
BAGS: Blur Agnostic Gaussian Splatting through
Multi-Scale Kernel Modeling

Cheng Peng∗, Yutao Tang∗, Yifan Zhou, Nengyu Wang, Xijun Liu, Deming Li,
and Rama Chellappa

Johns Hopkins University, Baltimore MD 21218, USA
{cpeng26,ytang67,yzhou223,nwang43,xliu253,dli90,rchella4}@jhu.edu

Abstract. Recent efforts in using 3D Gaussians for scene reconstruction
and novel view synthesis can achieve impressive results on curated bench-
marks; however, images captured in real life are often blurry. In this work,
we analyze the robustness of Gaussian-Splatting-based methods against
various image blur, such as motion blur, defocus blur, downscaling blur,
etc. Under these degradations, Gaussian-Splatting-based methods tend
to overfit and produce worse results than Neural-Radiance-Field-based
methods. To address this issue, we propose Blur Agnostic Gaussian Splat-
ting (BAGS). BAGS introduces additional 2D modeling capacities such
that a 3D-consistent and high quality scene can be reconstructed despite
image-wise blur. Specifically, we model blur by estimating per-pixel con-
volution kernels from a Blur Proposal Network (BPN). BPN is designed
to consider spatial, color, and depth variations of the scene to maximize
modeling capacity. Additionally, BPN also proposes a quality-assessing
mask, which indicates regions where blur occur. Finally, we introduce
a coarse-to-fine kernel optimization scheme; this optimization scheme is
fast and avoids sub-optimal solutions due to a sparse point cloud ini-
tialization, which often occurs when we apply Structure-from-Motion on
blurry images. We demonstrate that BAGS achieves photorealistic ren-
derings under various challenging blur conditions and imaging geometry,
while significantly improving upon existing approaches.

1 Introduction

High quality scene reconstruction and novel view synthesis from 2D images is
a long-standing research problem with extensive applications in robotics, vir-
tual reality, e-commerce, cinematography, etc. Significant advancements in this
field have been made in recent years with the introduction of Neural Radiance
Field (NeRF) [24]. NeRF can achieve photorealistic view synthesis by implic-
itly representing the scene with a Multi-Layer Perceptron (MLP) and opti-
mizing the MLP with differentiable ray-tracing. Many subsequent works have
since been proposed to improve various aspects of NeRF, including optimiza-
tion acceleration [6, 9, 25, 37], anti-aliasing [2, 3], dynamic and generative mod-
eling [19, 31, 32, 40], etc. Recently, 3D Gaussian Splatting (3DGS) [12] has been
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introduced as an alternative to NeRF-based approaches. 3DGS uses Gaussians
as explicit 3D representations and a differentiable rasterization technique, which
enables high quality scene reconstruction in a short time.

Fig. 1: We introduce BAGS, which can reconstruct high quality scenes even from
blurry training images. Moreover, BAGS can provide kernels and masks that indicate
the types and regions of the blur, as shown by the highlighted regions under Mask.

Practical applications of 3DGS, however, can be challenging. Despite its im-
pressive performance on curated datasets, 3DGS requires high quality images
and a good point cloud initialization to work well. Without these conditions,
3DGS often generates undesired Gaussians to overfit observation noise, leading
to worse renderings, e.g ., compared to NeRF. For instance, images acquired in
real life or from the internet are often in non-ideal conditions. The camera may
be unstable or out of focus, leading to motion or defocus blur. Images may also
have different resolutions depending on the sensor types or post processes.

There often exists sufficient information within a multi-view image set to gen-
erate a high quality reconstruction, even if the individual images are degraded.
This is because the same region is often observed repeatedly from different views;
such redundancy can then be explored to better recover the underlying scene.
Works like Deblur-NeRF [21] and its variants [15, 16, 30, 41] are designed based
on this insight. Formally, a simple yet powerful forward model can be used to
describe the potentially blurry pixel value C̃(x) at coordinate x:

C̃(x) =
∑

xk∈N (x)

C(xk)h(xk) s.t
∑

xk∈N (x)

h(xk) = 1, (1)

where C(xk) is the clear pixel value at pixel coordinates xk around the neigh-
borhood of x, and h(xk) is the blur kernel weights. In this formulation, C(xk) is
multi-view consistent, and C̃(x) is multi-view inconsistent due to the blur from h.
Previous methods [15,16,21,30,41] aim to simultaneously optimize a multi-view
consistent C(xk) through NeRF and the multi-view inconsistent C̃(x) through
a view-specific network that predicts h(xk). As such, we render only the clear
C(xk) after training. In comparison, vanilla NeRF [24] treats C(xk) and C̃(x)
as one variable, forcing multi-view inconsistencies to be baked into the scene.

