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Abstract. Implicit Neural Representation (INR) has become a pop-
ular method for representing visual signals (e.g ., 2D images and 3D
scenes), demonstrating promising results in various downstream appli-
cations. Given its potential as a medium for visual signals, exploring
the development of a neural blending method that utilizes INRs is a
natural progression. Neural blending involves merging two INRs to cre-
ate a new INR that encapsulates information from both original repre-
sentations. A direct approach involves applying traditional image edit-
ing methods to the INR rendering process. However, this method of-
ten results in blending distortions, artifacts, and color shifts, primarily
due to the discretization of the underlying pixel grid and the introduc-
tion of boundary conditions for solving variational problems. To tackle
this issue, we introduce the Neural Poisson Solver, a plug-and-play and
universally applicable framework across different signal dimensions for
blending visual signals represented by INRs. Our Neural Poisson Solver
offers a variational problem-solving approach based on the continuous
Poisson equation, demonstrating exceptional performance across vari-
ous domains. Specifically, we propose a gradient-guided neural solver to
represent the solution process of the variational problem, refining the
target signal to achieve natural blending results. We also develop a Pois-
son equation-based loss and optimization scheme to train our solver,
ensuring it effectively blends the input INR scenes while preserving their
inherent structure and semantic content. The lack of dependence on ad-
ditional prior knowledge makes our method easily adaptable to various
task categories, highlighting its versatility. Comprehensive experimen-
tal results validate the robustness of our approach across multiple di-
mensions and blending tasks. Project: https://ep1phany05.github.
io/NeuralPoissonSolver-website/
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Fig. 1: Overview. Our method processes various dimensions of INRs effectively, with-
out relying on prior knowledge. It utilizes a blending INR to carry the combined signal
and introduces a Neural Poisson Solver for solving the Poisson equation during train-
ing and optimization of the blending outcome. In the Neural Poisson Solver, Lgrad

leverages the continuous nature of INR to provide gradients with infinite resolution,
enhancing smoothness by integrating gradients from multiple directions, thereby mini-
mizing the jaggedness of the blending result. Moreover, our approach obviates the need
for traditional boundary conditions required in solving variational problems, employing
Lcolor to broaden the receptive field of the blending area for a more seamless blending
outcome. Finally, we introduce a hyperparameter λ to fine-tune the balance between
Lgrad and Lcolor, facilitating the achievement of varied and natural blending styles.

1 Introduction

Implicit neural representation (INR) [32], which characterizes the signal’s map-
ping function between the coordinates and attributes using neural networks,
has been drawing increasing attention. Benefiting from the continuous function-
based representation and convenient scalability to high dimensions, INR has
been widely applied in various inverse optimization tasks across different dimen-
sions [19,22,23,28,30,31,39,42,43], inducing a new paradigm for signal process-
ing. Consequently, developing novel tools for INR-based signal processing has
become increasingly necessary.

We focus on the task of naturally blending given INRs, which is well-developed
in classical matrix-based signal representation but rarely explored in the realm
of INR. To achieve this goal, one straightforward method is to blend the signals
in classical matrix-based representation by solving the Poisson partial differen-
tial equation (PDE) [26]. However, due to the discrete signal representation,
existing Poisson solvers (the Finite Difference approach [26] and the Fourier ap-
proach [24]) require proper boundary conditions, i.e., the Dirichlet boundary
conditions, to produce a unique solution, resulting in distortion, artifacts, and
color shifts in the blended results (see Fig. 2). Additionally, current solvers are
specifically designed for processing 2D images. With the increase of signal dimen-
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sions and scales (e.g ., 5D radiance fields [23]), the accuracy of classical solvers
is significantly reduced [15], necessitating their re-implementation.

Such problems are closely related to the imperfections of the classical repre-
sentation based on the underlying discrete pixel grid, where neighboring pixels
are stored independently, and the continuous gradients are approximated by dis-
crete differences. To address these issues, we propose the Neural Poisson Solver,
built upon the continuous INR directly. Benefiting from INR’s infinite resolution
property, continuous gradients can be more accurately approximated, laying the
groundwork for a superior solution to the partial differential equation. Further-
more, since INR can be easily expanded to signals with high dimensions (i.e.,
adding more input neurons), the Neural Poisson Solver’s capability to process
signals of various dimensions is ensured.

