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Abstract. Driven by the upsurge progress in text-to-image (T2I) gen-
eration models, text-to-video (T2V) generation has experienced a signif-
icant advance as well. Accordingly, tasks such as modifying the object
or changing the style in a video have been possible. However, previous
works usually work well on trivial and consistent shapes, and easily col-
lapse on a difficult target that has a largely different body shape from
the original one. In this paper, we spot the bias problem in the exist-
ing video editing method that restricts the range of choices for the new
protagonist and attempt to address this issue using the conventional
image-level personalization method. We adopt motion personalization
that isolates the motion from a single source video and then modifies the
protagonist accordingly. To deal with the natural discrepancy between
image and video, we propose a motion word with an inflated textual
embedding to properly represent the motion in a source video. We also
regulate the motion word to attend to proper motion-related areas by
introducing a novel pseudo optical flow, efficiently computed from the
pre-calculated attention maps. Finally, we decouple the motion from the
appearance of the source video with an additional pseudo word. Exten-
sive experiments demonstrate the editing capability of our method, tak-
ing a step toward more diverse and extensive video editing. Our project
page: https://ldynx.github.io/SAVE/
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1 Introduction

The remarkable advancements in text-to-image (T2I) generation models [13,
27, 30, 31, 33, 36] have prompted an increasing demand for the generation of
imaginative scenes featuring user-supplied personalized concepts [7, 19, 32, 38,
40]. With these personalization methods, one can compose novel scenes with
the desirable objects contained in various contexts e.g ., pictures of the same
own dog traveling around the world. Some approaches [15, 35] have expanded
personalized concepts into a higher level beyond substantial objects: a relation
between objects [15] or even an image’s style [35].
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Fig. 1: Protagonist Diversification. We present the video editing method that re-
places the protagonist of a source video with the one described by the editing prompt
while maintaining the motion. Different from previous works, our method is able to
cope with diverse protagonists with substantial changes in their body structure. While
other methods either fail to follow the editing prompt (second row) or generate a dif-
ferent motion (see Fig. 5), ours achieves success in both challenges (third row).

On the other hand, there have been many video generation methods [12,14,
34, 41] that adopt the weights of T2I models leveraging the extensive T2I prior
knowledge from large-scale image datasets, and inflating a model architecture
to address temporal consistency. On top of this architecture, there are several
researches [6, 22, 26, 42, 52] proposed to edit the appearance and semantics of a
given source video while preserving its geometry and dynamics.

While they provide encouraging results in terms of frame consistency, the
capability of understanding and reproducing a motion is confined within certain
limitations. As shown in Fig. 1 and Fig. 5, current methods for video edit-
ing [22,29,42] have difficulty in generating a new protagonist whose body struc-
ture deviates significantly from that of the original protagonist while faithfully
following the motion in a source video. We have found that in the existing meth-
ods, cross-attention maps of a motion-related word (e.g . ‘sleeping’ in Fig. 1) are
dispersed to regions that are not related to the motion as training proceeds.
Therefore, learning and generating the specific motion in a source video become
heavily dependent on temporal self-attention layers in a network architecture.
However, the temporal self-attention layers only consider a temporal change in
one latent pixel by its nature and cannot fully understand the spatial relationship
among pixels. Although features in the deeper layers could access the broader
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pixel space, they also fall short of a full understanding of spatial relationships.
Due to inductive bias, convolution layers are constrained to focus on the center
of the receptive field, resulting in these features, even in the deeper layers, failing
to grasp spatial relationships that involve distant pixels from the center. This
leads to a limited video editing capability when a new protagonist has a different
shape and arrangement.