In this work, we build upon the blur formulation in Eq. (1), and explore two
key differences between NeRF and 3DGS in robust reconstruction. NeRF-based
approaches suffer from slow training speed, i.e. only limited number of rays can
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be rendered at once. This is exacerbated by kernel modeling, which requires
the rendering of a patch to model a single pixel. To mitigate this issue, current
approaches model the kernel h sparsely [15, 21, 30] or only for specific types of
blur [16, 41]. Since 3DGS can rasterize entire images efficiently, it potentially
has great synergy with Eq. (1). On the flip side, NeRF requires only calibrated
camera poses for reconstruction, whereas 3DGS also requires a good point cloud
initialization. For noisy images, camera poses can often be estimated based on
just a few correct matches, but a dense point cloud is challenging to obtain.

As shown in Fig 1, we introduce Blur Agnostic Gaussian Splatting, or BAGS,
which is a Splatting-based method that is robust against various types of blur.
At the core of BAGS is a Blur Proposal Network (BPN). Contrary to previous
methods [15,21,30] that sparsely estimate h, BPN directly estimates dense ker-
nels on full images during training. We find that estimating a dense h is more
effective and no less efficient than estimating a sparse one, which also has to pre-
dict kernel positions xk. BPN considers the position and view embedding of pixel
x, accounting for the spatial variance in image blur. Furthermore, a three-layer
Convolution Neural Network (CNN) is used to compute the RGBD features of
the rendered image. These extracted features allow BPN to consider the color
and depth variation of the scene, e.g . around edges and corners, more effectively.
Finally, BPN also computes a per-pixel mask, which blends the estimated clear
and blurry pixels together. We make the observation that not necessarily all
pixels are blurry; therefore, by constraining on its sparsity, such a mask can vi-
sualize regions where blur occurs. This is particularly useful as a way to evaluate
image quality.

In addition to BPN, BAGS proposes a coarse-to-fine kernel optimization
scheme. In some cases, BAGS cannot perform reconstruction well if it jointly
optimizes BPN with a very sparse point cloud, due to the inherent ambiguity
of separating blur from the observation. Furthermore, optimizing a dense kernel
on full resolution directly is computationally expensive and time-consuming. To
solve these conundrums, we first optimize the scene and BPN at lower scales with
a smaller kernel dimension. This allows the optimization process to address a
less challenging and ambiguous problem initially. We then gradually increase the
resolution of the training images and the estimated kernels; since the blur prob-
lem has been partially addressed at a small scale, optimization at larger scales
is more stable and effective. Under this scheme, we not only observe improved
performance but also faster optimization process.

In summary, our contributions can be summarized in three parts:

1. We introduce a Blur Proposal Network, which considers spatial, depth, and
color variations of the scene to model image blur; BPN can also produce a
mask that indicates blurry regions in an input image.

2. We introduce a coarse-to-fine optimization scheme, which gradually increases
the training image resolution and the estimated kernel size with additional
neural network layers; this improves the stability of the joint optimization
process given a sparse point cloud.
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3. We evaluate the overall method, BAGS, on three image blur scenarios and
find significant quantitative and visual improvements compared to current
SoTA methods.

2 Related Work and Background

Single Image Restoration. Restoring images from degradation, such as blur,
has a long history of research. In general, this is a heavily ill-posed problem as
many potential high quality images can lead to the same degraded observations.
Traditionally, various priors are used to constrain the solution space [5, 14, 18,
34,38,43]. More recently, deep-learning-based methods have achieved great per-
formances by learning a better prior in a data driven way, e.g. as a function
that directly maps blurry images to clean images. In this paradigm, we train
a powerful restoration model with millions of training pairs and a large neural
network. Ideally, images can be restored by such a model [1,4,8,13,17,42,45,47].
This paradigm has many issues in practice. For example, real training pairs
are difficult to acquire in large scale; therefore, synthetic data is often used,
which leads to significant domain shift problems. Every type of degradation also
requires its own training sets and models, which exacerbate the data and com-
putation costs. Even for degradations such as low resolution, for which is easy to
synthesize training pairs, the restoration is unlikely to be multi-view consistent.

