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Abstract. We present a method to build animatable dog avatars from
monocular videos. This is challenging as animals display a range of
(unpredictable) non-rigid movements and have a variety of appearance
details (e.g., fur, spots, tails). We develop an approach that links the
video frames via a 4D solution that jointly solves for animal’s pose vari-
ation, and its appearance (in a canonical pose). To this end, we sig-
nificantly improve the quality of template-based shape fitting by en-
dowing the SMAL parametric model with Continuous Surface Embed-
dings (CSE), which brings image-to-mesh reprojection constaints that
are denser, and thus stronger, than the previously used sparse semantic
keypoint correspondences. To model appearance, we propose a novel im-
plicit duplex-mesh texture that is defined in the canonical pose, but can
be deformed using SMAL pose coefficients and later rendered to enforce
a photometric compatibility with the input video frames. On the chal-
lenging CoP3D and APTv2 datasets, we demonstrate superior results
(both in terms of pose estimates and predicted appearance) over exist-
ing template-free (RAC) and template-based approaches (BARC, BITE).
Video results and additional information accessible on the project page:
https://remysabathier.github.io/animalavatar.github.io.

1 Introduction

Building poseable reconstructions of animals captured by consumer imaging de-
vices is a valuable technology with numerous applications in augmented and
virtual reality. Among many possible animal species, the reconstruction of ca-
nines is of particular interest primarily due to their important role in the lives
of their two-legged friends.

While it is nowadays possible to reliably reconstruct rigid scenes captured
from a moving vantage point [41], the reconstruction of non-rigid shapes is
significantly less constrained and, as such, a more challenging problem. Here,
many recent works focused on generic animal reconstruction from multi-view
(videos) [19,52,54] or single-view 2D image supervision [49] without prior knowl-
edge of the animal shape. While the latter demonstrated impressive progress, the
challenging nature of the problem limits the applicability to scenarios with sim-
ple deformations and good multi-view test-time coverage.
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Fig. 1: Animal Avatars. Given a monocular video of a dog, we propose a template-
based method to reconstruct the shape β, motion θt and texture ψ. We address the
challenge of insufficient supervision for unconventional views by integrating Continuous
Surface Embeddings with an articulated mesh. We introduce a novel implicit duplex-
mesh texture model, jointly optimized alongside motion parameters.

To better constrain the non-rigid 3D reconstruction, inspired by state-of-the-
art methods for Human 3D reconstruction [7,27], we leverage a known category
template. Specifically, we use the SMAL template introduced by Zuffi et al . [62] -
a quadruped-equivalent of the seminal SMPL parametric human model [27]. The
template has been used to enable single-view 3D dog reconstruction trained on
an extensive collection of dog images semi-manually annotated with SMAL poses
[8,39,40]. While this approach provides a clear state-of-the-art in monocular 3D
dog-shape reconstruction, the inherent ambiguity of single-view reconstruction
provides many challenges.

To further increase our chances of successful reconstruction, besides leverag-
ing the SMAL model, we turn our attention towards reconstructing casual video
captures of dogs, which was first explored in [3]. Indeed, videos provide a stronger
multi-view supervision which significantly simplifies the 3D shape fitting prob-
lem. However, regardless of monocular [39,40] or multi-view conditioning [3], we
observed a common failure mode in existing methods when animals are viewed
from non-frontal views. This issue arises because fitting relies on sparse joint-
reprojection constraints that mainly cover front-facing parts, offering limited
supervision for rear and side views.

Hence, our first contribution is to replace the sparse keypoint supervision
with a denser alternative. Specifically, we exploit Continuous Surface Embed-
dings [31] (CSE), which annotate each vertex of the CSE dog mesh with a
unique descriptor. Furthermore, CSE provides a pre-trained deep image-to-CSE
predictor, that labels image pixels with their corresponding CSE descriptor and
transitively with the matching mesh vertex. In this work, in an one-time pro-
cess, we first transform CSE descriptors to the SMAL mesh by means of a semi-
manual non-rigid aligment. This then enables a stronger keypoint loss providing
reprojection constraints for all points on the animal’s body, even in rear views.
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Secondly, we enhance fits by exploiting the inherent smoothness of animal
movements over time. Previous attempts incorporated this knowledge by enforc-
ing temporal smoothness on the deformation coefficients of the SMAL template.
However, we found this approach flawed because the coefficients have to rep-
resent both the smooth animal motion and the camera motion, which is often
non-smooth due to the unstable camera operator. Instead, we propose to repre-
sent the SMAL deformation as a combination of accurate Structure-from-Motion
camera and optimized animal motion, allowing for proper temporal regulariza-
tion. Importantly, SfM also provides intrinsic parameters of each camera (focal
length), which facilitates more accurate shape fitting through loss terms that
require rendering.