In contrast, attention layers explicitly contemplate all the relationships be-
tween input tokens. We incorporate cross-attention layers to learn the motion
along with accurate spatial information. More specifically, we relieve the burden
of temporal self-attention and hand over the role to a more appropriate compo-
nent, the word embedding vector, to capture the motion. It can also be viewed
as reinterpreting the protagonist editing task as a motion inversion problem and
establish the following two goals: (1) to broaden personalized concepts expanded
to a motion in a source video and (2) to generate a conceptualized motion with
various contexts i.e. protagonists. We introduce a new motion word (Smot) that
describes a specific motion performed by a protagonist in a source video. We
have two advantages of utilizing Smot in editing a protagonist across a wider
spectrum. First, at training, features of this motion word are injected in the
cross-attention based on a calculation of the attention map over a spatial axis.
Therefore, the spatial characteristics of the learned motion can be fully explored
during training. Second, at inference, an embedding vector of a motion word
exchanges information with another embedding vector of the protagonist word
via the text encoder layer in an early stage. Then, the overall structure of a new
protagonist in the motion can be determined from the start, allowing a natural
movement in the edited video. The temporal self-attention layers, meanwhile,
can concentrate more on a temporal change in each latent pixel.

However, a pseudo-word [7,15,38,40] designed for image-level personalization
leads to the discrepancy between image and video. Therefore, we expand the
temporal axis of the textual embedding space that enables Smot to find a proper
cross-attention map on moving areas. Moreover, to let Smot make an effect on
a motion-related region and encourage effective motion learning, we introduce a
novel pseudo optical flow. From pre-calculated spatio-temporal attention maps,
we track the semantically same pixels across frames and estimate the flows in a
source video without requiring an extra optical flow model that incurrs additional
expenses. Using this pseudo optical flow, we specify a motion-related region and
better involve Smot in this area. During training, we also adopt an additional
pseudo-word Spro representing the protagonist in a source video. Training Smot

after registering Spro into the model’s dictionary alleviates the entanglement
between the motion and the protagonist. As shown in the last row of Fig. 1 and
Fig. 5, while faithfully following the specific motion in the given single source
video, our method flexibly covers a broad range of the protagonist editing.

Our contributions can be summarized as follows:

– We are the first to identify the problem with a motion-related word and
the following limitations in the existing video editing methods. We further
enhance editing capabilities, effectively resolving the problem.
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– We reformulate the video editing task as a motion inversion problem and
introduce the novel concept of extending a pseudo word along the temporal
axis. This approach has never been explored in this domain.

– We also propose pseudo optical flow and pre-registration of a protagonist
pseudo-word Spro. They are general methods dealing with critical topics in
the overall video editing task e.g . estimating optical flow without a heavy
computation burden and decoupling the motion from the protagonist.

2 Related Work

Video Diffusion Models. Leveraging the extensive prior knowledge of the
image diffusion model has led to research endeavors [5,9,12,14,16,23,24,34,48,
49,51] aimed at generating high-quality videos. In video generation, it is crucial
to maintain consistency across generated frames–temporal consistency. As the
image diffusion model has not learned information pertaining to temporality,
these methods focus on injecting temporal information into a model architecture
while retaining the existing wealth of spatial knowledge. Research also extends
beyond video generation, delving into the realm of video editing and enabling
straightforward modifications of videos provided by users [3,6,21,22,26,29,42,52].
Recently, zero-shot editing approaches have been proposed [2, 8, 17, 20, 50] that
alter the overall style of the video. The outcomes of these studies are closely
tied to the structure of the input video with minimal changes to the structure of
the output rather than directly modeling the motion information. A significant
distinction in our work lies in the potential for video editing even when there is a
substantial alteration in the body structure of objects, setting it apart from the
aforementioned studies. Concurrent to our work, there are methods [44, 53] to
achieve generalization of the motion pattern from a given set of video clips. Our
work focuses on customizing a unique, specific motion in a single source video.
Personalization. In the diverse research endeavors, methodologies for gener-
ating specific concepts beyond proficient creation have been studied in parallel.
The most representative form is to generate a specific object a user gives. To this
end, previous studies have investigated where and to what extent weights of the
pre-trained model should be finetuned: a special token [7], text encoder [40], keys
of attention layers [38], and the whole model [32]. There is research [1,45] explor-
ing the combination of various concepts. Moreover, research extends beyond the
scope of objects such as style [35] or relationship [15]. In this paper, we aim to
integrate personalization with the video domain by endowing the capability of
editing the protagonist while preserving the original motion information within
a source video.

