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Abstract. Reliably detecting when a deployed machine learning model
is likely to fail on a given input is crucial for ensuring safe operation.
In this work, we propose DECIDER (Debiasing Classifiers to Identify
Errors Reliably), a novel approach that leverages priors from large lan-
guage models (LLMs) and vision-language models (VLMs) to detect fail-
ures in image classification models. DECIDER utilizes LLMs to specify
task-relevant core attributes and constructs a “debiased” version of the
classifier by aligning its visual features to these core attributes using a
VLM, and detects potential failure by measuring disagreement between
the original and debiased models. In addition to proactively identify-
ing samples on which the model would fail, DECIDER also provides
human-interpretable explanations for failure through a novel attribute-
ablation strategy. Through extensive experiments across diverse bench-
marks spanning subpopulation shifts (spurious correlations, class imbal-
ance) and covariate shifts (synthetic corruptions, domain shifts), DE-
CIDER consistently achieves state-of-the-art failure detection perfor-
mance, significantly outperforming baselines in terms of the overall Matthews
correlation coefficient as well as failure and success recall. Our codes can
be accessed at https://github.com/kowshikthopalli/DECIDER/

Keywords: Failure Detection · Vision-Language Models · Large-language
Models

1 Introduction

A crucial step in ensuring the safety of deployed models is to proactively identify
if a model is likely to fail for a given test input. This enables the implementation
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of appropriate correction mechanisms without impacting the model’s operation,
or even deferring to human expertise for decision-making. While failures in vision
models can be attributed to a variety of factors, the most significant cause is the
violation of data distribution assumptions made during training [19], which is the
focus of this work. In general, data comprises both task-relevant core attributes
and irrelevant nuisance attributes, and they are never explicitly annotated. Con-
sequently, models can fail to generalize if (i) the training data contains spurious
correlations (to nuisance attributes) that do not appear at test time, (ii) class-
conditional distribution of nuisance attributes can arbitrarily change between
train and test data (e.g., patient race imbalance in clinical datasets), or (iii)
novel attributes emerge only at test time (e.g., style changes). Note that, when
the class-conditional distributions of core attributes themselves change between
train and test data, it leads to the more challenging scenario of concept shifts,
and is not considered in this work. Nevertheless, detecting failures across all
these scenarios is known to be challenging [8, 20, 51], and hence there has been
a surge in research interest [6, 10,15,17,21].

We begin by acknowledging that it is not only difficult, but also inefficient,
to describe such nuisance attribute discrepancies solely using visual features. In
this regard, we explore the utility of large language models (LLMs) and vision-
language models (VLMs) in characterizing data attributes through a combina-
tion of visual and natural language descriptors. Subsequently, one can leverage
these descriptors to design powerful failure detectors that systematically discern
gaps in model generalization. Based on this idea, we develop DECIDER (Debiasing
Classifiers to Identify Errors Reliably), a new approach for failure detection in
vision models. At its core, DECIDER (i) utilizes LLMs (e.g., GPT-3 [1]) to specify
task-relevant core attributes, (ii) uses a VLM (e.g., CLIP [37]) to construct a
“debiased” version of the task model by aligning its visual features to the core at-
tributes, and (iii) detects failure by measuring disagreement between the original
and debiased models for any given test input.

Additionally, DECIDER can be used to provide explanations for failure cases.
This is done by employing an attribute-ablation strategy that adjusts the relative
importance of core attributes such that the prediction probabilities of the debi-
ased matches the original model. Our extensive empirical evaluation shows that
our method achieves state-of-the-art performance in detecting failures across var-
ious datasets and test scenarios. In summary, our work provides early evidence
for the utility of large-scale foundation models as priors for designing novel safety
mechanisms.

2 Related Work

Failure Detection. Failure detection in classification involves identifying in-
correct predictions made by the model [15,36,54]. This problem ultimately boils
down to identifying an appropriate metric or a scoring function that can delin-
eate failed samples from successful ones. Early work involves using simple scores
directly derived from the predictions of the model such as Maximum Softmax
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Fig. 1: A visual illustration of the different failure scenarios we consider. These include
scenarios when the model relies on spurious correlations present in the data i.e., when
an attribute is spuriously correlated with the label (e.g., color of hair and gender).
Another cause of failure is when the training data has class imbalance, leading to poorer
generalization on images from the under-sampled class. Lastly, another important cause
of failures are when the distribution of the test data is different from the training data.
This can range from natural image corruptions to covariate shifts.

