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(a): Math-night

(b): Library-night

(c): BioMed-sunset

(d): Admin-sunset

(e): Aud-sunset
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Fig. 8: Visualization of our five collected unbounded drone dataset. Each row show-
cases a different scene with three training views and one test view.

*Equal contribution.
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1 Unbounded Drone Dataset Details

We collect a blurry dataset captured by a drone in 360 unbounded format, which
provides more realistic scenes for evaluation in unconstrained pose geometry.
This dataset contains 5 scenes of different buildings which are all collected at
sunset or night. Specifically, we collect 96, 96, 112, 112, and 84 training images for
each building. For each scene, we also collect clear images from a stable drone
position for testing. Visualization of the collected dataset is shown in Fig. 8.
The first three columns show the training images and the last column shows the
testing images. We note that the two scenes collected at night have less blur, as
the drone flies at slower speed compared to at sunset due to various constraints
and safety considerations. This explains the lesser PSNR improvement of BAGS
compared to the baselines. All data and implementation code will be publicly
released upon acceptance.

2 Additional Implementation Details

In BPN’s Ffeat, ReLU activation function and Instance Normalization [8] are
used for the intermediate layers. We project the pixel coordinates to a sinusoids
space with the dimension of 16 and use a learnable view embedding of size
32. For multi-scale training, we train the first two scales with 3000 steps, and
the highest resolution scale with a maximum of 30000 steps for 360 unbounded
scenes; however, forward-bounded scenes converge much earlier than that. We
set the loss weights to be λphoto = 0.8, λDS = 0.2, and λmask = 0.001.

We train NeRFacto in Nerfstudio [7] as a baseline method on mix resolution
and low light motion blur scenarios for 30k iterations with its default setting,
i.e. a batch size of 4096 rays with 96 and 48 samples in the first and second
iteration of the proposal sampler, respetively. Adam [1] optimizer is used with
an exponential decay learning rate schedule from 0.01 to 0.0001.

3 Deblurring at High Resolution

Following the discussion in the main manuscript, we have explored ways to reduce
the computational cost of BAGS at very high resolution. To this end, we employ
a simple yet effective extension of BAGS based on sub-pixel convolution [6]. The
modified BAGS has three operations:

1. Pixel unshuffling, which converts spatial resolution to the channel dimension,
i.e. rearranging an image of shape C ×H ×W into Cr2 × H

r × W
r , where r

is the shuffling factor.
2. Convolution operation, which estimates and performs convolution at lower

spatial resolution H
r × W

r .
3. Pixel shuffling, which converts channel dimension back into the spatial di-

mension, obtaining an image of original resolution.
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Novel View NeRF Mip-Sp Db-NeRF DP-NeRF PDRF Ours 4X↓ Ours G.T.

(a): Coffee

(b): Decoration

(c): Girl

(d): Puppet

Fig. 9: Visualizations of test views on camera motion blur dataset at 2K resolution.
Mip-Sp and Db-NeRF are short for Mip-Splatting [9] and Deblur-NeRF [3]. All methods
other than "Ours 4X↓" are trained on 2K resolution.

Concretely, we modify Eq. (5) as

C ′ = PUS(C), D′ = PUS(D),

fRGBD(x, i) = Ffeat(C
′(x, i)⊕D′(x, i)),

h′(x, i),m′(x, i) = Fkernel(l(i)⊕ p(x)⊕ fRGBD(x, i)).

(9)

where PUS denotes the pixel unshuffling operation and 0 ≤ m′(x, i) ≤ 1. In our
experiments, we use r = 4. The convolution operation in Eq. (1) can be modified
to be

C̃ ′(x) =
∑

xk∈N (x)

C ′(xk)h
′(xk), C̃(x) = PS(C̃ ′(x)). (10)

where PS denotes the pixel shuffling operation. The estimated C̃(x) would be
of the same resolution as the high resolution observation C̃obs. In effect, we
estimate one kernel across multiple sub-pixel channels, which greatly reduces
cost, as both the spatial resolution of the images and the kernel size are reduced.
Intuitively, this also makes sense; i.e. in a local r×r patch, the blur kernel should
be relatively consistent.

We present the visualizations of deblurring results for the real scene acquisi-
tions [3] in Fig. 9 and 10. All methods are trained on the original 2K resolution.
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Novel View NeRF Mip-Sp Db-NeRF DP-NeRF PDRF Ours 4X↓ Ours G.T.