3 Preliminaries

Latent Diffusion Models (LDMs). LDMs are diffusion models that recur-
sively denoise an image latent code zt (backward process) into the previous



Structure Agnostic Video Editing 5

timestep image latent code zt−1 which is generated by repetitively adding noise
to z0 (forward process). If needed, we can add a condition C during the backward
process and the objective of LDMs can be defined as minimizing the following
LDM loss:

Lldm = Ez0,ϵ∼N (0,I),t∼Uniform(1,T ) ∥ϵ− ϵθ(zt, t, C)∥22 , (1)

where zt is the latent code of timestep t and ϵ is a random noise that the model
ϵθ(·) should predict.
Text-to-Video Diffusion Models (T2V). To generate videos, the Video Dif-
fusion model ϵθ is structured with 3D UNet architecture [4,9,22,42,50]. Within
the 3D UNet, there are layers dedicated to handling spatial and temporal infor-
mation. The spatial layers are initialized from the weights of the image diffusion
model, leveraging its extensive knowledge. We employed spatio-temporal atten-
tion (ST-Attn) in the first layer of UNet block, a method that considers the first
frame along with the preceding frame when generating each frame. Meanwhile,
temporal self-attention (T-Attn) layers in the last layer of UNet block aim to
align frames by processing videos in a temporal dimension. These approaches
aid in maintaining temporal consistency.

4 Method

Our goal is to introduce a way of enabling a broader range of choices for a new
protagonist in video editing task. We first discover the underlying causes of why
the existing methods struggle to change a protagonist into a new object that is
dissimilar in shape and arrangement (Sec. 4.1). Then, we introduce our method
that utilizes a new motion word to transcend the limitation of the existing works
(Sec. 4.2) as well as an additional regularization term and a training strategy
that guides the motion word to effectively learn the motion in a source video
(Sec. 4.3 and Sec. 4.4). The overall pipeline is illustrated in Fig. 3.

4.1 Location Bias of Motion-Related Words

As shown in Fig. 1 and Fig. 5, the existing methods fail to produce a new, dif-
ferently structured protagonist appropriately following the motion in the source
video. To identify the causes, we start by investigating a bias in cross-attention
maps of motion-related words. We have found that those words often highlight
specific parts of the protagonist unrelated to the motion. As shown in the first
row of Fig. 2, cross-attention maps of motion-related words (e.g . ‘roaring’) scat-
ter over the neck of a cat. We define this phenomenon as location bias.

Why does this bias appear especially in motion-related words? The pretrained
text encoder is usually trained on large-scale text-image datasets and this makes
the encoder to embed motion-related words based on how that motion is com-
monly depicted in an image. (e.g . ‘roaring’ is related to images with a mouth
open wide to the object’s neck). However, in a video, motion proceeds in the
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Fig. 2: Cross-attention scores and the attention maps of the motion-related
word. Using the existing method [42] and ours, we compute the cross-attention scores
of each semantic token and visualize regions to which the motion-related word (‘roaring’
and Smot) attends. As in the left graph, little information about ‘roaring’ is used in [42]
compared to the other tokens e.g . nouns (cat and garden). This is because ‘roaring’
attends to an inaccurate region due to location bias. Meanwhile, our method actively
utilizes Smot which provides more accurate information about the motion attending to
the proper facial regions.

stream of time where motion-location relation exists only in several specific
frames (e.g . ‘roaring’ video also includes frames where the mouth is closed).
Naturally, the cross-attention map of those words lies on unnatural areas.

As shown in the upper row of Fig. 2, location biases produce inaccurate
features injecting textual information in an incorrect position. The model, con-
sequently, finds an alternative to represent the motion instead of utilizing the
motion-related word, and heavily relies on T-Attn layers. The blue bars in left
graph of Fig. 2 shows that textual information participates little in the motion
generation process (only 16% of total attention is on the verb term). In Fig. 7,
we also show that the model largely depends on T-Attn layers where the motion
cannot be reconstructed without training T-Attn layers.