Probability (MSP) [15], predictive entropy [21] and energy [25] to identify failed
samples. More recent work focuses on scores that quantify failure by evaluat-
ing the local manifold smoothness [33] around a given sample and those that
are based on agreement of a sample between different components of an en-
semble [18, 45]. However, such metrics can become unreliable to characterize
failure as the model used to derive them can be potentially mis-calibrated and
unreliable [11,29]. Failure detection has also been studied under the lens of gen-
eralization gap estimation [10,32] where the goal is to predict the accuracy of the
model on an unlabeled target distribution using distributional metrics derived
from a number of calibration datasets.

Failure Detection with Vision Language Foundation Models. Visual-
Language Models (VLMs) [24, 38] are pre-trained on a large-corpora of image-
text captions using a self-supervised objective. VLMs facilitate flexible adapta-
tion to downstream tasks through zero-shot transfer or fine-tuning, demonstrat-
ing enhanced performance in zero-shot classification and OOD detection [5, 9,
28, 30, 47, 49, 50]. Recently, VLMs have been used as a lens to understand the
failure modes and weaknesses of any pre-trained model. For instance, the au-
thors of [17] fit a post-hoc failure detector on the latent spaces of the VLM to
estimate whether a sample has been correctly identified or not by the pre-trained
classifier. The detector is then used to identify the directions of classifier failure
modes. However, this approach requires a carefully tailored calibration set to fit
the detector which is often unavailable in practice. On the other hand, the au-
thors of [4] demonstrate that the latent space agreement between the pre-trained
model and the VLM is a potential indicator for failure. In contrast, our paper
aims to perform failure detection by first designing an improved classifier lever-
aging the VLM latent space and assessing the agreement between the classifier
and its enhanced version while providing explanations for failure.
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3 Background

Preliminaries. Let F denote a multi-class classifier with parameters θ, trained
on a dataset D = (xi, yi)

M
i=1 comprising M samples. Here, xi ∈ X , is a 3 channel,

input RGB image, and yi ∈ Y is the corresponding label, where Y is the set of
class labels i.e., Y = {1, 2, . . . , C}. Here, C denotes the total number of distinct
classes. The classifier F operates on the input to produce the logits F(x) cor-
responding to every class which is followed by a softmax operation to estimate
output probabilities p(y = c|x) where c corresponds to the class index.

In this paper, we consider the problem of failure detection in classification
models, where the source of failure arises due to the following scenarios (Fig. 1)
- (i) Input level shifts where the training and test images share identical condi-
tional output distributions i.e., Ptr(y|x) = Pte(y|x) but different input marginals
Ptr(x) ̸= Pte(x). Here, the test data can corresponds to domain variations or im-
age corruptions. (ii) Sub-population shifts (a) Spurious correlation where the
labels are non-causally associated [51] with certain input characteristics or at-
tributes in the training data over others leading to learning non-generalizable
decision rules. For instance, let a1 and a2 correspond to two attributes of an
image x and the training distribution is such that Ptr(y|x, a1) >> Ptr(y|x, a2).
This model is susceptible to spurious correlations between the inputs and the
targets and can fail during test time when Pte(y|x, a1) = Pte(y|x, a2), (b) Class
imbalance where the number of examples in a given class can be significantly
greater than those present in another i.e., Ptr(y = c1) >> Ptr(y = c2). This does
not allow the classifier to optimally capture the image statistics and semantics
of class c2 leading to sub-optimal generalization performance.
Failure Detector Design. Failure detection is a binary classification problem
of identifying whether an input sample has been correctly predicted or not by
the model. We define our failure detector G as follows,

G(x; θ, τ) =
{

failure, if s(x; θ) < τ,

success, if s(x; θ) ≥ τ .
(1)

Here, s(.) is a scoring function derived from the classifier F that assigns higher
values for correctly identified samples and vice-versa and τ is the user-controlled
threshold for detection. Following standard practice from the generalization gap
literature [7, 45], we identify τ such that