NeRF in Non-Ideal Conditions. NeRF [24] works well when images are clean
and well-calibrated; however, images acquired in the wild are often less ideal. Fac-
tors such as low light, camera motion, object motion, and incorrect focus can
degrade image quality or affect multi-view consistency. Many works introduce
domain knowledge to model the non-ideal contributors, such that the radiance
field only models a canonical, multi-view consistent scene. RawNeRF [23] uses an
approximated tonemapped loss and variable exposure to account for low light ob-
servations. NeRF-W [22] uses an image-specific embedding to model inconsistent
appearances and transient objects. For object motion, many works [28,29,33,40]
use an implicit function to describe scene deformation, such that the traced rays
are first deformed. For image degradation such as blur, similar ideas have been
used [11,15, 21, 30, 41] to model the forward image degradation process; i.e. the
3D consistent scene and 2D inconsistent degradation will be separated based on
the multi-view photometric loss.

3D Gaussian Splatting. Recently, 3DGS [12] introduces a novel, point-based
scene reconstruction method that improves upon NeRF in many aspects. 3DGS
utilizes a set of 3D Gaussian primitives [48] {Gn|n = 1, ..., N} to represent the
scene. These Gaussians are parameterized as follows:

Gn(v) = e−
1
2 (v−pn)

TΣ−1
n (v−pn), (2)

where the center pn ∈ R3×1 and covariance matrix Σn ∈ R3×3 define the posi-
tion, scale, and rotation of the Gaussian at point v ∈ R3×1 in space. Additionally,
each Gaussian also contains opacity α and color c. For rendering, the Gaussians
are projected onto the image plane as G2D

n , where the center and covariance ma-
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trices are transformed based on the camera rotation R ∈ R3×3 and translation
t ∈ R3×1:

p2D
n = Rpn + t, Σ2D

n = RΣnRT . (3)

We can then aggregate 2D Gaussians according to their depth order D over a
pixel/tile, based on alpha blending:

C(x) =

D∑
i=1

TiαiciG2D
i , Ti =

i−1∏
j=1

(1− αjG2D
j ). (4)

With well-designed tiling, this splatting-based rasterization technique is signifi-
cantly faster than ray-tracing in NeRF-based methods without affecting render-
ing quality; various work have ensued to further improve the Gaussian represen-
tation [10,26,27,44] and the rasterization process [20,46].

3 Blur Agnostic Gaussian Splatting

BAGS is designed to robustly optimize 3D Gaussians by introducing ad-
ditional modeling capacities in 2D, which allows BAGS to model away 3D-
inconsistent blur from the scene. As shown in Fig. 2, BAGS consists of two parts:
a Blur Proposal Network (BPN) and a coarse-to-fine optimization scheme. For
clarity, we first describe the design of BPN on a single scale, and then describe
modifications on BPN and the training loss on scale s for multi-scale training.

3.1 Blur Proposal Network

Following the forward blur model described in Eq. (1), BPN models a per-
pixel convolution kernel h(x) ∈ RK×K for every pixel x, where K is the kernel
size. The rasterization efficiency in Gaussian Splatting allows us to model h(x)
as a full convolution kernel. Additionally, BPN estimates a per-pixel scalar mask
m(x) ∈ [0, 1], controlling the areas where blur modeling takes place.