Meanwhile, T-Attn layers remain tangential to the spatial axis by its na-
ture. When the input has B batch size, N sequence length, and H ×W spatial
dimension, they treat B ·H ·W encoded vectors independently exchanging in-
formation only among N features in the same latent pixel. For the k-th pixel on
a latent code from the i-th frame zi,k as the query, T-Attn is calculated with
zj,k, j ∈ {1, · · · , N}/i as key.

Q = WQzi,k,K = WKzj,k, V = WV zj,k (2)

where WQ,WK and WV are projection matrices. Therefore, when T-Attn layers
encounter a protagonist with a new body structure, they struggle to reproduce
a proper motion on the protagonist. In 2–4th row of Fig. 5-left, for example, a
newly generated dog cannot achieve a learned motion around the head and the
mouth since the original protagonist (a cat) and edited protagonist (a dog) have
a dissimilar facial arrangement and mouth shape.
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Fig. 3: The overall training pipeline of our method. Using expanded text em-
beddings of Smot, we optimize Wmot that maps embeddings of the original motion
word (‘roaring‘) to a specific motion in a source video. Under cross-attention regular-
ization, Smot is optimized to primarily focus on the moving area while pre-registered
Spro disentangles the appearance from the motion. This dual approach facilitates Smot

in effectively learning the motion.

4.2 Expanded Text Embeddings with Time

As we aim to put a specific motion on various types of protagonists, we focus on
the approach to revitalizing a motion-related word by reducing location biases. To
this end, we expand the textual embedding space of a motion word to represent
a time flow in videos rather than a frozen moment in images: we add a temporal
axis to an embedding space of our new motion word (Smot) and let Smot inject
its information into a proper region in each frame.

To formulate embedding vectors of Smot, we have two separate components
to take on different roles. The first component utilizes prior knowledge of the T2I
model and represents the common aspect of the motion across frames, conveying
its information to the second component. The second component learns the
residual motion for each frame and encodes the overall motion in the video. The
embedding vectors of Smot for N video frames can be gained as follows:

vimot = Wmot (vb ⊕ γ(i)), i ∈ {1, · · · , N} (3)

where vb is a textual embedding of the original motion-related word in a source
prompt and Wmot is learnable linear layers. We denote concatenation operation
and positional encoding as ⊕ and γ(·) respectively. vimot is then treated like other
embedding vectors and passed through a text encoder. Contrary to conditioning
a single text embedding to N latent codes in the existing text-to-video methods,
we provide N text embeddings, vimot, i ∈ {1, · · · , N} to each latent code of the
corresponding frame.

As shown in the second row of Fig. 2, with consideration for a time flow, our
Smot renders more accurate features via cross-attention whose attention maps
accurately attend to moving areas of each frame. Note that despite an increasing
number of video frames, the number of learnable parameters stays fixed, enabling
video editing in various lengths.
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Fig. 4: Cross-attention regularization on Smot. We assume that a pixel z1,k in the
moving areas becomes distant from a MAX(k, i)-th pixel in zi that has the maximum
attention score while a pixel z1,k

′
in the static areas stays close to MAX(k′, i)-th pixel

in zi. Therefore, we calculate the distance between k and MAX(k, i) for all k and
generate motion masks M2, · · ·MN .

4.3 Motion Aware Cross-attention Loss

A cross-attention map of a newly learned concept is likely to pervade the whole
scene, easily overfitting to the background [38]. While a video is composed of
various dynamics e.g . camera moving or background movement, we want Smot to
learn specifically the motion of the protagonist. Inspired by [1,45], we constrain
a cross-attention map of Smot to focus exclusively on the protagonist. However,
forcing Smot to pay attention on the entire protagonist obscures what Smot needs
to learn i.e. the motion of the protagonist.