∑
i I(s(xi; θ) ≥ τ) approximates the

true accuracy of the held-out validation dataset.
Contrastive Language-Image Pre-training (CLIP). CLIP [37] is a vision-
language model trained on large corpus of image-text pairs with self-supervised
learning. It aligns images with natural language descriptions in a shared em-
bedding space, enabling zero-shot learning and fine-tuning for downstream tasks
such as image captioning [43] and visual question answering [12,41,42,52]. CLIP
employs image (I(.)) and text (T (.)) encoders to generate embeddings (zI and
zT ). For zero-shot inference, it computes the cosine similarity (cos sim) between
image and text embeddings. This similarity yields class-specific logit scores for
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<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·
<latexit sha1_base64="dqXLGxezMoICwcl+QiqTydfFNVM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyItC6LblxWsA9sh5JJM21okhmSjFCH/oUbF4q49W/c+Tdm2llo64HA4Zx7ybkniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD32BzViJ9Gk2KFfcqjsHWiVeTiqQozkof/WHEUkElYZwrHXPc2Pjp1gZRjidlfqJpjEmEzyiPUslFlT76TzxDJ1ZZYjCSNknDZqrvzdSLLSeisBOZgn1speJ/3m9xIRXfspknBgqyeKjMOHIRCg7Hw2ZosTwqSWYKGazIjLGChNjSyrZErzlk1dJ+6Lq1aq1u8tK4zqvowgncArn4EEdGnALTWgBAQnP8ApvjnZenHfnYzFacPKdY/gD5/MHJxWRQA==</latexit>z <latexit sha1_base64="ihbbppCF5ChmXLoJz/ahYcgJBsk=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquSiFQ3QrEbwU0Fe4EmDZPptB06uTAzEUoI+CpuXCji1udw59s4bbPQ1h8GPv5zDufM78ecSWVZ30ZhZXVtfaO4Wdra3tndM/cPWjJKBKFNEvFIdHwsKWchbSqmOO3EguLA57Ttj+vTevuRCsmi8EFNYuoGeBiyASNYacszj5wUKS8dZ706cjIN13bWu/PMslWxZkLLYOdQhlwNz/xy+hFJAhoqwrGUXduKlZtioRjhNCs5iaQxJmM8pF2NIQ6odNPZ+Rk61U4fDSKhX6jQzP09keJAykng684Aq5FcrE3N/2rdRA2u3JSFcaJoSOaLBglHKkLTLFCfCUoUn2jARDB9KyIjLDBROrGSDsFe/PIytM4rdrVSvb8o127yOIpwDCdwBjZcQg1uoQFNIJDCM7zCm/FkvBjvxse8tWDkM4fwR8bnD2zClSg=</latexit>

{tCk }K
k=1

<latexit sha1_base64="gtcZPfNAnAr6MK3gpBDLVB8Owag=">AAAB/nicbZDLSsNAFIYnXmu9RcWVm8EiuCqJSHUjFN0IbirYCzRpmEwn7dDJhZkToYSAr+LGhSJufQ53vo3TNgtt/WHg4z/ncM78fiK4Asv6NpaWV1bX1ksb5c2t7Z1dc2+/peJUUtaksYhlxyeKCR6xJnAQrJNIRkJfsLY/upnU249MKh5HDzBOmBuSQcQDTgloyzMPnQyDl43yno2dXMOVnffuPLNiVa2p8CLYBVRQoYZnfjn9mKYhi4AKolTXthJwMyKBU8HyspMqlhA6IgPW1RiRkCk3m56f4xPt9HEQS/0iwFP390RGQqXGoa87QwJDNV+bmP/VuikEl27GoyQFFtHZoiAVGGI8yQL3uWQUxFgDoZLrWzEdEkko6MTKOgR7/suL0Dqr2rVq7f68Ur8u4iihI3SMTpGNLlAd3aIGaiKKMvSMXtGb8WS8GO/Gx6x1yShmDtAfGZ8/ULSVFg==</latexit>

{t1k}K
k=1

Cosine  Similarity

<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·

<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>

·
<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>

·
<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>

·

Pretrained Classifier

Prior Induced Model

Aggregation

Aggregation

A photo of a dog with  ________
{"tail", "snout", "tongue out”, 

“round eyes”}

A photo of a cat with  ________
{"whiskers", "pointy ears", "paws”,  

“slitted eyes”}

<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·
<latexit sha1_base64="dqXLGxezMoICwcl+QiqTydfFNVM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyItC6LblxWsA9sh5JJM21okhmSjFCH/oUbF4q49W/c+Tdm2llo64HA4Zx7ybkniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbjK/80iVZpG8N9OY+gKPJAsZwcZKD32BzViJ9Gk2KFfcqjsHWiVeTiqQozkof/WHEUkElYZwrHXPc2Pjp1gZRjidlfqJpjEmEzyiPUslFlT76TzxDJ1ZZYjCSNknDZqrvzdSLLSeisBOZgn1speJ/3m9xIRXfspknBgqyeKjMOHIRCg7Hw2ZosTwqSWYKGazIjLGChNjSyrZErzlk1dJ+6Lq1aq1u8tK4zqvowgncArn4EEdGnALTWgBAQnP8ApvjnZenHfnYzFacPKdY/gD5/MHJxWRQA==</latexit>z <latexit sha1_base64="ihbbppCF5ChmXLoJz/ahYcgJBsk=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksgquSiFQ3QrEbwU0Fe4EmDZPptB06uTAzEUoI+CpuXCji1udw59s4bbPQ1h8GPv5zDufM78ecSWVZ30ZhZXVtfaO4Wdra3tndM/cPWjJKBKFNEvFIdHwsKWchbSqmOO3EguLA57Ttj+vTevuRCsmi8EFNYuoGeBiyASNYacszj5wUKS8dZ706cjIN13bWu/PMslWxZkLLYOdQhlwNz/xy+hFJAhoqwrGUXduKlZtioRjhNCs5iaQxJmM8pF2NIQ6odNPZ+Rk61U4fDSKhX6jQzP09keJAykng684Aq5FcrE3N/2rdRA2u3JSFcaJoSOaLBglHKkLTLFCfCUoUn2jARDB9KyIjLDBROrGSDsFe/PIytM4rdrVSvb8o127yOIpwDCdwBjZcQg1uoQFNIJDCM7zCm/FkvBjvxse8tWDkM4fwR8bnD2zClSg=</latexit>