(a): Daisy

(b): Caps

(c): Cisco

(d): Tools

Fig. 10: Visualizations of test views on defocus blur dataset at 2K resolution. All
methods other than "Ours 4X↓" are trained on 2K resolution.

We observe that BAGS achieves much sharper results compared to other meth-
ods [2–5,9]. For example, in Fig. 9b, we clearly observe the sharp outlines of the
blue flower and its pedals. Additionally, BAGS is capable of reconstructing the
fine details whereas the other methods can only capture a contour. For instance,
in Fig. 10b and 10c, we can clearly identify the trademarks in our results while
the other methods merely show highly blurry silhouettes, especially in Fig. 10c,
or jagged representations. Additionally, compared with the results of BAGS from
4X downscaled training images, we can clearly see that the full resolution model
is much sharper at details. Quantitatively, we also observe significantly better
LPIPS scores from BAGS compared to competing methods, while other metrics
like PSNR and SSIM fluctuate based on the quality of the ground truth.

4 Synthetic Scenes

Deblur-NeRF [3] provides a synthetic dataset that contains 5 scenes for both
camera motion and defocus blur. Examining the effectiveness of Guassian-Splatting-
based methods on synthetic scenes is difficult, as Guassian-Splatting-based meth-
ods require point cloud initialization. For synthetic scenes, ground truth camera
poses are provided without Structure-from-Motion and thus do not come with
a point cloud. On one hand, if we re-calibrate the scene with blurry images,
this will lead to suboptimal poses; On the other hand, if we re-calibrate the
scene with ground truth images, this will be unfair as the point cloud contains
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Novel View NeRF Mip-Sp Db-NeRF PDRF Ours G.T.

(a): Pool Under Motion Blur

(b): Cozyroom Under Motion Blur

(c): Trolley Under Defocus Blur

(d): Tanabata Under Defocus Blur

Fig. 11: Visualizations of test views on synthetic datasets. We note that our method
and Mip-Splatting use poses estimated from blurry images instead of the ground truth
pose.

Deblur-NeRF DP-NeRF PDRF BAGS
PSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPS

Factory 28.03 0.863 0.113 29.26 0.879 0.104 30.90 0.914 0.111 30.46 0.926 0.067
Cozyroom 31.85 0.918 0.048 32.11 0.922 0.039 32.29 0.931 0.044 32.06 0.933 0.028
Pool 30.52 0.825 0.190 31.44 0.853 0.156 30.97 0.841 0.191 29.10 0.832 0.114
Tanabata 26.26 0.852 0.100 27.05 0.864 0.078 28.18 0.901 0.078 29.08 0.928 0.047
Trolley 25.18 0.807 0.144 26.79 0.840 0.117 28.07 0.880 0.120 28.12 0.894 0.091

Average 28.37 0.853 0.119 29.33 0.871 0.099 30.08 0.893 0.109 29.76 0.903 0.069

Table 3: Quantitative comparisons on synthetic defocus blur.

pixel information from clear images. We choose the former option as the worst-
case scenario for BAGS and present the quantitative comparisons in Table 3
on synthetic defocus blur. Despite using sub-optimal poses, BAGS shows better
structural and visual similarity compared to previous methods. However, the
performance on synthetic camera motion blur is less consistent. This is likely
because images in a few synthetic scenes with camera motion blur are heavily
blurred and difficult to calibrate. As we show in all other experiments, this is
not an issue for real scenes.
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We also provide visualizations of BAGS’s results in Fig. 11 and we generally
find that BAGS achieves good results in defocus blur. Notably, the synthetic
dataset was not constructed with Splatting-based methods in mind, we mainly
focus on real world acquisitions in this work.

5 Training Time

On average, BAGS’s training time on the camera motion and defocus blur scenes
is 0.55 and 0.4 hour respectively. Compared to DeblurNeRF (20 hours), DP-
NeRF (37 hours), and PDRF (1.15 hours), BAGS is significantly faster. We
note that PDRF leverages explicit representations, similar to InstantNGP, to
accelerate training, and is still slower than BAGS. All methods are measured with
one NVIDIA A5000 GPU. We note that BAGS reconstructs these scenes without
blur and with lower number of Gaussians compared to popular Splatting-based
methods; e.g ., BAGS achieves 50% lower number of Gaussians compared to
Mip-Splatting, as no excessive Gaussians are produced to fit to observed blur.

6 Supplementary Video

We provide rendered videos using our proposed BAGS and, for comparison, using
Mip-Splatting [9], for further visualizations. Please refer to the attached videos
to observe our compelling results.
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