To resolve this issue, we introduce a motion-aware cross attention loss en-
abling Smot to focus on the movement of the protagonist. Specifically, we define
motion area as the union of pixels whose optical flow have a positive magnitude.
However, existing optical flow estimation models [37,46] either require additional
memory usage or involve iterative refine processes, which are unsuitable for train-
ing already resource-intensive video diffusion models. Therefore, we introduce a
novel pseudo optical flow to better represent the moving area without using the
optical flow models. We first collect pre-calculated ST-Attn maps from specific
decoder layers. In ST-Attn mechanism, the i-th attention map is computed by
using the i-th frame as the query and the first frame as the key. When we denote
a latent code from the i-th frame as zi, attention scores SA(z1, zi) represent a
similarity between z1 and zi. Our intuition lies in that if the k-th pixel of the
first frame z1,k and the l-th pixel of the i-th frame zi,l have a high attention
score, then they tend to be the same semantic point at different frames, i.e. a
point that has been in k-th location at the first frame moves to the l-th location
at the i-th frame. By tracking down the spatial locations of these similar points
across frames, we can estimate the temporal flow of each pixel in the video.

To find the points that are likely to be the same, we store spatial locations
MAX(k, i) ∈ [0, h − 1] × [0, w − 1], indicating that the k-th pixel in z1 has the
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maximum scores with the MAX(k, i)-th pixel in zi. Here, c, h, and w indicate
the channel size and spatial dimensions of zi respectively. Then, we calculate a
distance between MAX(k, i) and k. When two locations are close to each other,
the object in z1,k can be regarded as mostly stationary until the i-th frame. On
the other hand, if MAX(k, i) is far from k, then the object is highly likely to be
largely moving in the video. We go through the same process for each pixel in the
i-th frame and produce a map with the estimated distance which amounts to the
moving distance of the pixel from the first frame. Eventually, we extract masks of
motion-related area for each frame i ∈ {2, · · · , N} by retaining only pixels with
a large moving distance. We denote the masks as M = {M2, · · · ,MN}. Utilizing
these motion masks, we add the following regularization term to encourage cross-
attention map of Smot to follow M :

Lattn =
1

N − 1

N∑
i=2

∥CA(zi, vimot)−M i∥22 (4)

Adopting Eq. 1 and Eq. 4, the overall optimization objective is defined as:

L = Lldm + λattnLattn (5)

where λattn is a hyperparameter balancing between a reconstructive ability and a
motion focusing. We illustrate the overall regulating process in Fig. 4. Some flow
estimation models [46] share a similar concept to viewing optical flow estimation
as a feature-matching problem. Meanwhile, the novelty of our pseudo optical flow
lies in its ability to estimate flows without incurring extra costs by adapting pre-
computed self-attention maps to flow estimation in video diffusion models.

4.4 Appearance Pre-registration Strategy

To resolve the problem that the motion and the protagonist get easily entangled,
we propose a two-stage training strategy to separate the two properties. We
newly define a pseudo-word Spro that represents the appearance and texture
features of the protagonist. At the first stage, we find a text embedding of Spro,
namely vpro, in the textual embedding space before inflating T2I models. vpro
is optimized with the LDM loss as in Eq. 1 considering video frames as batch
of images. At the second stage, we inflate the T2I model to a T2V model and
optimize Wmot and vb in Eq. 3. As the protagonist and its appearances are
already registered in the text encoder, vmot can be effectively learned using
disentangled motion information for the video.

5 Experiments

Dataset. We evaluate our method and baselines on videos collected from DAVIS
dataset [28] and YouTube [22] following previous works [3, 22, 42]. Each video
consists of 8–32 frames at the resolution of 512 × 512. As one of the important
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Fig. 5: Protagonist editing results comparing ours with baselines. Our method
successfully reproduces the motion in a source video identifying Smot as both the head
and the mouth movements (left column) while editing a protagonist faithfully with
a natural video of a raccoon doing Smot (right column). Meanwhile, other baselines
either generate an inaccurate motion e.g . a dog opening its mouth across all frames,
or fail to combine a new protagonist with the motion resulting in incomplete editing.

aspects to evaluate is the editing ability of a protagonist with large structural
changes, we additionally provide object-changed prompts for hard cases (e.g .
changing a cat in a source video to Pikachu). Ultimately, we composed 48 pairs
of videos and text prompts to evaluate. We also conduct additional experiments
on the open-sourced benchmark released by the LOVEU-TGVE competition at
CVPR 2023 [43]. More details and qualitative results are in the Supplementary.