In the proposed Neural Poisson Solver, traditional computational math tech-
niques are eschewed. Instead, the Poisson PDE is directly utilized as the loss
function. Compared to classical solutions, the Neural Poisson Solver eliminates
the need for Dirichlet boundary conditions, involving all points in the computa-
tion. As a result, blending outcomes are nearly unaffected by the mask’s shape
and complexity, achieving global blending details with enhanced robustness (see
Fig. 2). Experiments on 2D image blending demonstrate that our solver reduces
the Poisson PDE error to between 1/10 and 1/1000 of that of the traditional
method [26], confirming the accuracy of our approach.Additionally, to demon-
strate the solver’s universal capability for processing signals of different dimen-
sions, we applied it to the task of blending natural radiance fields, a topic seldom
explored in literature, yielding blended radiance fields with barely noticeable ef-
fects.

Main contributions are summarized as follows:

– We introduce the first editing tool for blending INRs, i.e., the Neural Poisson
Solver, which operates without the need for prior knowledge or constraints.
This offers unparalleled plug-and-play capabilities and facilitates easy adap-
tation to a wide range of signal types.

– The Neural Poisson Solver significantly reduces the error of the Poisson
PDE to a range of 1/10 to 1/1000 compared to classical methods, marking
a substantial improvement in accuracy.

– To the best of our knowledge, our work represents the inaugural effort to ap-
ply Poisson blending techniques within the domain of radiance fields, opening
new avenues for research and application.

2 Related Work

2D Natural Signal Blending. In 2D image processing, Poisson Image Edit-
ing [26] emerges as a pivotal technique among gradient-domain methods. It no-
tably enhances image blending by correcting color mismatches and ensuring
smooth transitions, thereby significantly improving visual quality and appeal.
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Additionally, the Poisson equation serves as a versatile tool in addressing varia-
tional problems, finding effective applications across various fields such as com-
putational photography, computer graphics, and machine vision [7,9,18], which
underscores its broad utility and effectiveness.

While gradient-domain methods like Poisson Image Editing [26] have markedly
advanced 2D image processing, they are designed for specific tasks and depend
on traditional approaches, encountering certain limitations. For instance, solving
the Poisson equation typically involves the finite difference method, as initially
proposed by Pérez et al . [26], or the Fourier method [24], leveraging Fourier trans-
form properties. However, both methods rely on image discretization, which can
irreversibly alter image blending outcomes.

Furthermore, these techniques assume certain conditions about the input
data, limiting their applicability in complex situations. They typically ignore
depth and occlusion, crucial in 3D scene understanding and reconstruction, lead-
ing to less than optimal outcomes in tasks requiring spatial relationship compre-
hension or dealing with occlusions, where discerning visible and obscured scene
parts is essential.
Implicit Neural Representations (INRs) [32] have revolutionized computer
vision and graphics by providing a continuous mapping between coordinates and
attributes through neural networks. This approach allows for capturing intri-
cate patterns in both 2D and 3D, offering a seamless representation of scenes.
Unlike traditional high-resolution images, 3D meshes, or point clouds, INRs are
resolution-independent and more compact, enhancing their versatility across var-
ious applications. These include media representation and compression [10, 34],
reconstruction and rendering in vision and graphics [23, 36, 45], advancements
in microscopy through holography and tomography [19, 43], materials science
via meta-surface design [4], computational mathematics for solving differential
equations [15,27], and hydrodynamics for fluid simulation [28]. This development
signifies a major shift in signal processing, indicating a new era with wide-ranging
implications.

Despite image blending being a well-researched topic in computational pho-
tography, few works have explored blending tasks from the INRs perspective.
This is primarily due to the challenge of transferring appearance information
between source and target scenes as feature information in Neural Radiance
Fields is encoded within black-box network parameters.
Challenges in 3D Signal Blending. Regarding natural editing on 3D objects,
several methods have been proposed for texture stitching and blending [6, 29].
However, these texture-based methods are not suitable for NeRF models. Re-
cent studies have started to explore editing NeRF scenes [20, 37]. The initial
efforts in this area introduced a version of NeRF that depends on implicit shape
and appearance encodings, enabling separate editing of the shape and color of
3D objects. Nonetheless, these approaches encounter challenges with accurately
identifying specific areas for editing and providing flexible editing options.