Finally, we are the first to enable texturing of the SMAL mesh by leverag-
ing it as a scaffold for a novel implicit duplex-mesh neural radiance field, which
can be rendered while accounting for body deformations. Our approach involves
defining implicit shape and color functions on a subset of the 3D domain bounded
by enlarged and downsized versions of the mesh template. This allows for ar-
ticulation of the corresponding implicit surface by posing the boundary meshes
similarly to the original mesh.

We evaluate the color and 3D shape-fitting accuracy on the CoP3D dataset
[42], containing crowd-sourced “turntable” videos of dogs captured by smart-
phone cameras, achieving performance superior to template-based [39, 40] and
template-free [55] baselines. We also compare our pose estimation quality on the
recent APTv2 dataset [56] and report results superior compared to video-based
methods dog-specific [55].

2 Related Work

Video reconstruction on humans. Recent works in 3D human pose recon-
struction show impressive results on videos, representing detailed motions and
robustness to occlusions [10,59]. Several factors support the progress in this area.

The majority of methods rely on the parametric SMPL model introduced
in [27] and refined in [33,34,38]. Unlike the existing animal models, it is learned
from a large collection of real 3D scans of humans, which entails stronger ex-
pressiveness. The model provides parametric handles to both shape and pose
variations. Additionally, human-centric models benefit from large real datasets
with keypoint annotations [24,28,48] as well as synthetic 3D datasets [13].

We also note the availability of off-the-shelf models for related tasks such as
human key-point identification [51]. Such models can guide training of 3D re-
construction or provide soft annotation on large unlabelled datasets [11]. These
factors explain why 3D animal reconstruction cannot directly benefit from break-
throughs in the human domain.

Additionally, there are several works [6, 12, 15, 35] targeting human recon-
struction with texture from monocular and multi-view sources achieving high
rendering quality by leveraging off-the-shelf human pose estimation models.
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Template-based animal reconstruction. Based on the success of template-
based human reconstruction using SMPL, [62] introduced SMAL, a parametric
model for quadruped animals. Unlike the SMPL model, which is supervised by
scans of real humans, and due to the many challenges of scanning live quadruped
animals, the SMAL model is only trained with scans of toy animal models.

To add to the challenge, datasets with 3D annotations for dog reconstruction
are very limited [17, 50] and does not adequately represent the diversity of dog
breeds and poses. The most relevant image dataset is StanfordExtra [8, 18], a
collection of dog images with silhouette and joint annotations. Despite being
diverse, spanning different dog breeds and environments, the dataset is biased
towards front-facing views. This motivates our choice of the CoP3D dataset [42],
an extensive collection of pet videos with high view-point variability in each
video.

Similar to human reconstruction research, multiple works estimate shape
attributes β and pose attributes θ for the SMAL model from a single image,
relying on 2D reprojection constraints. [3] predicts skeleton joints to find an
initial solution, which is then refined to match keypoints estimated from the an-
imal silhouette. [22] propose a coarse-to-fine strategy, where an initial solution
is refined through a graph-convolutional network. BARC [39] enforces similar
shape attributes for dogs of the same breed, which is predicted by a deep net-
work. BITE [40], an extension of BARC, improve prediction plausibility with
ground-contact and ground-plane losses, and improve accuracy with an itera-
tive refinement loop. We compare ours against BARC and BITE to show how
multi-view supervision and CSE embeddings significantly improve performance,
especially on the challenging videos from the COP3D dataset. We note some
additional template-based related works [1, 2, 46,57,61].

