussians moving on a white
wall). While the former is desirable and increases expressivity, the latter harms
the representation’s interpretability since the basis functions are forced to learn
trajectories for unnecessary movements. To solve this problem, we add an L1
regularization loss on the motion coefficients to penalize unnecessary choices of
basis functions and thus, apparent but nonexistent movements:

L1 =
1

NB

N∑
i=1

B∑
j=1

|cij |. (12)

Sparsity: Enforcing sparsity between the trajectories is more challenging. While
L1 loss is supposed to encourage sparsity by increasing competition between the
weights, we observed that the moving Gaussians kept choosing a linear combi-
nation of the trajectories with just smaller weights. To solve this we added a
new stronger loss that explicitly forces each Gaussian to choose only very few
trajectories:

Ls =
1

N

N∑
i=1

∥ci∥1
∥ci∥∞

. (13)

With a strong enough loss weight, this quantity enforces strict sparsity which
can lead to dynamic motion decoupling and novel motion synthesis.
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Rigidity: Our representation naturally encourages rigidity between the Gaus-
sians. Restraining the number of trajectories drives nearby points to choose the
same trajectory. Furthermore, when a Gaussian is split or densified into a new
one, we choose to copy the motion coefficients to the new Gaussian, to naturally
enforce rigidity to the scene. We experiment with a simple rigid loss:

Lr =
1

Nk

N∑
i=1

∑
j∈knni;k

wij∥ci − cj∥2, (14)

where the set of j Gaussians choose the k-nearest neighbours of i and weight the
loss, similar to [28], by an isotropic Gaussian weighting factor per Gaussian pair
wij = exp

(
−λw∥µi(t

∗)− µj(t
∗)∥22

)
. We demonstrate that Lr does not further

increase the rendering quality of the scene, solidifying our intuition that our
motion representation is inherently rigid, given a small number of trajectories.
For ablations on the optimization scheme, please refer to the Supplementary
material.

Fig. 3: Qualitative comparison on the D-NeRF dataset between our method and the
state-of-the-art.

4 Experiments

4.1 Experimental Setup

In this section, we present the results of our method for three different scenarios;
synthetic-scene monocular, real-scene monocular and real-scene multi-view.

D-NeRF [34] is a monocular synthetic dataset with a total of 8 rigid and
non-rigid scenes. Each scene contains dynamic frames, ranging from 50 to 200 in
number and on a unique timestamp. The camera pose for each timestamp is also
different. HyperNeRF [32] is a monocular dataset on real-scenes. It consists of
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Table 1: Quantitative results on synthetic monocular D-NeRF dataset. The rendering
resolution is 400×400. 1 Concurrent work that utilizes Gaussian-splatting. 2 Rendering
resolution is 800×800.

Model PSNR(dB) ↑ SSIM ↑ LPIPS ↓ Time ↓ FPS ↑
D-NeRF [34] 29.67 0.953 0.06 15.9hours 0.1
K-Planes [15] 31.61 0.970 − 52mins 0.1
TiNeuVox [14] 32.67 0.970 0.04 21m 1.5

V4D [17] 33.72 0.980 – 4.9hours 2

[19]1 32.07 0.96 – 8mins –
[12]1 34.26 0.97 0.03 5mins 1257

Gaufre [26]1 34.80 0.982 0.02 25mins 50
4DGS [51]1,2 34.05 0.98 0.02 20mins 82

DynMF (Ours) 36.89 0.983 0.02 20mins 300

many scenes of different real objects and actions with one or two cameras that
are moving over time. We choose one rigid and three highly non-rigid scenes
to test the method’s efficiency in challenging cases like these. The four scenes
are the ‘3d-printer’, ‘chicken’, ‘broom’, and ‘peel-banana’. N3DV dataset [24]
dataset is a real-world dataset consisting of 6 very challenging dynamic scenes.
The scenes are captured by 15-20 static cameras in total that share a common
time. The scenes consist of long highly non-rigid motions and dynamic opacity
(e.g. flame or smoke).