{tCk }K
k=1

<latexit sha1_base64="gtcZPfNAnAr6MK3gpBDLVB8Owag=">AAAB/nicbZDLSsNAFIYnXmu9RcWVm8EiuCqJSHUjFN0IbirYCzRpmEwn7dDJhZkToYSAr+LGhSJufQ53vo3TNgtt/WHg4z/ncM78fiK4Asv6NpaWV1bX1ksb5c2t7Z1dc2+/peJUUtaksYhlxyeKCR6xJnAQrJNIRkJfsLY/upnU249MKh5HDzBOmBuSQcQDTgloyzMPnQyDl43yno2dXMOVnffuPLNiVa2p8CLYBVRQoYZnfjn9mKYhi4AKolTXthJwMyKBU8HyspMqlhA6IgPW1RiRkCk3m56f4xPt9HEQS/0iwFP390RGQqXGoa87QwJDNV+bmP/VuikEl27GoyQFFtHZoiAVGGI8yQL3uWQUxFgDoZLrWzEdEkko6MTKOgR7/suL0Dqr2rVq7f68Ur8u4iihI3SMTpGNLlAd3aIGaiKKMvSMXtGb8WS8GO/Gx6x1yShmDtAfGZ8/ULSVFg==</latexit>

{t1k}K
k=1

Cosine  Similarity

<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·<latexit sha1_base64="GTunUSAlBTD5TnT8AzXuOQvDKdM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCPo0VDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/cnI69</latexit>·
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Fig. 2: DECIDER for failure detection. (Left) DECIDER trains a Prior Induced Model
(PIM) ϕ, identical to the architecture of the pre-trained classifier F , utilizing priors
from a VLM model. (Top Right) The disagreement between the predictions of ϕ and
F serves as an indicator for failure detection. (Bottom Right) By adjusting attribute
level weights, DECIDER offers explanatory insights into failures.

zero-shot classification, where the prediction probability p(y|x) is calculated us-
ing softmax.

4 Proposed Approach

4.1 Motivation

Typically, a classifier F is trained on a dataset D to learn the mapping be-
tween inputs and target labels. The datasets contain both task-relevant core
attributes and irrelevant nuisance attributes, which are not explicitly annotated.
Consequently, the decision rules of the classifier could rely on nuisance attributes
leading to poor generalization. For e.g., the model can fail to generalize if the
training data contains spurious correlations with nuisance attributes that do
not appear during testing. We underscore that this problem of reliance on nui-
sance attributes arises due to the difficulty in describing them solely using visual
features.

To address this, we go beyond using only visual features and propose to
leverage a combination of vision and language descriptors through the use of
LLMs and VLMs and design failure detectors that discern the gap in model
generalization. In this section we describe our novel strategy for failure detection
which involves training a classifier referred to as the Prior Induced Model (PIM)
ϕ with the aid of LLMs and VLMs. We believe that the prior knowledge induced
by VLMs will help PIM associate task-relevant core attributes. We first describe
our paradigm that incorporates foundation models in classifier training. We then
develop a prediction disagreement based strategy between PIM and the original
classifier to conduct failure detection. Finally, we elucidate the capability of our
approach in extracting failure explanations in order to support interpretability.
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4.2 Incorporating Foundation Model Priors

A key challenge in traditional classification models is the direct mapping of
images to coarse labels which encapsulate several attributes. For instance, in
distinguishing between a dog and a cat, the label “dog” encompasses attributes
like “wagging tail” and “snout”, while “cat” includes “whiskers” and “pointy ears”.
Without explicit access to such detailed attribute information and due to poten-
tial biases in the training data, models are susceptible to rely on overly simplistic
decision rules. In contrast, VLMs such as CLIP offer capabilities to encode both
image and textual attribute descriptions into a unified latent space that is en-
riched to support meaningful image-text attribute associations.