Template-free animal reconstruction. The template-free setup enabling re-
construction of a wider range of animals has also been considered. These ap-
proaches build a 3D representation by analyzing a collection of images, or frames
of a single video, or videos of the same species.

Progress made in differentiable rendering [25,37,47] supported the analysis-
by-synthesis method for animal reconstruction from a single video. Recent works
[19, 32, 52, 53] propose to minimize silhouette and photometric losses in order
to jointly learn camera parameters and a textured frame-independent linear
deformation 3D model.

We are inspired by Viser [53] that recovered articulated humans from monoc-
ular videos. They learn long-range 2D point tracks using object masks and optical
flow, and a video-specific embedding linking pixel appearance to surface points
on a canonical deformable mesh. However, such approaches are vulnerable to
(self-)occlusions, especially in significantly dynamic scenes.

To overcome these issues, several works train on a set of videos. BANMo [54]
leverages multiple videos of the same subject to build an implicit canonical
representation, posed via a differentiable neural blend skinning method. Similar
to our work, they use pixel CSE predictions on the different images to link
it with a 3D embedding defined in the canonical space. As such, satisfactory
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Fig. 2: Method overview. Two stage process: First, we initialize root pose g0t via
PnP-RANSAC, utilizing CSE mesh-pixel correspondences. Then, we jointly optimize
shape β, time-varying pose θt and implicit texture ψ through an analysis-by-synthesis
approach, leveraging mask Lmask, dense correspondence Lcse (optimized models in
orange), and photometric Lphoto signals.

new views are generated only when positioned relatively close to the training
views. Recently, RAC [55] extended BANMo to learn a general and instance-
specific model from a set of videos from the same category of deformable objects,
including the dog category analyzed here. TrackeRF [42] extends PixelNeRF [58]
to time-deforming shapes but it only predicts novel views without a full-scale 3D
animal-body model. Note that the method additionally needs to be initialized
with a basic hierarchical joint skeleton. We compare with RAC in Sec. 4 and
omit comparison to TrackeRF because its source code is not available.

Also note [14, 23] both propose innovative methods for reconstructing 3D
models from 2D data, with the former developing a deformable 3D model for
various species using unlabelled images, and the latter creating category-specific
reconstructors through supervision from a diffusion image generator.

3 Method

Our goal is to reconstruct the 3D shape and appearance of a dog captured in a
monocular video, i.e., given a tuple (It)

T
t=1 of T ∈ N video frames we output a

tuple (St)
T
t=1 of colored 3D shapes St of the animal in each frame It ∈ R3×H×W .

In Sec. 3.1, we detail the shape representation S, while Secs. 3.2 and 3.3
describe the optimization process recovering the shape S given input images I.

3.1 Shape and Appearance Representation

Our method defines the colored shape representation St at time t as a 3-tuple

St := (β, θt, ψ), (1)

where β and ψ define the intrinsic (i.e., time-invariant) deformation and the
texture of the dog body respectively, and θt is the time-dependent pose of its
skeleton. In what follows, we detail these three sets of parameters.
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3D shape representation β, θt. There is a plethora of articulated 3D shape
representations ranging from universal less-constrained 3D-flow functions [9,36]
to category-specific Linear-Blend-Skinning (LBS) models attached to a fixed
surface-mesh template [21, 27, 62]. Since we focus on a certain animal category
(i.e., dog) with a well-defined space of plausible articulations and body deforma-
tions, we opt for the latter, i.e., a template-based shape model.

Specifically, we represent the 3D geometry (i.e., the parameters θt, β in
Eq. (1)) of each dog with the SMAL model [62]. The latter comprises a de-
formable template mesh (V̂,F) with vertices V̂ ∈ R3889×3 and a list of triangular
faces F ∈ N7774×3. The deformation of V̂ is defined as a function

F (V̂, β, θt) := V ∈ R3889×3, (2)

conditioned on shape parameters (PCA coefficients and bone lengths) β ∈ Rdβ ,
controlling the non-rigid deformation of the animal shape in its canonical pose,
and pose parameters θt := (g0, θJ). The latter has two components: (i) a root
transformation g0 ∈ SE(3) that represents the overall rigid transformation of
the dog body; and (ii) angles θJ ∈ RdJ of the animal joints that control the
deformation of its limbs.