Recent studies have explored various aspects of editing in NeRF models,
including geometric editing [17, 38], global style changes [3, 5, 8, 13], recolor-
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ing [11], and scene separation for localized edits [2, 40]. Despite these advance-
ments, there’s room for improvement in accurately identifying specific editing
targets and in the adaptability of these methods. Additionally, the operations
demonstrated by these studies are relatively basic, focusing on tasks like object
removal and simple editing techniques.

In conclusion, while there has been significant research in blending natu-
ral signals, existing approaches encounter challenges in handling blending tasks
across different dimensions and signal types, particularly when applying these
methods to NeRF models. Traditional techniques often lack the necessary de-
sign specificity and struggle to offer a versatile framework. They also tend to fall
short in addressing occlusions and ensuring view consistency in 3D environments.
Thus, the development of a more comprehensive and adaptable framework, as
proposed in this paper, is crucial.

3 Preliminary

3.1 Poisson Editing Theory

Poisson Image Editing (PIE), first proposed by Pérez et al . [26], introduced a
novel method for blending images using variational techniques and the Poisson
equation. This section outlines the mechanism of traditional Poisson-based image
blending methods, which serve as an inspiration for our subsequent theory. In
the PIE method, blending the target image T into the source image S can be
formalized as a variational problem:

min
f∈C 2(S)

∫∫
Ω

∥∇f − v∥2dx, with f |∂Ω = f∗|∂Ω , (1)

where S is a closed subset of S2 representing the image domain, C 2(S) denotes
twice differentiable real functions over S’s interior, Ω ⊂ S, f∗ is the background
image, and v is a differentiable gradient field from the selected region. Typically,
better blending results can be obtained when v = argmaxf∗,g{|∇f∗(x)|, |∇g(x)|}
or v = µ∇f∗(x) + φ∇g(x).

In Poisson equation-based image blending task, v refers to the combined
gradient of the target and source images. Thus, the goal of solving equation
(1) is to: (1) align ∇f with v within Ω, and (2) align f ’s boundary value with
source image f∗ at the edge of Ω (i.e., ∂Ω). To solve this variational equation, a
boundary condition is added. Given that it satisfies the Euler-Lagrange equation,
Pérez et al . proposed solving under Dirichlet boundary conditions and converted
formula (1) into the Poisson equation:

∆f(x) = div(v(x)) for all x ∈ Ω, and f |∂Ω = f∗|∂Ω . (2)

3.2 Neural Radiance Fields

Neural Radiance Fields (NeRF) [23] generate images by sampling 5D coordi-
nates, which include spatial location (x, y, z) and viewing direction (θ, ϕ). These
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Fig. 2: In PIE [26], the selection of mask shapes significantly influences the final blend-
ing outcomes, particularly regarding texture and color details. Masks that are too
closely positioned can result in color bleeding artifacts within the synthesized image
areas. In contrast, our method, which does not rely on boundary conditions, is not
impacted by the proximity of mask shapes.

samples are then mapped to color (r, g, b) and volume density σ along camera
rays. This function is characterized using coordinate-based Multilayer Percep-
tron (MLP) networks [32]. Subsequently, volumetric rendering techniques are
utilized to alpha composite the values at each point, thus producing the final
images.Let’s consider a pixel r(t) = o+ td, where o is the camera origin and d is
the ray direction. The predicted color for this pixel can be defined as:

C(r) =

∫ tf

tn

exp

(
−
∫ t

tn

σ(s)ds

)
σ(t)c(t, d)dt, (3)

where tn and tf define near and far bounds, σ(·) and c(·, ·) denote densities
and color predictions from the network respectively. Due to computational con-
straints, the continuous integral is numerically approximated using quadrature.
Finally, NeRF optimizes the radiance field by minimizing the mean squared error
between rendered color and ground truth color expressed.