Multi-Modal Features. In scene reconstruction, a large neural network will
impact training time. As such, we use a four-layer MLP Fkernel to model blur.
To maximize the capacity of Fkernel, we design Multi-Modal Features (MMF)
that can help distinguish the scene from blur. Real image blur typically varies
between different observed images and different pixels within an image; there-
fore, we provide Fkernel with a learnable view embedding l(i) and a positional
embedding p(x) for training view i and coordinate x. Additionally, we provide
Fkernel with a set of features fRGBD extracted from the rendered image C and
depth D from rasterization, using a small, three-layer CNN Ffeat. These features
are concatenated with l(i) and p(x) to form the MMF for Fkernel. Consequently,
the forward process to estimate the kernel h(x, i) and the mask m(x, i) given a
specific pixel x and training view i can be noted as:

h(x, i),m(x, i) = Fkernel(l(i)⊕ p(x)⊕ fRGBD(x, i)),

where fRGBD(x, i) = Ffeat(C(x, i)⊕D(x, i)), 0 ≤ m ≤ 1.
(5)

Incorporating RGBD features enbales BPN to explore the patch statistics around
the current pixel, especially at edges and corners where blur is prominent. Scene
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Fig. 2: BAGS is optimized by training a Blur Proposal Network on top of the scene
G(v) over multiple scales. Top: We extract fs

RGBD from color and depth, which are
concatenated with the position and view embedding p(x), l(i) to form the Multi-Modal
Feature (MMF). The kernel MLP then estimates the per-pixel kernel hs and mask ms.
We use hs to model the blur image C̃s and employ ms to blend the rendered image Cs

and the blur-modeled image C̃s, yielding Cs
out. Bottom: After Ns steps, we upscale

image resolution and modify the kernel MLP to produce hs−1 with a larger kernel size.

depth also strongly correlates with the magnitude of blur. For example, defocus
blur affects pixels that are outside of a specific focus plane; scene content that
is further away from this focus plane becomes more blurry. For camera motion
blur, pixels in the near plane may shift more than pixels in the far plane. We
find the inclusion of fRGBD notably improves BPN’s modeling capacity and the
quality of novel view synthesis.

Residual Mask Bottleneck. As described in Eq. (5), Fkernel also estimates
a per-pixel scalar mask m(x, i). Specifically, this mask is used to blend the
Gaussian-splatted image C with the blur-modeled image C̃ as follows:

Cout(x, i) = (1−m(x, i))C(x, i) +m(x, i)C̃(x, i), (6)

where Cout is the final output at training. We note that not necessarily all pixels
are blurry in an observed image. The blending m provides an additional degree
of freedom to allow C, the clear pixel, to be directly compared with Cobs; i.e., if
Cobs(x, i) suffers from blur, then m(x, i) should be large, giving a higher weight
to C̃(x, i); if Cobs(x, i) if free of blur, m(x, i) should be small, favoring C(x, i).

This design is similar to residual learning by providing the output with a
skip connection from C as initialization. We apply a small sparsity constraint
on m to encourage a larger weight towards C by default. After training, we can
extract m to automatically identify the degraded regions in an input image.
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(a) Without C2F (b) BAGS (c) Naive densification (d) BAGS

Fig. 3: Gaussians may get stuck at a local minimum without proper initialization. As
indicated in 3a, optimizing h directly can lead to noisy surfaces. Naively densifying
the scene before adding h can also lead to noisy Gaussians; as shown in 3c, the noisy
Gasussians are not well removed even after adding h. By using a coarse-to-fine training
schedule, we achieve better results in 3b and 3d.

3.2 Coarse-to-Fine Kernel Optimization

A high quality 3DGS reconstruction requires a good point cloud estimation
from Structure from Motion (SfM). Camera calibration parameters, which can
be estimated from just a few matches, are relatively robust against image blur.
On the other hand, obtaining a sufficiently dense point cloud can be challenging.
Unfortunately, 3DGS is prone to over-fitting without a good initialization. This
problem can worsen when a blur model is introduced and the kernels h provide
additional degrees of freedom in scene optimization, as shown in Fig. 3. Fur-
thermore, estimating dense per-pixel kernels on a full resolution image can be
computationally expensive. A sparse estimation of the kernel does not meaning-
fully improve efficiency, as rendering is cheap in rasterization while the neural
network to predict any type of kernel is still costly. Fundamentally, the complex-
ity to compute per-pixel kernel scales quadratically with resolution. To address
these problems, we propose a coarse-to-fine kernel optimization scheme, which
initially optimizes Eq. (5) at a low resolution and gradually increases render
resolution, achieving a more stable training process and better efficiency.