Time-deforming SMAL. To represent the time-varying deformation of a dog,
we estimate a tuple (θt)

T
t=1 comprising SMAL pose coefficients θt for each of the

T video frames, and a single vector β because, typically, the intrinsic deformation
is time-invariant. Since the animals often move smoothly in time, the pose θt is
defined as a function θMLP(t) of a smooth temporal basis γ(τ(t)) as follows:

θt := θMLP(τ(t)), (3)

implemented by a shallow multi-layer perceptron θMLP accepting positional en-
coding γ [44] applied to the timestamp τ(t) ∈ R+ of frame It.

Continuous SMAL Embeddings. Besides the deformation parameters (θ, β),
SMAL also defines joint locations Ĵ ∈ RNJ×3 as a sparse subset of 3D points (not
necessarily localized on the surface of the parametric shape), which are linearly
regressed from the vertex locations. Since the joints correspond to semantic parts
of the animal body (paws, ear tips), they can improve shape-fitting accuracy via
establishing correspondences between the SMAL mesh and the detections of the
body parts in the images. However, while these keypoints improve performance
in [39,40], where most animals are photographed from their side or frontal views,
they are inadequate for our video fly-arounds containing rear views with little-
to-no visible keypoints (see Fig. 3 and Sec. 4).

Hence, instead of sparse landmarks, we exploit Continuous Surface Embed-
dings (CSE) [31], which attach a unique embedding vector ek ∈ Rde to each
vertex Xk ∈ V̂ of the (canonical) SMAL template such that the dimensions of e
vary smoothly over the mesh surface. CSE also provides a deep predictor that
annotates each image pixel with its corresponding mesh coordinate ek. Thus,
unlike sparse keypoints, the latter densely annotates images of animals from
arbitrary viewpoints, including rear views.
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Fig. 3: SMAL CSE. We align the CSE mesh template (top left) with the SMAL
template (top right) in order to setup the CSE coordinate frame over the surface of
the SMAL mesh. In combination with a pretrained image-to-CSE predictor, this allows
establishing dense correspondences between surface points of the SMAL template and
the corresponding image pixels. Note that the image CSE detections (rows labelled
“CSE”) provide dense correspondence covering all parts of the dog body, which is not
the case of sparse keypoints (“Keypoints” rows).

Because the original template mesh of CSE [31] is different from the SMAL
template, following [31], we transform the CSE coordinate map to SMAL using a
customized variant of the Zoom-Out method [29]. The latter results in the final
set of SMAL-CSE vertex coordinates ek (alignment visualized in Fig. 3).

Dual-mesh implicit texture ψ. Besides reconstructing 3D animal shapes,
we also aim to recover the texture of the animal body. We require an exact
supporting 3D shape to learn an accurate texture model. However, due to the low
expressivity of the SMAL deformation space, the posed mesh can only represent
the surface of a dog up to a certain error. Thus, following recent advances in
new-view synthesis of humans [26], we leverage the template mesh as a scaffold
supporting a more accurate implicit radiance field [30], which we describe next.

Our method is inspired by duplex radiance fields [45], originally proposed for
speeding up rendering of neural radiance fields [30]. Specifically, we first extrude
the 2-manifold canonical surface to a 3D volume by defining an ϵ-neighborhood
N̂ ϵ ⊂ R3 as a 3D subspace bounded by an outer mesh with vertices V̂↑ = (1+ϵ)V̂,
and an inner mesh V̂↓ = (1−ϵ)V̂, both sharing the same faces F . In practice, we
obtain the offset meshes by moving along directions of vertex normals. Similar
to the template mesh itself, both V̂↑ and V̂↓ can be deformed with θ, β resulting
in the posed neighborhood N ϵ bounded by F (V̂↑, β, θ) and F (V̂↓, β, θ).