4 Neural Poisson Solver

4.1 Representing Signals as Continuous INR

INRs [32] encapsulate signal attributes by interpreting the signal as a function
of its corresponding coordinates. INR establishes a relationship between coor-
dinates and their respective signal values, making it suitable for the continuous
and memory-efficient modeling of a wide range of signals, such as 1D audio [10],
2D images [35], 3D shapes [25], 4D light fields [33], and 5D radiance fields [23].
Consider x ∈ RM as the input coordinates and f ∈ RN as the corresponding
output feature values. In the context of INR, we define:

f = φ(x) = wn(ϕn−1 ◦ ϕn−2 ◦ ... ◦ ϕ0)(x) + bn, (4)
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Fig. 3: Neural Blending Operator. When λ < 1, the blending operation accentuates
the gradient within the blending region Ω, thereby more effectively preserving the
intricate details of the scene. However, this approach may lead to a noticeable color
discrepancy between the blending edge ∂Ω and the background INR S. On the other
hand, as λ increases, the focus shifts towards ensuring a smooth transition at ∂Ω.
While this method facilitates a seamless blend, it might slightly diminish the precision
of the scene’s detailed features.

where each ϕi(x) = F(wi · x + bi) represents the mapping function of the ith

layer in the neural network. Here, F denotes the activation function, and wi and
bi are the weight matrix and bias term of the ith layer, respectively.

Traditional signal representation approaches typically use a discrete format.
As a result, both the signal itself and any finite element solution strategies based
on the signal can suffer from potential distortions due to the discretization steps
involved. In contrast, INR parameterizes the signal as a continuous function. This
method maps the signal domain to attribute values at corresponding coordinates,
offering improved resilience to spatial resolution constraints.

In our work, we represent discrete signals—specifically, source and target
images—using two independent INRs, referred to as S and T for consistency
with previous descriptions. Although INR is capable of representing signals in
a continuous manner, its capacity is limited by the architecture of the underly-
ing network model. To represent and blend more complex signals that contain
higher-frequency details, we utilize the Disorder-Invariant Implicit Neural Repre-
sentation (DINER) [44]. DINER initially maps input coordinates to a new index
using a hash table. These mapped geometric coordinates are then processed by
the conventional INR backbone network. Through adaptive indexing with the
hash table, DINER ensures that the same signal mapping can encapsulate more
low-frequency components, regardless of the arrangement of signal elements.

4.2 Boundary-Condition-Free Poisson Solver

For 2D image blending, the PIE method [26] requires specific boundary condi-
tions to solve the variational problem Eq. (1) for a unique solution. Despite its
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significant contributions to image editing, this method faces some challenges. It
converts the variational problem Eq. (1) into the Poisson equation Eq. (2) using
the Euler-Lagrange equation, depending on Dirichlet boundary conditions for a
unique solution. The choice of boundary conditions critically affects the blend-
ing results. A precise mask around the foreground improves object-background
distinction and pixel value calculations in the blending zone. However, an overly
close mask to the target object may cause color bleeding artifacts in the mis-
matched blending area. As shown in Fig. 2, mask variations impact the results
of the PIE method [26], whereas our method is unaffected. The limitation of
Dirichlet boundary conditions to the edges of the blending area, neglecting the
global background, can lead to color inaccuracies Fig. 7. Benefiting from the
continuity and differentiability of INR, our solution to the Poisson equation is
not limited by boundary conditions. Thus, we extend the blending task to the
entire background (S−Ω), aiming for a more comprehensive blending effect and
reducing color blending errors common in traditional methods. We introduce a
blank INR G that conforms to the specifications of S and T .

This endeavor seeks to naturally integrate a region of interest (ROI) Ω from
the target signal T into a specific source signal S location, focusing on two main
aspects. The first, Lgrad, aligns function f ’s gradient with the guiding vector
field v within Ω, preserving key features of S and T . The second, Lcolor, ensures
∂f and ∂f∗ consistency on ∂Ω, keeping pixel values inside Ω similar to the
background S and preventing harsh transitions:

Lgrad =

∫∫
Ω

∥∇cG(x)− v(x)∥2, (5a)

Lcolor =

∫∫
S−Ω

∥cG(x)− cS(x)∥2. (5b)

We introduce a hyperparameter λ to balance the weights of Lgrad and Lcolor,
facilitating varied blending effects. The optimization of G via L = Lgrad +
λLcolor over multiple iterations yields superior blending results. A higher λ value
prompts the Neural Poisson Solver to prioritize the smooth transition between
the blending edge, ∂Ω, and the background INR, S. As a result, feature clarity
within the blending area, Ω, aligning with the target INR, T , diminishes, as
intuitively shown in Fig. 3.