Multi-Scale BPN. For multi-scale optimization, BPN should generate kernels
with a consistent field of view. We define scale based on the downscaling ratio
2s−1 in resolution, where the original resolution is defined as s = 1. Additionally,
if the image resolution is downscaled by a factor of two, i.e. s = 2, the proposed
kernel size Ks should also be similarly downscaled. As shown in Fig. 2, a proper
Ks ensures that the kernel is always modeling blur from the same regions.

To enable multi-scale training, we separate Fs
kernel into two parts: a two-layer

base MLP Fs
base and two one-layer MLP heads Fs

blur and Fs
mask. The base MLP

extracts features from MMF, such features are then provided to the two heads
for generating the kernels hs and masks ms at scale s. In practice, only Fs

blur has
a scale-dependent parameter size corresponding to the kernel size Ks; therefore,
a new MLP layer with output dimension Ks ×Ks is added for every scale. The
updated multi-scale BPN can be described as follows:

finter(x, i) = Fs
base(l(i)⊕ p(x)⊕ fRGBD(x, i))

hs(x, i) = softmax(Fs
blur(finter(x, i))),

ms(x, i) = sigmoid(Fs
mask(finter(x, i))).

(7)
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Coarse-to-Fine Optimization. We split training into multiple stages based
on scale. Starting from the coarsest scale s = S to the finest scale s = 1, we
optimize BAGS with a downsampling factor of 2s−1 applied to C, C̃, Cobs, and h.
The optimization for each scale lasts for Ns steps, we then increase the resolution
in C, C̃, Cobs, and h. The scale-dependent training loss can be described as:

Ls = λphoto∥Cs
out − Cs

obs∥+ λDSLD-SSIM(Cs
out, C

s
obs) + λmask∥ms∥, (8)

where Cs
obs and Cs

out are the observed and predicted image at scale s, LD-SSIM
is the structural similarity loss; ∥ms∥ is the mask sparsity loss. We find this
training scheme achieves the best of both worlds: activating BPN at low resolu-
tion generates less overfitting artifacts during densifying the point cloud given
the reduced visiblity of blur. Moreover, it also serves as an efficient warm-up for
BPN at higher resolution, as computing per-pixel kernels at low resolution is
much cheaper.

4 Experiments

We evaluate BAGS under three degradation scenarios: camera motion blur,
defocus blur, and mix resolution. All of these degradations are commonly ob-
served in images acquired in real life or online. We further introduce a new un-
bounded 360 drone dataset, which is collected at sunset or night and experiences
degradation due to a combination of motion blur and low light condition.
Camera Motion and Defocus Blur. Camera motion and defocus blur are
often observed in real acquisitions, e.g . due to low light, incorrect auto-focus,
or limitation in the finite aperture of real cameras. Deblur-NeRF [21] provides
real scene acquisitions that contain camera motion and defocus blur; both blur
categories consist of ten scenes. While real world scenes have blur-free references,
the camera settings, e.g ., exposure, may not be consistent with source views.
Experiments on synthetic blur are reported in supplemental material.
Mix Resolution. To analyze the scenario where the input images are of incon-
sistent resolution, we apply various downsampling operations on the Mip-NeRF
360 dataset [2]. Specifically, we split the training images into four equal parts and
apply 4X, 3X, 2X, and no downscaling to each of the parts. The image splits are
sampled in uniform randomness to ensure no downscaling covers a consecutive
interval of the camera trajectory. We then use NeRFStudio’s data processing
pipeline [39], which converts all images to the highest resolution and calibrates
with COLMAP [35]. Similar to previous works [2, 3, 46], we perform the entire
process on downscaled data instead of the original 4K resolution.
Unbounded Drone Motion Blur. The dataset introduced by DeblurNeRF [21]
serves as a good benchmark for performance comparison; however, it is collected
in a forward bounded format. These forward bounded scenes focus on a small
area and have significant overlaps within the images; as such, it is unclear if the
methodology [15, 16, 21, 30, 41] based on these sets can generalize to other sce-
narios. In fact, none of the deblurring methods can work for unbounded scenes.
To supplement DeblurNeRF’s dataset and understand how BAGS performs in
realistic settings, we collect five sets of drone footage on different buildings in 360
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(a) (b)