Within this neighborhood, we then define an opacity function ψσ : N ϵ 7→ R+,
annotating 3D locations x̂ in the mid-space with presence (ψσ(x̂) > 0) or absence
(ψσ(x̂) ≈ 0) of the surface, and the radiance function ψc : N ϵ × S2 7→ [0, 1]3,
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Fig. 4: Implicit duplex-mesh model. We propose a novel deformable implicit shape
model. Using the radiance and opacity functions ψc and ψσ defined over an R3 subspace
bounded by a canonical duplex mesh with vertices V̂↑ and V̂↓, we render a color of
the posed duplex mesh via EA raymarching over a canononical ray r̂u. The latter is
obtained by transforming into the canonical space the intersections of the view-space
ray ru with the posed duplex mesh F (V̂↑, β, θ), F (V̂↓, β, θ).

which colors the space depending on the direction r ∈ S2 from which the input
point x̂ is observed. The coloring and opacity functions are implemented as in [5],
i.e., using a shallow MLP decoding a learnable triplane feature grid. Please refer
to the supplementary material for details.

Dual-mesh rendering. Having defined the animal shape (V,F) and the im-
plicit texture ψ, we image the latter from an arbitrary camera viewpoint P using
a differentiable rendering function R:

R(P,V,F , ψ) := Ī , (4)

which outputs the render Ī ∈ [0, 1]3×H×W as observed from the camera with
projection matrix P ⊂ R3×4.

To obtain Ī, we iterate over all its pixels u ∈ [1..H]× [1..W ] and march with
Emission-Absorption (EA) over the canonical ray r̂u defined as the camera-space
ray ru = P−1u in the rest-pose coordinates. Specifically, ru is first intersected
with the posed outer boundary mesh F (V̂↑, β, θ), and then the intersection’s
barycentric coordinates are applied to the corresponding canonical mesh V̂↑

yielding a 3D point x̂↑
u ∈ N̂ ϵ in the canonical neighborhood N̂ ϵ. Repeating the

same for the for the inner mesh F (V̂↑, β, θ) yields a second 3D point x̂↓
u ∈ N̂ ϵ.

The two points x̂↑
u and x̂↓

u then define the canonical ray r̂u, over which we march
with EA, accumulating the outputs of the radiance functions ψc and ψσ in the
process, to render the final color of pixel u (details in the supplementary).

Note that our EA rendering differs from the duplex radiance fields [45], which
instead leverage an MLP to directly map positional encodings of the two inter-
section points x̂↓

u, x̂↑
u to a surface color.

3.2 Pose Initialization

Fitting a non-rigid shape to a monocular video is a challenging task and, as
such, a trivial random initialization of the shape parameters (the weights of
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MLPs ψ, χ) inevitably leads to a failure. We thus employ two fitting stages,
where the first initializes parameters to ensure convergence of the second stage.

Root pose estimation. We observed that a suitable initialization of the root
pose g0, while initializing the rest of the parameters (limb angles θJ , intrinsic
deformation β, implicit MLP ψ) randomly, is sufficient to avoid the most common
local minima, such as flipping of the dog body along its symmetry axes.

The goal of the initial fitting stage is thus to recover the root rigid trans-
formations g0t for t ∈ [1, T ] so that the perspective projection of the unposed
canonical template V̂ into each camera Pt matches the depicted dog in frame t.

PnP with CSE. To this end, we leverage the CSE coordinate map of the
SMAL mesh (Sec. 3.1). First, for each image It, a pre-trained CSE convolu-
tional network annotates pixels ut ∈ [1..H]× [1..W ] with their CSE embedding
e(ut). Then, we establish correspondences between each pixel ut and the ver-
tices X̂NNe(ut) ∈ V̂ on the template mesh V̂ by recovering the nearest neighbors
NNe(ut) := argmin1≤k≤|V| ∥e(ut)− ek∥ in the CSE embedding space. Given the
set {(ut, X̂NNe(ut))} of pixel-to-vertex correspondences, PnP-RANSAC [20] es-
timates the best camera PPnP

t aligning the projections of the vertex points with
their corresponding pixels.

In order to increase robustness to occasional failures of PnP caused by in-
accurate CSE predictions, we employ a collective pose refinement that finds a
single global rigid transformation gPnP ∈ SE(3) aligning the sequence of PnP-
estimated cameras (PPnP

t )Tt=1 with the scene SfM cameras (P SfM
t )Tt=1 (the SfM

cameras are detailed in the next section). The latter then initializes the root-rigid
transformation of each frame, i.e., ∀t : g0t = gPnP.