5 Experiment

In Sec. 5.1, we initially present both qualitative and quantitative comparisons
of our proposed method against traditional approaches that utilize discretized
solutions to the Poisson equation, specifically for 2D image blending. Following
this, in Sec. 5.2, we showcase the effectiveness of our method in blending 5D
Radiance Fields. In Sec. 5.3, we highlight the impact of our Boundary-Condition-
Free method on improving fidelity and visual quality. Finally, in Sec. 5.4, we
qualitatively compare our method with several state-of-the-art techniques in
image editing and blending.
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Table 1: 2D image blending results. Quantitative comparison with the discretized
PIE method [26] and ours. L/N represents calculating the average error on each pixel.

Scene Solver argmaxf∗,g{|∇f∗(x)|, |∇g(x)| µ∇f∗(x) + φ∇g(x)

Source Target (L/N)grad ↓ (L/N)color ↓ (L/N)grad ↓ (L/N)color ↓

Snowfield Penguin PIE 0.5071 1.4942 0.4429 1.2461
Ours 0.0514 0.0011 0.0021 0.0015

Sky Aircraft PIE 0.7635 2.2599 0.7621 1.4981
Ours 0.0026 0.0024 0.0028 0.0024

Board Slogan PIE 32.495 6.6799 31.2751 7.0393
Ours 0.1744 0.0026 0.2189 0.0027

Sky Fighter PIE 3.7561 5.5416 3.6714 1.6783
Ours 0.0123 0.0030 0.0164 0.0030

Brick Letter PIE 7.3058 8.3664 5.5999 8.2730
Ours 0.0316 0.0391 0.0415 0.0390

5.1 2D Image Blending Task

Tasks. The experimental design aimed to assess extensive region blending, in-
stances where the gradient of the source image closely aligns with the edge
gradient of the target, and scenarios involving minimal to maximal gradient
variations in the blending region of the source scene.
Configurations. For the 2D image blending task, we adopted the same frame-
work as outlined in DINER [44]. We introduce source INR S and target INR
T based on different scene dimensions, and initialize an INR G of the same
specifications to store the blending results. We utilized the two most commonly
used operators from PIE [26] for the image blending task as guiding vector
fields. These operators are defined as v = argmaxf∗,g{|∇f∗(x)|, |∇g(x)|} and
v = µ∇f∗(x) + φ∇g(x), with both µ and φ set to 1 in our experiments. To en-
sure the fairness of our experiments, we used a moderately sized, well-positioned
rectangular mask to define the blending area, avoiding unnecessary errors in
PIE [26].

Our framework training was conducted on a single NVIDIA RTX 3090 GPU,
using the Adam optimizer [16] with a cosine annealing learning rate reduction
strategy. The entire process took approximately 50 to 100 seconds. Our experi-
ments were carried out on a series of representative 2D scenes, with both qual-
itative and quantitative metric evaluations performed. Our method shares the
same goal with traditional methods that employ discretized solutions to Pois-
son’s equation—to optimize the solution of the variational problem specified in
Eq. (1), primarily composed of Eq. (5a) and Eq. (5b). For a fair comparison, we
adjusted these equations to calculate average errors instead of total errors. These
modified equations served as quantitative indicators for evaluating the efficacy
of blending—Eq. (5a) indicates gradient feature retention, and Eq. (5b) reflects
the smoothness of color transitions.
Results. Tab. 1 shows a comparison between our Neural Poisson Solver and the
PIE method [26]. Our model outperforms the traditional PIE method signifi-
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Fig. 4: Displaying the blending results of the PIE method [26] and our approach across
different 2D scenes. The first and third columns show the source and target scenes
for two tasks, respectively. The second and fourth columns respectively showcase the
blending outcomes and related details.

cantly across all metrics, with improvements ranging from 10× to 1000×. This
indicates our model’s superior ability in blending 2D images. Our approach also
ensures minimal impact on the surrounding scene while maintaining the essential
gradient features in the blend area.

Fig. 4 showcases a comparison of blending results between our proposed
Neural Poisson Solver and the traditional PIE method [26], with a focus on the
detailed features of the blend area. The images reveal that the PIE method [26]
can lead to significant color shifts or errors in the blended objects, or introduce
unnecessary redundant information into the background. Our approach solves
the Poisson equation more accurately than the PIE method and captures the
global background information of the image more effectively by expanding the
receptive field.