Baselines. We compare our method with the state-of-the-art video editing and
generation approaches. (1) Tune-A-Video (TAV) [42] is the conventional video
editing method that fine-tunes the inflated T2I model on a given source video.
(2) Video-P2P [22] improves upon TAV applying Prompt-to-Prompt [10] and
Null-text Inversion [25]. (3) Fate-Zero [29] proposes to blend the attention maps
stored during inversion. Following the one-shot editing version, we adopt the
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Table 1: Quantitative comparison
on videos collected from DAVIS
dataset [3, 28,42] and YouTube [22].

Method Automated Metrics

CLIP-Txt ↑ CLIP-Img ↑ Flow sim. ↑

Tune-A-Video [42] 25.84 93.37 55.61
Video-P2P [22] 25.27 93.89 64.59
Fate-Zero [29] 24.14 94.05 80.92

Ours 25.99 94.21 79.10

Fig. 6: User study results. Our
method is preferred over other baseline
methods across all evaluation criteria.

TAV weights pretrained on the source video when evaluating Fate-Zero. We ex-
clude zero-shot methods [6,8,47] from our baselines since they exhibit weakness
in video editing with a structure change as a trade-off for the efficiency. During
inference, we also adopt P2P technique from Video-P2P to maintain the back-
ground of the source video as the motion word learns to focus on the motion.
Metrics. In line with previous works [6, 39, 42], we evaluate the baselines us-
ing the pretrained CLIP [11] model as follows: (1) CLIP-Text similarity is the
average CLIP score between frames of generated video and the corresponding
editing prompt, representing a textual alignment of the outputs. We evaluate
the model’s ability to edit protagonists using this metric. (2) CLIP-Image sim-
ilarity computes cosine similarity between the CLIP image embeddings of pairs
of video frames, representing frame consistency. To score faithfulness to the mo-
tion of the source video, we measure (3) Flow similarity that computes cosine
similarity between optical flows of the source and the edited video using the
estimation model [37]. This metric reflects how well motion is preserved from
the source video. We further evaluate the methods through five human raters
for each example conducted with Amazon Mechanical Turk. The following three
questions were asked. (1) Textual alignment : “Which video better matches the
text?” (2) Consistency : “Which video has higher consistency?” (3) Preference:
“From the perspective of video editing, which video do you prefer?”

5.1 Qualitative results

Fig. 5 illustrates qualitative comparisons between our method and baselines. As
our method (bottom row) effectively learns the motion of the original protag-
onist, it generates a new protagonist that reproduces the motion in the source
video seamlessly despite having a significantly different structure from that of
the original one. For example, as shown in Fig. 5-left, our method ables to
grasp the accurate motion in the source video and successfully associates those
movements to Smot. Meanwhile, other baselines commonly miss the mouth move-
ments. TAV [42] also produces an inaccurate head motion in the third frame.
Our method effectively reflects the editing prompts compared to other baselines
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Fig. 7: Analysis on motion learning and additional editing results. As Smot

effectively learns the motion in a source video, our method still reproduces a proper
motion with frozen T-Attn layers, resulting the more flexible editing.

as shown in the right column of Fig. 5. Baseline methods are unable to overcome
the discrepancy between ‘man’ and ‘raccoon’ in the structure and generate a
raccoon video where certain segments maintain the man’s appearance. On the
other hand, our method disentangles the appearance and the motion with sepa-
rate Spro and Smot and renders a new raccoon doing Smot from the text encoder
from the start, successfully applying the motion features to a new protagonist.