To improve the effectiveness of classification model training, we hypothesize
that aligning the model’s visual features with the textual descriptions of core
attributes related to the class of interest in the VLM latent space can enhance
training. This alignment is expected to equip the classifier with the ability to
develop decision-making rules that are both more reliable and generalizable,
while also reducing the influence of existing biases.

To achieve this, we introduce the PIM model ϕ, which is guided by the LLM
and VLM based priors (see Fig. 2 left). The architecture of PIM closely resembles
that of its counterpart F , with the notable distinction being that its final layer
projects onto the VLM latent space. This projection supports the alignment
with the textual descriptions of class-level attributes, thereby harnessing the
linguistic capabilities of foundational models. PIM is specifically engineered to
accept early-stage features from F , denoted as hl, which are then processed
through PIM’s analogous layers to produce the image encoding z within the
VLM latent space. For instance, when both F and ϕ are based on the ResNet
architecture [13], the output from block 1 of F serves as the input for block 2
in ϕ.

It must be noted that the success of our approach relies upon the quality
of the fine-grained text attributes extracted for every class. While there exists
strategies [27] that are capable of extracting image-level textual descriptions,
they usually involve the text decoders in the loop which can be computationally
expensive. Therefore, we resort to using Large Language Models (LLMs) to
compute task-specific attribute descriptions offline.

4.3 Generating Task-specific Core-attribute Descriptions

LLMs [1, 44] have demonstrated their utility across a range of language tasks
[31,35,39,48] and are particularly adept at contextual understanding, and gener-
ating coherent text even with descriptive prompting. To extract the class-specific
attribute descriptions, we query GPT-3 [1] with the prompts “List visually de-
scriptive attributes of <CLASS>.” This allows us to gather a set of K attributes
Ac = {ack}Kk=1 for every class c.
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4.4 Training PIM

(i) Computing Cosine Similarities. We first compute the cosine similarity
scores between the image embedding z produced by PIM for a given image and
the text embeddings associated with attribute k from each class c. It is given by,

ΩAc = {ωc
k}Kk=1 where ωc

k = cos sim(z, eck) (2)

Here, the text embeddings EAc = {eck}Kk=1 for each attribute of every class are
obtained using the CLIP text encoder.
(ii) Attribute Similarity Aggregation. Subsequently, we aggregate these at-
tribute similarity scores, ΩAc , for each class c to obtain coarse prediction logits
corresponding to the class label y ∈ Y. We investigate two aggregation strategies
namely - (i) Class-level mean and (ii) Class-level max to consolidate these scores
into final class predictions which are eventually normalized using softmax. These
strategies enable a more refined and attribute-aware determination of classifica-
tion outcomes.
(iii) Optimization Objective. The optimization is primarily guided by the
cross-entropy loss which evaluates the discrepancy between the predicted proba-
bilities from PIM and the ground truth label. In addition, we include consistency
driven augmentations namely CutMix [53] and AugMix [16] to improve its ro-
bustness. Additionally, we upweight the losses corresponding to the instances
where (i) the biased classifier F predicts accurately, but ϕ does not and (ii) the
biased classifier F does not predict accurately, as well as ϕ does not, within a
training batch.

4.5 DECIDER: Failure Estimation Using PIM

To assess the failure of the biased classifier F , we compute the disagreement
between PIM and F based on the discrepancy between their predictions. This
disagreement score is calculated as the cross-entropy between the sample-level
probability distributions between the two models with PIM being the reference
distribution given by s(x) = −∑C

c=1 p(y = c|x). log(q(y = c|x)) where p(.) and
q(.) represent the predicted probabilities of F and PIM, respectively.

4.6 Extracting Explanations for Failure

Our failure explanation protocol is designed to elucidate the underlying reasons
behind the discrepancies between predictions of F and ϕ. The primary objective
is to identify the optimal subset of attributes necessary for aligning the PIM’s
prediction probabilities with those of the task model. To achieve this, we im-
plement an attribute ablation strategy where we iteratively adjust a group of
weights corresponding to each attribute across all classes. Our iterative process
begins by initially assigning uniform weights to every attribute for each class
within a batch. These weights are then optimized by minimizing the Kullback-
Leibler (KL) divergence between the probability distributions predicted by F
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and those adjusted by PIM, accounting for the influence of the weighted at-
tributes. As the algorithm converges, the weights will highlight those attributes
that have significant impact on the predictions of F , providing insights into the
features considered by F when making decisions. Fig. 2 right illustrates our
failure explanation mechanism.