3.3 Shape Fitting

We now detail the second fine-fitting stage, which optimizes all shape parameters
(β, θt, ψ) given the initial poses g0.

Factoring the rigid pose. Even with near-perfect initialization of the root
rigid pose, it is challenging to converge to a good solution when, as done in pre-
vious works [39,40], the rigid component gt = g0t ∈ SE(3) of the rendering camera
Pt is solely represented with the root transformation g0t . Such optimization is
challenging because g0t has to represent the animal pose and also compensate for
complex camera motions such as the jitter caused by unstable handling.

Instead, we factor the extrinsics gt = gcam
t · g0t of each rendering camera

Pt as a composition of the camera motion gcam
t ∈ SE(3) w.r.t. the rigid scene

background and the motion g0t ∈ SE(3) of the dog w.r.t. the background. Here,
gcam
t := gSfM

t is fixed to the SfM camera gSfM
t estimated by COLMAP [41] which

we empirically found to be very accurate. Offloading the camera estimate to
SfM, we are then left with the simpler task of regressing the temporally-smooth
rigid animal motion g0t .

CSE-guided fine shape fitting. The second fine fitting stage outputs all pa-
rameters (β, θt, ψ) by optimizing the shape predictor θMLP and the implicit shape



10 Sabathier, Mitra, Novotny

ψ using the following loss function:

T∑
t=1

(Lcse
t + Lkp

t + Lphoto
t + Lmask

t + Lreg
t ). (5)

The latter calculates frame-specific losses L·
t and sums them over all T training

images. The next paragraphs detail each loss term.

(i) CSE-keypoint loss. Besides leveraging CSE for the pose initialization, we
also guide the fitting process with the following CSE keypoint loss:

Lcse
t =

∑
ut∈Mt

∥ut − PtF (V, β, θt)NNe(ut)∥, (6)

integrating the reprojection distances between each foreground pixel ut ∈ Mt

and the corresponding 2D projections PtF (V, β, θt)NNe(ut) of ut’s CSE corre-
spondence NNe(ut) on the mesh F (V, θt, β)NNe(ut). The mesh is deformed with
parameters θt = θMLP(τ(t)) given by the pose predictor θMLP for time-stamp
τ(t) of the frame t. Here, Mt ∈ {0, 1}H×W corresponds to the foreground seg-
mentation extracted with a pre-trained segmenter [4].

(ii) Sparse-keypoint loss. We complement the main CSE-keypoint training
signal with the standard sparse-keypoint loss Lkp

t =
∑NJ

k=1 ∥h(It)k−PtJk∥, min-
imizing the distance between the projection PtJk and the detection h(It)k of
the j-th SMAL joint Jk = F (Ĵ , β, θt)k in the articulation of the image It. Here
h(It) ∈ RNJ×2 denotes the 2D keypoint detections from BARC’s sparse dog
keypoint detector [39]. We discovered that sparse keypoints improve fitting on
thin body structures, such as paws, where the CSE detections are less accurate.

(iii) Photometric loss. To train the appearance predictor, and to provide an
additional supervision for fine 3D fitting, we minimize the photometric loss:

Lphoto
t = LPIPS(Mt ⊙ It,R(Pt, F (V, θt, β),F , ψMLP)), (7)

comprising the Learned Perceptual Image Patch Similarity [60] (LPIPS) between
the masked ground-truth image Mt ⊙ It and the RGB render of the posed mesh
F (V, θt, β) colored by the implicit duplex-mesh MLP ψMLP.

(iv) Chamfer mask loss. Similar to [3, 39, 40], we minimize a silhouette loss
Lmask
t :

Lmask
t = dChamfer({ut|ut ∈Mt}, {PtXk|Xk ∈ F (V, θt, β)}), (8)

evaluating Chamfer distance between the set of occupied 2D pixels ut ∈ Mt of
the g. t. mask Mt, and the 2D projections of the posed-mesh vertices F (V, θt, β).
(v) Shape regularizers. To avoid implausible mesh articulations, we also em-
ploy shape regularization loss Lreg

t = Larap
t +Ledge

t , comprising the As-Rigid-As-
Possible (ARAP) regularizer Larap

t [43], and the edge-length penalty Ledge
t [16]

enforcing local rigidity of the posed template. See supplementary for details.
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Fig. 5: Qualitative comparison. We note that, unlike template-based approaches,
the reconstructed meshes from RAC are very far from the actual shape of a dog. To
evaluate temporal consistency, please refer to the result videos.