4.2 Implementation Details

The motion representation field is implemented in PyTorch [33], while we keep
the differentiable Gaussian rasterization implemented by 3D-GS [20]. The MLP
consists of 8 linear layers of 256-width with 2 final layers producing (B, 3) and
(B, 4) numbers that constitute the displacement and quaternion correction per
trajectory for a specific time. For the number of trajectories B, we choose 10
for D-NeRF and 32 for HyperNeRF and N3DV dataset. We apply positional
encoding to the input of the MLP, which has been shown to be fundamental
for good performance [29, 43]. Since the network is not coordinate-based and is
solely based on time, a high-frequency input is needed for producing expressive
trajectories for the dynamic scenes. We choose 32 frequencies to encode time.
See Section 4.5 for ablations on the number of trajectories and position encoding
of time. For training, we conduct training for a total of 30k iterations, while
enabling the training of the basis functions and motion coefficients only after
the first 3k iterations. All the parameters are kept the same with respect to
3D-GS while the learning rate of the basis is exponentially decaying from 8e-4
to 8e-6 and the learning rate of the coefficients is kept at 8e-3. 2k Gaussians’
means are randomly initialized around the center of the scene for all datasets,
solidifying the stability and generalizability of our representation.
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Fig. 4: Qualitative comparison on the HyperNeRF dataset.

Table 2: Per-scene quantitative comparisons on HyperNeRF monocular real dynamic
scenes. 1 Concurrent work that utilizes Gaussian-splatting.

3D Printer Chicken Broom Peel Banana
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Nerfies [31] 20.6 0.83 26.7 0.94 19.2 0.56 22.4 0.87
HyperNeRF [32] 20.0 0.59 26.9 0.94 19.3 0.59 23.3 0.90
TiNeuVox [14] 22.8 0.84 28.3 0.95 21.5 0.69 24.4 0.87
3D-GS [20]1 18.3 0.60 19.7 0.70 20.6 0.63 20.4 0.80
4DGS [7]1 22.1 0.81 28.7 0.93 22.0 0.70 28.0 0.94

[12]1 21.1 0.75 25.8 0.86 20.4 0.66 26.6 0.92
DynMF (ours) 22.4 0.70 28.5 0.81 22.1 0.61 28.1 0.89

4.3 Results

Results on Synthetic data: A quantitative evaluation of the D-NeRF syn-
thetic Dataset is presented in Table 1. Our method surpasses all state-of-the-art
methods by a significant gap in all metrics. This confirms that DynMF is an
adequate representation of rigid, decoupled, and non-rigid/deformable motion
as well. Regarding speed, our method achieves state-of-the-art results in only 10
minutes of training, while after half an hour it synthesizes most of the dynamic
scenes almost perfectly. The FPS rate for 400 × 400 images reaches more than
300FPS confirming the carefully designed representation in terms of efficiency,
achieving real-time dynamic novel view synthesis. Qualitative comparisons can
be seen in Figure 3.

Results on Real data: DynMF seems to achieve state-of-the-art results on
the HyperNeRF and N3DV datasets as well, as shown in Tables 2 and 3. These
datasets consist of very challenging non-rigid motions and semi-transparent areas
that the representation of motion factorization can adequately and efficiently ex-
press. Again, time-wise our method allows for real-time dynamic rendering even
on scenes of high resolution like N3DV (i.e. 1280× 1080). For a per-scene eval-
uation of all three datasets and for more qualitative results, please refer to the
supplementary material.
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Fig. 5: Novel view synthesis of DynMF. The figure shows selected frames from different
time frames for the scenes ’flame-steak’ and ’sear-steak’.

Fig. 6: Qualitative comparison on the N3DV dataset between our method and the
state-of-the-art.

4.4 Motion Decomposition

A key component of our proposed representation is its ability to explicitly de-
compose each dynamic scene to its core independent motions. Specifically, by
applying the sparsity loss described in Section 3.3, we enforce each Gaussian
to choose only one of the few trajectories available. This design combined with
the inherent rigid property of our representation drives all nearby Gaussians to
choose the same and only trajectory. This strongly increases the controllability of
the dynamic scene, by disentangling motions, allowing for novel scene creation,
interactively choosing which part of the scene is moving, and so on. Figure 7
shows two examples of motion control in two synthetic scenes. Please, refer to
the supplementary video for a deeper understanding of the motion decomposition
possibilities that our representation enables.

4.5 Ablation Studies

Time encoding and Number of trajectories: The number of trajectories, B
is the most important hyperparameter of DynMF, for it is the one that decides
in what detail will the scene be modeled. In parallel, the positional encoding on
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Table 3: Quantitative results on real-scene multi-view N3DV dataset. The rendering
resolution is 1386× 1014. 1 Concurrent work that utilizes Gaussian-splatting.