5 Empirical Evaluation

We conduct comprehensive evaluations of DECIDER using various classification
benchmarks and assess performance under various failure scenarios with differ-
ent architectures. We employ OpenAI’s CLIP ViT-B-32 model in all experi-
ments [38].

5.1 Experimental Setup

Datasets. Our experiments are centered around datasets reflecting four common
sources of model failure:

• Input-Level Shifts: CIFAR100-C [14], comprising 19 types of corruptions
at five severity levels over the CIFAR100 test images across 100 categories.

• Spurious Correlations: (1) Waterbirds [51] involves classifying images as
‘water bird’ or ‘land bird’. The training data offers biases tied to the back-
ground (water/land). (2) CelebA [26, 51] involves classifying if individuals
have blond hair or not, with labels spuriously correlated with gender.

• Class Imbalance: We modify the Kaggle Cats vs Dogs dataset [3], adjusting
the distribution to create a training imbalance with 5,989 cat and 19,966 dog
images for training, while maintaining balanced test data.

• Distribution Shifts: (1) PACS [23] includes images from four domains
(Photo, Art-painting, Cartoon, Sketch), to be classified into seven categories.
As two large-scale benchmarks, we consider (2) DomainNet [34] which con-
tains images from 345 categories from 6 domains (Real, Painting, Infograph,
Quickdraw, Cartoon and Sketch) and (3) ImageNet-Sketch [46] benchmark
which contains sketch images from 1000 ImageNet [40] classes.

Model Architectures. We consider the ResNet-50 architecture for CelebA
dataset and for all other datasets, we employ ResNet-18 trained on their re-
spective datasets as the original classifier F . In the supplementary, we study
the performance of DECIDER on more architectures and we provide additional
training details.

5.2 Baselines

We consider different baselines that use sample-level scores s for failure estimation:-
(i) Maximum Softmax Probability (MSP) [15] which is given by s(x) = max

j
p(y =

j|x), (ii) Predictive Entropy (Ent) is essentially the entropy among the predic-
tions of a sample and is given by s(x) = −∑K

j=1 p(y = j|x).log(p(y = j|x)),
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Fig. 3: Results on failure detection across different benchmarks - (a) CIFAR100,
and image corruptions on CIFAR-100-C, and (b) subpopulation shifts from spurious
correlations on Waterbirds, CelebA datasets, and class imbalance on Cats vs Dogs.
DECIDER consistently outperforms baselines in terms of the overall Matthew’s Correla-
tion Coefficient (MCC) as well as achieving higher failure and success recalls.

(iii) Energy [25] score is defined by s(x) = −T.log
∑K

j=1 expFθ(xj). Following
standard practice, we consider T = 1 in all our experiments. (iv) Generalized
Model Disagreement (GDE) [2, 18] - Let Fθ1 ,Fθ2 . . .Fθr denote r models trained
with different random seeds. Let Fθ1 denote the base classifier. Then the score
is computed as s(x) = 1

r

∑r
i=1

1
r−1

∑r
j ̸=i I(Fθi ̸= Fθj ). We set r to 5.

It must be noted that we utilize negative versions of entropy and energy
to reflect the fact the samples that are correctly predicted are associated with
higher scores.

5.3 Metrics

We consider the following metrics to evaluate failure detection performance:
(i) Failure Recall (FR) which corresponds to the fraction of samples that have
been correctly identified as failure, (ii) Success Recall (SR) corresponds to the
fraction of samples that have been correctly predicted as successful. The trade-off
between the two metrics is indicative of how aggressive or conservative the failure
detector is. (iii) Matthew’s Correlation Coefficient (MCC) holistically assesses
the quality of the binary classification task of failure detection and provides a
balanced measure when the class sizes are different. It takes into account both
true and false positives and negatives respectively while assessing performance.
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(a) (b)

Fig. 4: DECIDER produces the best performance on covariate shifts.. (left) Com-
parison of DECIDER against the best baseline in terms of the difference in MCC on the
PACS dataset involving covariate shifts across 4 different visual domains. (Right) Im-
provement in failure recall performance of the best performing baseline and DECIDER on
large-scale covariate shift benchmarks- DomainNet (DNet) and ImageNet-Sketch. The
classifiers and PIMs are trained on DomainNet Real and Imagenet train sets respec-
tively and evaluated on the different distribution shift datasets.

5.4 Findings

Input Shifts. Fig. 3(a) showcases the results on the CIFAR100 and CIFAR100-
C datasets. On the clean CIFAR100, DECIDER outperforms the baselines with a
superior MCC of 0.5292 for the max variant(versus 0.514 for the best baseline),
attributed to higher failure recall (0.7933) and success recall (0.7474). On the
more challenging CIFAR100-C (severity level 4), DECIDER further highlights its
efficacy by achieving an MCC of 0.4015 with max aggregation, exceeding the
top baseline (entropy) which has an MCC of 0.3766. This is due to a balanced
trade-off between failure recall (0.8448) and success recall (0.5506), distinguish-
ing DECIDER from other baselines that fail to maintain such balance. These find-
ings clearly demonstrate DECIDER as robust in detecting classifier failures amid
input-level shifts, surpassing other baselines in performance metrics.