5.2 Quantitative results

In Tab. 1 and Fig. 6, our method quantitatively exhibits the highest ability in tex-
tual alignment, temporal consistency, and user preferences. Our method closely
associates the learned motion with a new protagonist, successfully generating a
natural video that is faithfully aligned with an editing prompt. Meanwhile, Fate-
Zero [29] shows the highest flow similarity and frame consistency on par with our
method. As shown in Fig. 5 and Supplementary, when an editing prompt requires
a large structural change for a new protagonist, Fate-Zero shows a tendency to
adhere closely to the source video. This leads to low CLIP-Text scores in Tab. 1
and less voted Alignment in Fig. 6, while the edited video still achieves a highly
similar optical flow to that of the source video and a high frame consistency. On
the other hand, our method attains high scores in both text alignment and flow
similarity & consistency demonstrating a general editing ability.

5.3 Analysis

To demonstrate that incorporating Smot actually alleviates the burden on the
T-Attn layers in learning the motion, we conduct the following experiment: we
freeze the T-Attn layers in TAV and our method respectively when training
the networks. After training, we reconstruct the source video using the motion-
related words (‘taking off’ and Smot). As shown in the left two columns in Fig. 7,
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Fig. 8: The impact of each component. By the temporally expanded text em-
bedding, Smot, our method is able to learn the motion across frames. Cross-attention
regularization and pre-registration of the protagonist word further enhance an ability
of Smot to understand the motion.

Table 2: Quantitative ablation on each component.

CLIP-Txt CLIP-Img Flow sim. CLIP-Txt CLIP-Img Flow sim.

Expanded Emb. 24.72 90.16 77.53 w/ Pre-reg. 25.38 89.93 77.89
w/ Cross-attn L 24.86 91.20 79.83 Ours 25.99 94.21 79.10

TAV cannot properly reproduce a motion in the source video, heavily depending
on the T-Attn layers in regard of learning the motion. On the other hand, our
method is able to generate the accurate motion in the source video by using
Smot. The right two columns in Fig. 7 indicate editing results from each fully-
trained method. Our method successfully renders a new protagonist undergoing
structural modifications (e.g . editing a bird to a butterfly) as Smot actively
exploits the spatial information of the motion.

5.4 Ablation Studies

We isolate each component in our method and verify the effect respectively. As
shown in the second column in Fig. 8, with temporally expanded text embedding
vmot, a new protagonist in the edited video well follows the overall pose of the
original protagonist in the source video. However, the new protagonist exhibits
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Fig. 9: Ablation on motion masks M . Encouraging Smot to focus on motion masks
guides Smot to learn the motion more effectively than using segmentation masks alone.

an awkward leg appearance while the movement is also slightly different. By
adopting cross-attention regularization, as shown in the third column, a gen-
erated bear retains more accurate movements in the source video. Meanwhile,
pre-registration of Spro effectively decouples the motion from the appearance
and generates a new protagonist faithfully as shown in the fourth column. The
last column indicates the results of our method which disentangles the motion
from the appearance in a source video and effectively digests the information on
the motion. We report quantitative results in Tab. 2. A Slight decrease in Flow
similarity in our method compared to applying only cross-attention loss would
have resulted from improved text alignment, i.e., editing the protagonist suc-
cessfully and changing the corresponding flows. We also refer to Supplementary
for ablations on other examples.

We also investigate the efficiency of our motion masks M introduced in
Sec. 4.3. Fig. 9 illustrates an estimated moving distance of each pixel and our
results using the motion masks M in (a) and (b) respectively while comparing
the results using the object segmentation masks [18] instead in (c). Narrowing
down the moving area with these motion masks effectively guides Smot to focus
on the motion itself.

6 Conclusion

In this paper, we propose a new method to diversify a protagonist that repro-
duces the motion in a source video. We first reveal a location bias in the existing
methods that hinders flexible editing. To resolve this problem, we introduce a
motion word that encompasses temporal relationships among frames. We also
adopt a couple of approaches to effectively train the motion word focusing on
a target motion. Our method paves the way for broader editing, enriching the
video editing task.
Limitation & Future work. We found that our method struggles to learn
the motion of multiple protagonists as can be found in the failure cases in the
Supplementary. Also, in specific cases, video P2P technique [22] during inference
results in some artifacts around the protagonist if some incorrect attention maps
occur. Future works to expand into broader movements and alleviate the artifact
will be an interesting topic.
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