Model PSNR(dB) ↑ SSIM ↑ LPIPS ↓ Time ↓ FPS ↑
DyNeRF [24] 29.58 - 0.08 1344hours 0.015

MixVoxels-L [46] 30.80 0.96 - 1.3hours 16.7
K-Planes [15] 31.63 0.964 - 1.8hours 0.15
Hexplane [7] 32.22 0.98 0.09 12hours 0.09

[19]1 28.89 0.945 - 1hours 118
[12]1 31.62 0.94 0.14 1hours 277

4DGS [53]1 32.01 - 0.06 - 114
DynMF (Ours) 31.70 0.946 0.18 40mins 135

Fig. 7: Demonstration of the decomposition capabilities of our representation. Indepen-
dent movement of the right foot and the left hand of the ‘Jumpingjacks’ and ‘Mutant’
scenes respectively.

Table 4: Ablation study on the number B of the motion trajectories and the frequen-
cies F of the positional encoding applied on time. PSNR is used as the metric on the
‘Mutant’ scene from the D-NeRF dataset and the ‘Flame-steak’ scene from the N3DV
dataset.

Model (B, F) Mutant Steak Model (B, F) Mutant Steak
DynMF (1,32) 29.75 28.85 DynMF (10,1) 39.08 29.32
DynMF (4,32) 39.98 30.34 DynMF (10,6) 39.61 29.59
DynMF (10,32) 40.79 31.57 DynMF (10,16) 40.50 31.29
DynMF (20,32) 40.76 31.03 DynMF (10,32) 40.79 31.57
DynMF (50,32) 40.53 30.99 DynMF (10,60) 40.53 29.80
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time proved to be important as well, with notoriously high frequencies, F , needed
for state-of-the-art results. Table 4 shows experiments on multiple combinations
of (F,B). We can see that both synthetic and real scenes can be adequately
modeled by very few trajectories while adding more only subtly increases the
performance. At the same time, while encoding time is not vital for satisfactory
rendering, mapping it to higher frequencies provides the mean for more expres-
sive trajectories by the small MLP. Please, refer to the Supplementary material
for qualitative comparisons for different values of B and F .

Fourier Series: Table 5 shows results on two different scenes (mutant from
D-NeRF and flame-steak from DyNeRF) in the case of a non-learned motion
and rotation base, in this case the Fourier Series. We conducted a few experi-
ments with the basis functions following Equation 3 and we varied the number
of frequencies the basis could incorporate. We observe that the Fourier series can
satisfactorily express the motion field of a dynamic scene but is not expressive
and smooth enough to decode the details of complicated scenes. To the best
of our knowledge, this is the first totally explicit dynamic scene representation,
comprised of Gaussians and Fourier series. In supplementary material, we further
investigate the reasons why the Fourier basis is not expressive enough.
Table 5: Ablation study on the basis function. PSNR is used as the metric on the
‘Mutant’ scene from the D-NeRF dataset and the ‘Flame-steak’ scene from the N3DV
dataset.

Model Mutant Steak
DynMF (Learned Basis) 40.79 31.57
DynMF (Fourier 10) 33.17 28.95
DynMF (Fourier 20) 35.21 27.18
DynMF (Fourier 50) 33.87 23.42
DynMF (Fourier 100) 21.12 19.15

5 Conclusion & Future Work

In this work, we have introduced, DynMF, a motion factorization framework that
enables real-time rendering of dynamic scenes. The carefully designed represen-
tation of a small MLP queried only by time allows for training convergence in
half an hour and for a rendering speed of more than 120 FPS. At the same time,
the shared motion basis scheme supports inherently the locality and rigidity of
the motions and allows for state-of-the-art rendering quality from novel views.
Last but not least, the motion decomposition properties allow us to dive deeper
into the structure of the scene and create novel instances by independently en-
abling and disabling motions on the scene. For future work, we believe that
DynMFis potentially a good representation for efficient and accurate tracking
as well. While the motion factorization framework along with the 3D Gaussian
splatting gives the opportunity for detailed and expressive novel view synthesis
of dynamic scenes, it is by itself constructed in a way to allow tracking of all the
points on the scene at every time.
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