Subpopulation Shifts. Our comprehensive evaluation addresses datasets af-
fected by various subpopulation shifts. The summarized results in Fig. 3(b) un-
derline the effectiveness of DECIDER in navigating these challenges:
Waterbirds: DECIDER achieves a high failure recall of 0.6063, outperforming the
best baseline (entropy) which has a recall of 0.4878. Importantly, DECIDER main-
tains a high success recall (0.858) with minimal compromise compared to MSP
(0.8891). The outcome is a leading MCC of 0.4598, attesting to DECIDER’s bal-
anced detection ability in environments with misleading background cues.
CelebA: With mean aggregation, DECIDER delivers the highest MCC of 0.4928,
combining a failure recall of 0.5443 with a success recall of 0.9701, showcasing
its strength in addressing gender and hair color spurious correlations.
Cats vs Dogs: Exhibiting strong performance in class imbalance, DECIDER (max
aggregation) achieves an MCC of 0.5532, significantly surpassing the top baseline
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(energy) with an MCC of 0.3428, underlining its efficacy in balanced success and
failure recall. DECIDER not only demonstrates high failure detection capability
but also ensures high success recall rates above 0.94, highlighting its proficiency
in class-imbalanced settings.

Covariate Shifts. In this section, we evaluate the performance of DECIDER in
the challenging setting of identifying failure due to covariate shifts. We first
consider the PACS dataset which contains 4 different domains. We train PIM
and derive individual thresholds for each of the four domains and evaluate its
performance across all domains. While we present detailed results for baselines
and metrics in the supplementary, in Fig. 4(a), we report the gain in MCC
scores between the best performing baseline and DECIDER. It can be seen that
DECIDER outperforms the baselines by a large margin across all the domains.
To further validate the effectiveness of DECIDER, we conducted experiments on
large-scale covariate shift benchmarks, including DomainNet and ImageNet. In
the DomainNet case, we trained the classifier and PIM on images from the
real domain and evaluated their performance on four different target domains:
Cartoon, Sketch, Painting, and Infograph. For ImageNet, we trained on the
ImageNet training dataset and assessed the performance on the challenging
ImageNet-Sketch benchmark. Fig. 4(b) presents the failure recall performance of
the best-performing baseline and DECIDER, clearly demonstrating the superiority
of our approach even when applied to large-scale datasets.

In summary, these results highlight the importance of leveraging language
priors together with priors from the VLM to construct debiased models that
reliably help detect failures across different scenarios.

6 Failure Explanation

Having empirically demonstrated the superior failure detection capabilities of
DECIDER, we now turn our attention to the task of explaining the reasons be-
hind failures. To that end, we consider the max variant of DECIDER and adjust
the influence of individual attributes to ensure that the prediction probabilities
generated by DECIDER closely mirror those of the original model as explained in
Section 4. This manipulation offers evidence of what attributes the task model
uses. For e.g., on the top left of Fig. 5, the task is to correctly identify the hair
color. Here, the classifier F incorrectly classifies the image, while PIM accu-
rately identifies the same. We observe that our optimization process reduces the
influence of core attributes such as "Browning Tresses" and "Red Highlights"
on PIM’s predictions. This manipulation serves as evidence that the biased clas-
sifier F may not have considered these crucial attributes in its decision-making
process. Similarly, in the example shown in Fig. 5, F misclassifies a Cat as a
Dog (top right) and the proposed optimization shows that the classifier has not
focused enough on the important core attributes such as “Thin Whiskers” thus
making the erroneous classification.
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Fig. 5: Failure Explanations. We explain the failures of the biased classifier F , by
manipulating the influence of individual attributes in PIM, such that the prediction
probabilities of PIM match that of F . The knowledge of the attributes whose influence
was needed to be reduced provides an indication that F has not focused on those
attributes to make its decisions. We show qualitative examples on Water birds in top
left, Cats vs dogs in top right and from CelebA dataset in bottom.