(c) (d)

Fig. 4: Ablation study of BAGS with different sub-modules. In 4a and 4b, introducing
RGBD features and coarse-to-fine optimization improve novel view synthesis quality,
and alternative sparse deformable kernel suffers in performance; 4d demonstrates our
speed improvement against BAGSnoC2F. In 4c, larger kernel generally leads to better
performance, other than in the mix resolution scenario.

unbounded format. These footages are collected at sunset or night, and suffer
from camera motion blur and low light noise. For each scene, we also capture
clear frames from a stable drone position for testing, resulting in around 100
images overall. We use NeRFStudio [39] to calibrate images from these footages.
More details on this dataset can be found in supplemental material.

Implementation Details. BPN’s Ffeat is constructed as a three-layer CNN;
the intermediate channel size is 64, the kernel size for each layer is 5, 5, and
3. Fkernel is constructed with four linear layers; the intermediate channel size is
64. For multi-scale training, we use three scales starting with scale s = 3, where
K3 = 5, K2 = 9, and K1 = 17. BAGS implements its Gaussian Splatting and
rasterization based on Mip-Splatting [46], which has been shown to yield good
results across multiple resolutions. More implementation details can be found in
supplemental material.

4.1 Ablation Studies

We compare three designs in BAGS to demonstrate the effectiveness of dif-
ferent components:
– BAGSnoRGBD: We implement BPN without the RGBD features fRGBD.
– BAGSdeform: We implement BPN with a sparse deformable kernel, similar

to DeblurNeRF [21].
– BAGSnoC2F: We implement BAGS without a coarse-to-fine kernel optimiza-

tion scheme.
We further investigate the effect of the final kernel size K1 on reconstruction
quality across all degradation scenarios.
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As shown in Fig. 4, the introduction of RGBD features to BPN greatly im-
proves its ability to disentangle image blur from the underlying scene. The ad-
dition of fRGBD increases the average performance by 1.57/0.92 dB in PSNR
and 0.03/0.03 in SSIM for camera motion and defocus blur, respectively. This
agrees with our intuition that blur is highly correlated with depth and image
features like edges. Our coarse-to-fine optimization scheme also notably boosts
robustness against defocus blur by 1.64dB and 0.08 in PSNR and SSIM on aver-
age. As visualized in Fig. 3a, directly optimizing 3DGS on a sparse point cloud
in BAGSnoC2F leaves many ambiguities; while training views have low loss, test
views show a lack of the correct surface structure and many artifact Gaussians.
Densifying Gaussians without BPN first improves performance for defocus blur;
however, this strategy is bad for motion blur, as shown in Fig. 3c. In Fig. 4d, we
show that our coarse-to-fine strategy is not only performant, but also fast; on
average, BAGS can reach high performance in less than fifteen minutes, which
is much faster than the two hours required by PDRF [30]. This strategy is also
faster compared to single-scale training, as full-scale training in our scheme uses
less iterations, and lower scale training does not sacrifice performance. Both
multi-scale and single-scale training take 40K iterations overall.

We also implement a deformable version of BPN in BAGSdeform, where BPN
estimates the kernel position and kernel weights for ten points within a 20× 20-
pixel patch. We show its performances in Fig. 4a, where BAGSdeform is tested on
camera motion blur. Camera motion blur often has a sparse representation, i.e.
the camera motion trajectory [16, 41]; therefore, a ten-point estimation of the
kernel may perform well. However, we find that BAGSdeform still underperforms
compared to a full kernel estimation in BAGS. This may be due to the difference
between NeRF and 3DGS; i.e., a ray-based deformation can be better expressed
in NeRF, while a patch-based convolution can be better expressed in 3DGS. We
also note that BAGSdeform is not more efficient than BAGS despite its sparse
estimation. This is because approaches like [15,21,30] require one forward pass to
estimate one kernel position and weight; therefore, we need to forward multiple
times for every pixel to estimate the sparse kernel. In comparison, BAGS only
requires a single forward pass to obtain the full kernel.

Finally, we ablate on the kernel dimension estimated by BPN. In Fig. 4c, we
show that larger kernels in general lead to higher performances; interestingly, this
is not true in the mixed resolution scenario. This is likely because downsacling
is uniform across all pixels in an image, i.e. a downscaling factor of four means
a kernel size of five can fully explain the degradation. As such, increasing the
kernel size does not improve performance and introduces noise instead.