https://remysabathier.github.io/animalavatar.github.io/
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Table 1: Average results on 50 sequences from COP3D and 39 sequences from APTv2.
Quality of pose estimates is measured by IoU, IoUw5, errtrack; appearance quality is
measured by PSNR, PSNRw5, LPIPS. Note that BARC and BITE only estimate pose
and hence we cannot evaluate appearance quality, indicated by ‘×’.

Dataset CoP3D [42] APTv2 [56]

IoU ↑ IoUw5 ↑ PSNR ↑ PSNRw5 ↑ LPIPS ↓ errtrack ↓

BARC [39] 0.75 0.47 × × × 0.047
BITE [40] 0.81 0.59 × × × 0.047
RAC [55] 0.76 0.52 21.86 17.51 0.164 0.093

Ours 0.84 0.79 22.12 19.40 0.041 0.035

4 Experiments

Datasets. We evaluate all models on COP3D [42], an open-source dataset con-
taining fly-around videos of pets annotated with cameras and segmentation
masks. We select a subset of 50 dog videos with a variety of poses, movements
and textures. Each test video contains 200 frames, which we split to the training
and test sets by considering contiguous blocks of 15 frames as train, interleaved
by blocks of 5 frames as test (we evaluate the impact of this protocol in Tab. 3).
We evaluate all models at 256×256 resolution.

We also propose a tracking evaluation using APTv2 [56], a comprehensive
dataset that includes videos featuring 30 distinct animal species in motion. Each
video frame is annotated with 17 keypoints, which we use as ground-truth for
quantitative evaluation. All videos in the dataset have a consistent length of
15 frames. We restrict to a subset of 39 sequences, where the video contains a
single-instance of a dog.

Metrics. On COP3D [42], we report three evaluation metrics assessing the qual-
ity of the predicted shape and texture: (i) IoU reports the average over the
intersection-over-union between the silhouette render of the posed shape St and
the ground truth mask Mt computed for each frame t; (ii) PSNR computes the
average peak-signal-to-noise ratio between the renders Īt of the fitted shape at
time t, and the ground truth image It; and (iii) LPIPS [60] is a perceptual met-
ric that measures the average visual similarity between the rendered images Īt of
the fitted shape at time t, and the ground truth images It. This metric is partic-
ularly useful as it takes into account human visual perception and the structural
information of the images, providing a more accurate measure of visual similar-
ity compared to PSNR. Additionally, we report worst 5% variant PSNRw5,
IoUw5. On APTv2 [56], we evaluate errtrack measuring the tracking error of
the annotated keypoints via the following protocol: (i) On the first frame, we
pair each ground-truth keypoint kp0i with a vertex vi ∈ R3 on the mesh via the
predicted pose. (ii) On the remaining frames, we compute L2 distance between
ground-truth keypoints and the projection of paired vertices.
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Fig. 6: Texture transfer. Models optimized on a scene can be re-animated via the
template articulations. We demonstrate shape and motion projection from one opti-
mized scene to other textures.

Baselines. First, we compare to template-based reconstructors BARC [39] and
BITE [40] which, similar to us, predict parameters of the SMAL model, but take
as input only a single image (frame). Here, BITE extends BARC with a test-time
iterative refinement. Secondly we compare to RAC [55], which is a template-free
reconstructor with deformable shape and texture priors learned by observing
various animals in videos. For fair comparison, we execute their shape/texture
training pipeline on the original training set extended with our CoP3D videos.
The quality of our textures can only be directly compared to RAC’s model,
which also includes texture, but we cannot compare them to BITE or BARC
because they only output 3D shapes.