7 Analyses

Biases or insufficiency of GPT-3 attributes. The success of DECIDER relies
on the quality of the attributes generated by the LLM. To study the impact
on failure detection on the quality of text attributes, we consider two practical
scenarios: (i) GPT-3 generates irrelevant attributes: In this case, the PIM model
has the risk of learning noisy decision rules that the even the classifier might
not have; (ii) GPT provides insufficient attributes: With only partial attributes,
PIM’s predictive performance can be limited. To comprehensively evaluate the
impact of both scenarios, we employ the following protocol on the Waterbirds
dataset. For scenario (i), we add 5 randomly sampled core attributes from the
other class to the attribute set of each class. For case (ii), we remove 5 randomly
selected attributes from the attribute set of each class. We train PIM under both
these scenarios. As the results in Table 1 show, although there is a noticeable drop
in performance due to the severe attribute corruptions, DECIDER still outperforms
the best baseline (Ent) method. This demonstrates the robustness of DECIDER to
imperfect attribute sets.
Impact of Layer Selection of F on ϕ. In this study, we explore how the
performance of the PIM model ϕ is influenced by the specific layer in F from
which we extract features. This experiment uses the ResNet-18 architecture,



Leveraging Foundation Model Priors for Improved Model Failure Detection 13

Table 1: Impact of attribute quality – (i) irrelevant : add 5 nuisance attributes;
(ii) insufficient : remove 5 core attributes. Although there is a drop in performance
under attribute corruptions, DECIDER still outperforms existing baselines.

Metric Baseline (Ent) DECIDER DECIDER (irrelevant) DECIDER (insufficient)

Failure Recall 0.48 0.60 0.54 0.49

Success Recall 0.80 0.85 0.81 0.83

MCC 0.28 0.45 0.34 0.33

with models trained on the CIFAR100 and Waterbirds datasets. From the results
presented in the table in Fig. 6, using features from the early layers (layer 1 and
layer 2) of ResNet-18 yields the highest MCC (Matthews Correlation Coefficient)
scores. In contrast, leveraging features from the later layers leads to a noticeable
decline in performance. This observation suggests that the initial layers of the
network are less prone to carrying biases than the later ones, supporting the
findings from previous research [22].
Model Ensembles for Disagreement Analysis. It has been shown that the
prediction disagreement between different constituent members of a model en-
semble can serve as an indicator of failure [18,45]. In this experiment, we compare
the failure estimation performance obtained through the disagreement between
PIM and F to the performance obtained by the disagreement between an ensem-
ble (GDE). To that end, we trained five different classifiers with different initial
seeds on three different datasets: Waterbirds, CelebA, and Cat vs Dogs. Figure 6,
evidences the superiority of the proposed approaches compared to GDE.

Fig. 6: (a) Comparison of DECIDER against the failure detection performance obtained
through disagreement between predictions from an ensemble of multiple instances of
F on Waterbirds, CelebA and Cats vs Dogs datasets respectively. (b) Ablation study
analyzing the impact of using features from different layers of the base model F as
input to the Prior Induced Model (PIM) ϕ on CIFAR-100 and Waterbirds datasets.
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Impact of PIM accuracy on failure detection. Since we attempt to train
a debiased classifier, in this section, we study the impact of its accuracy on
failure detection. Table 1 in the appendix reveals that, despite the occasional
slight decrease in the predictive performance of the debiased model PIM, the
core-nuisance attribute disambiguation, which is crucial for failure detection, is
not compromised. Consequently, DECIDER consistently achieves superior failure
recall compared to the baselines.
Replacing PIM with CLIP classifiers. Given that we propose leveraging the
priors from CLIP to obtain a debiased version of the classifier, it is natural to
consider utilizing CLIP’s zero-shot classifier directly as PIM. Table 2 in appendix
demonstrates that such an approach yields poor failure detection performance
when CLIP’s zero-shot classifier is employed as PIM. This is because the visual
features and their correlations to the core attributes of CLIP can differ signifi-
cantly from the task model, thus rendering the model disagreement based failure
detection highly ineffective.

8 Conclusion

In this work, we introduced DECIDER, a novel approach that leverages LLMs
and vision-language foundation models to detect failures in pre-trained image
classification models. Our key insight was to train an improved version of the
pre-trained classifier, PIM, that learns robust associations between visual fea-
tures and class-level attributes by projecting into the shared embedding space of
a VLMs such as CLIP. By analyzing the disagreement between PIM’s predictions
and the original biased model, DECIDER can reliably identify potential failures
while offering human-interpretable explanations. Extensive experiments across
multiple benchmarks evidences the consistent superiority of DECIDER over base-
lines, achieving substantially higher overall scores and better trade-offs between
failure and success recalls. Our work highlights the promise of integrating vision-
language priors into model failure analysis pipelines to facilitate more reliable
and trustworthy deployment of vision models in safety-critical applications. Ex-
tending DECIDER to other vision-language models and exploring its application
to other failure modes such as adversarial attacks constitute our future work.
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