5.2 5D Radiance Fields Blending Task

Tasks. To our knowledge, no work has yet achieved the task of naturally and
seamlessly blending two 5D Radiance Fields, with most efforts based on NeRF
focusing on basic editing, generation, and stitching. We have applied our Neural
Poisson Solver to NeRF, making preliminary attempts at heterogeneous and
large-scale blending of 5D Radiance Fields.
Methods. NeRF [23] models a scene as a 5D function that maps 3D coordinates
x = (x, y, z) and 2D viewing directions d = (θ, ϕ) to color c = (r, g, b) and
density σ. This function is simulated by an MLP, FΘ : (x,d) → (c, σ). In NeRF,
density σ depends only on x, facilitating the use of the Neural Poisson Solver
for blending in 5D Radiance Fields.

To blend source and target 5D Radiance Fields, SΘ and TΘ, we select a 3D
Region of Interest (ROI) Ω within TΘ and a central coordinate p in SΘ. The
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Fig. 5: Our method in Radiance Fields blending. The first column shows the original
scenes. The second column employs a common replacement blending approach, directly
substituting the region of interest Ω in SΘ with cG(x), rendered based on αG(x).
Columns three to five demonstrate the blending results achieved with our method,
showcasing the naturalness and consistency of the blend from different perspectives.

objective is to seamlessly integrate Ω from TΘ into SΘ around p. We start with
a copy of SΘ, named GΘ, and make adjustments for blending. The modifications
in GΘ focus on areas defined by Ω and p, while the rest is preserved through
ray rendering within Ω. For smooth blending, we use uniform rays across SΘ,
TΘ, and GΘ. Outside Ω, we rely on outputs from SΘ; inside, we blend results
from the three fields, guided by v in the Neural Poisson Solver. Inspired by
Blended-NeRF [12], optimization focuses on 3D points within Ω to save memory,
rendering along rays through Ω and setting external σ to 0 as shown in Eq. (6):

C(r) = I(∃xi ∈ r, xi ∈ Ω)
∑
xi∈Ω

Ti (1− exp (−σiδi)) ci. (6)

Post-training, scenes within and outside Ω blend using the same rays, with
TΘ and GΘ rendering inside points, and SΘ outside, guided by v. For v =
µ∇cS(x) + φ∇cT (x), it aligns with Eq. (7a) and Eq. (7b):

σ(x) = F(µσG(x) + φσT (x)), (7a)

c(x) =
µcG(x) · αG(x) + φcT (x) · αT (x)

ϵ+ µαG(x) + φαT (x)
, (7b)

where we set µ = φ = 1 and ϵ = 1e− 6.
For a fixed set of 2D viewing angles, NeRF’s color output is determined by

the 3D location, i.e., FΘ(x|d) → c. Drawing inspiration from CLIP-NeRF [37]
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Fig. 6: Illustrate the impact of different guiding vector fields v on the mixed gradients
in the x (bottom left) and y (bottom right) directions, as well as the final blending
outcome (top): (1) feature blending, (2) feature overlay (µ = φ = 1), (3) feature
smoothing between source and target scenes (µ = φ = 1

2
).

and DreamFields [14], we utilize Pose Sampling [14] to enhance NeRF’s train-
ing, which leads to faster rendering speeds and improved quality. Pose Sampling
involves randomly selecting camera poses for scene generation, with the ray’s
center being adjusted to the ROI Ω centroid to ensure better focus. By integrat-
ing Eq. (7a), Eq. (7b), and Eq. (3), we produce 2D images IS , IT , and IG from
SΘ, TΘ, and GΘ, all under the same viewing conditions. IG is the final blend,
with IS and IT serving as the source and target images for 2D blending.
Configurations. In our 5D Radiance Fields blending task, we adopt the ar-
chitecture from the original NeRF [23] paper. We prepare source NeRF SΘ and
target NeRF TΘ, and create a clone GΘ from SΘ as the starting point for blend-
ing. During training, we use a Pose Sampling strategy, initializing a random
camera pose P for each iteration and emitting 128 × 128 rays from this pose.
Consequently, we obtain a 128× 128 2D image for each camera pose P. We also
employ the Adam optimizer [16] with a cosine annealing strategy to gradually
reduce the learning rate. The training is performed on a single NVIDIA RTX
3090 GPU, taking several hours to complete.
Results. Fig. 5 showcases the blending results in various application contexts,
comparing our method to the replacement blending strategy. This strategy di-
rectly substitutes the ROI Ω in SΘ with cG(x), based on αG(x). The first two
scenes illustrate a heterogeneous blending task with text effects, where text ap-
pears as if frozen in ice and submerged in water, achieved using the Neural
Poisson Solver. The third scene depicts a large-scale blending task, featuring a
chessboard encased in ice.