Results. Table 1 contains the results of our experiments on COP3D and APTv2.
On COP3D, our method outperforms BARC,BITE and RAC in the quality of the
predicted texture (LPIPS). In terms of IoU, we outperform BARC and RAC, and
achieve similar performance to BITE. However, since our method is temporally-
consistent, we significantly outperform BITE on worst 5% IoU. On APTv2 [56],
our method outperforms BARC, BITE and RAC on the tracking evaluation.
We note that RAC achieves significantly worst than all the other methods. We
argue that this is caused by the poor quality of the rendered shape. We provide
qualitative comparison in Fig. 5 and videos for visual evaluation.

Ablation study. To validate our design choices, we ablate individual compo-
nents of our model and record the incurred changes in performance. (i) Loss
ablation. In Tab. 2, we remove each loss term of Equation 5 and report the re-
sulting PSNR/LPIPS/IoU. The results indicate a performance drop when any
loss is removed, which confirms the merit of each loss. (ii) Motion factorization.
We also demonstrate the benefits of our factorization of measured rigid motion

Table 2: Ablation on CoP3D reporting performance with various loss terms re-
moved and without camera motion factorization (gcam

t = g0t ).

w/o Lchamfer Lcse Lkeypoint Lcolor Larap Ledge gcam
t = g0t Ours

IoU ↑ 0.70 0.81 0.80 0.81 0.81 0.83 0.72 0.84
PSNR ↑ 20.65 20.89 21.54 21.62 21.61 21.88 19.12 22.40
LPIPS ↓ 0.060 0.051 0.048 0.047 0.047 0.045 0.067 0.038

https://remysabathier.github.io/animalavatar.github.io/
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to the motion of the camera and the motion of the shape (Sec. 3.3). Specifically,
we design an experiment where the rigid motion gt of each rendering camera
Pt is represented with the root rigid component g0t of the SMAL deformation
coefficients θt, i.e., ∀t ∈ [1..T ]gcam

t = g0t , ignoring the SfM estimate gSfM
t . Results

in Tab. 2 indicate that this leads to a significant decrease in performance across
all metrics justifying our rigid motion factorization.

Varying frame-split difficulty. For COP3D evaluations [42], we follow the
original train/test split protocol (contiguous blocks of 15 frames as train, inter-
leaved by blocks of 5 frames as test). Removing excessive visible frames would
render the problem unsolvable (e.g. it is impossible to guess the exact motion
of a dog’s legs given two boundary frames that are too far apart). Regardless,
in Tab. 3 we evaluate the impact of reducing the supervision with two addi-
tional splits. Our method outperforms RAC on all splits, thus showing stronger
robustness to weaker supervision.

Table 3: Evaluation with a varying train/test frame split on COP3D. Note that our
method consistently beats RAC across a range of train/test splits.

Split Train/Test IoU ↑ IoUw5 ↑ PSNR ↑ PSNRw5 ↑ LPIPS ↓

15/5 RAC [55] 0.76 0.52 21.86 17.51 0.164
Ours 0.84 0.79 22.12 19.40 0.041

15/10 RAC [55] 0.71 0.4 21.54 16.46 0.175
Ours 0.82 0.69 22.07 18.54 0.048

15/15 RAC [55] 0.66 0.37 20.67 15.38 0.196
Ours 0.81 0.63 21.62 17.81 0.056

5 Discussion and Conclusions

Limitations. Our method, based on the CSE-SMAL template, is currently lim-
ited to reconstructing quadrupeds. Qualitative evaluations using COP3D show
that thin body structures, particularly ears, are inaccurately reconstructed due
to limitations in CSE predictions. Additionally, the expressiveness of the SMAL
template restricts our reconstruction capabilities. For texture reconstruction, we
rely solely on the input signal and do not inpaint unobserved areas, resulting in
partial texturing from short videos where the animal is not fully visible.

Conclusion. In this paper, we proposed a novel method for generating textured
animatable 3D mesh models from a casually captured monocular video of a dog.
Our method augments the animatable SMAL mesh template with Continuous
Surface Embeddings to setup a surface coordinate system which, in combination
with a pretrained image-to-CSE predictor, allows to estimate accurate image-
to-mesh correspondences that eventually lead to significantly more accurate fits.
The better shape fitting then enables us to optimize an implicit opacity-color
texture supported by a scaffold defined by the mesh in its rest pose. Our experi-
ments reveal performance superior to existing template-free and template-based
approaches on the challenging CoP3D dataset.
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