Due to the limitations of graphics card capabilities and training duration,
the resolution of our final rendered images in the 5D Radiance Fields blending
task is capped at 256× 256. This limitation may affect the visual quality of the
blending results. Nonetheless, our method provides more coherent and natural
blending results compared to the direct replacement strategy.
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Fig. 7: Ablation Experiment. The control model using the boundary condition’s
local Lcolor is essentially similar to the method proposed by Pérez et al . [26], which per-
forms scene blending only on ∂Ω. This approach leads to background color distortion.
Furthermore, since the Lcolor focuses on pixel values at ∂Ω, it encounters difficulties
in handling background textures. On the right, our method extends the pixel receptive
field of Lcolor from the local ∂Ω to the global (S −Ω), thereby enhancing background
color recovery and achieving smooth transitions in the blending region.

5.3 Ablation Study

As outlined in Sec. 4, we discussed the research by Pérez et al . [26], in which
they transformed the initial variational problem Eq. (1) into a Poisson equation
Eq. (2). This transformation was achieved through the integration of Dirich-
let boundary conditions for a unique solution. In our pursuit to improve global
blending effects and mitigate color blending errors often observed with tradi-
tional methods based on the Poisson equation, we extended this blending task
to the entire background, represented as (S − Ω). To evaluate the effectiveness
of this approach, we conducted a series of comparative experiments to assess its
impact on the final blending results.

To ensure experimental fairness in our control experiments, we followed the
procedure of randomly initializing the INR, denoted as G, which includes the
pre-training blending results in the model using Eq. (5b). In our method, we
employed our proposed global Lcolor based on the entire background region. In
the control model, we adjusted Eq. (5b) to depend solely on the local Lcolor at
the blending boundary:

Lcolor =

∫∫
∂Ω

∥cG(x)− cS(x)∥2. (8)

Our ablation study results are presented in Fig. 7. From the results exhibited
by the control model, it can be inferred that focusing only on ∂Ω leads to
incorrect texture results at ignored locations. In contrast, our improved method
effectively recovers the background and maintains natural transitions.

5.4 Comparisons

We compared our method with existing state-of-the-art approaches, as illus-
trated in Fig. 8. [41] optimizes blending using style and content loss from a deep
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Fig. 8: Compared with generative models, our method offers greater controllability
and allows signal blending with unrestricted dimensions.

network, while [1] and [21] use generative models requiring additional inputs like
text prompts. In contrast, our approach enhances blending controllability with-
out introducing extraneous information, adhering to "natural blending" princi-
ples. Furthermore, our method does not require specific dimension optimization,
making it versatile for signal blending across various dimensions.

6 Conclusion

In this paper, we present a universal INR-based framework specifically designed
to handle blending tasks across various domains. The framework capitalizes on
our Neural Poisson Solver to guide the blending and generation of INRs, enabling
natural blending between source and target scenes.

Our proposed methodology has undergone extensive testing across numerous
2D and 3D scenes and tasks, effectively demonstrating its adaptability in han-
dling different dimensions. As our method fundamentally relies on the Neural
Poisson Solver for model optimization without requiring additional prior knowl-
edge, we believe that this framework can be readily adapted to a broad range of
applications with minimal adjustments.

Nonetheless, we recognize that our framework has its limitations. One notable
shortcoming is the occurrence of unnatural transitions within the blending area,
especially when using masks with sharp edges like rectangles or other geometric
shapes, which inadvertently makes the mask’s presence more apparent. Another
constraint surfaces in 5D Radiance Fields blending task where our Neural Poisson
Solver requires three NeRF models of identical size for ray tracing throughout the
blending process. This stipulation places substantial demands on GPU memory
resources and subsequently affects training efficiency.

Moving forward, we aim to explore effective optimization strategies to en-
hance our architecture and expedite the model blending processes. We also plan
to investigate blending tasks within more complex environments. We are opti-
mistic about integrating these potential optimization methods with our proposed
universal framework and look forward to their combined potential in future re-
search pursuits.
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