4.2 Quantitative Evaluation

Camera Motion and Defocus Blur. As shown in Table 1, we observe that
Gaussian Splatting [46] performs markedly worse than vanilla NeRF in the pres-
ence of blurry images, despite its strong performance in other curated bench-
marks. Since NeRF models a continuous neural volume with an MLP, individual
degradation can be smoothly explained by spreading the error into empty space.
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Camera NeRF [24] Mip-Splatting [46] Deblur-NeRF [21] DP-NeRF [15] PDRF [30] BAGS
Motion PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Ball 24.08 0.624 0.399 23.22 0.619 0.340 27.36 0.766 0.223 27.20 0.765 0.209 27.88 0.783 0.209 27.68 0.799 0.150
Basket 23.72 0.709 0.322 23.24 0.688 0.288 27.67 0.845 0.148 27.74 0.846 0.129 28.63 0.869 0.119 29.54 0.900 0.068
Buick 21.59 0.633 0.350 21.46 0.658 0.266 24.77 0.770 0.175 25.70 0.792 0.141 25.69 0.790 0.165 26.18 0.844 0.088
Coffee 26.48 0.806 0.290 24.73 0.749 0.288 30.93 0.898 0.124 32.44 0.915 0.101 32.41 0.913 0.112 31.59 0.908 0.096
Decoration 22.39 0.661 0.363 20.55 0.641 0.299 24.19 0.771 0.186 23.51 0.740 0.275 23.29 0.734 0.228 26.09 0.858 0.083
Girl 20.07 0.708 0.320 19.87 0.714 0.278 22.27 0.798 0.169 21.80 0.770 0.205 23.94 0.830 0.171 25.45 0.869 0.079
Heron 20.50 0.522 0.413 19.43 0.505 0.332 22.63 0.687 0.210 22.52 0.676 0.281 22.84 0.692 0.231 22.04 0.715 0.126
Parterre 23.14 0.620 0.405 22.28 0.590 0.321 25.82 0.760 0.216 24.97 0.768 0.227 25.64 0.758 0.235 25.92 0.819 0.092
Puppet 22.09 0.609 0.339 22.05 0.631 0.267 25.24 0.751 0.158 25.12 0.758 0.181 24.99 0.761 0.147 25.81 0.804 0.094
Stair 22.87 0.456 0.487 21.91 0.474 0.387 25.39 0.630 0.210 25.78 0.647 0.229 25.73 0.639 0.211 26.69 0.721 0.080

Average 22.69 0.635 0.369 21.87 0.627 0.306 25.63 0.767 0.182 25.91 0.775 0.160 26.10 0.777 0.183 26.70 0.824 0.096

Defocus

Cake 24.42 0.721 0.225 22.17 0.645 0.290 26.27 0.780 0.128 26.16 0.778 0.127 27.07 0.799 0.120 27.21 0.818 0.108
Caps 22.73 0.631 0.280 21.00 0.503 0.442 23.87 0.713 0.161 23.95 0.712 0.143 24.10 0.716 0.147 24.16 0.725 0.159
Cisco 20.72 0.722 0.126 20.08 0.709 0.163 20.83 0.727 0.087 20.73 0.726 0.084 20.55 0.725 0.091 20.79 0.743 0.070
Coral 19.81 0.566 0.269 19.60 0.555 0.323 19.85 0.600 0.121 22.80 0.741 0.096 19.53 0.591 0.112 20.53 0.628 0.117
Cupcake 21.88 0.681 0.216 21.55 0.681 0.213 22.26 0.722 0.116 20.11 0.611 0.118 23.09 0.754 0.094 22.93 0.762 0.080
Cups 25.02 0.758 0.232 20.93 0.646 0.314 26.21 0.799 0.127 26.75 0.814 0.104 26.28 0.812 0.127 26.27 0.823 0.104
Daisy 22.74 0.620 0.262 21.59 0.614 0.273 23.52 0.687 0.121 23.79 0.697 0.108 24.39 0.741 0.091 23.74 0.746 0.062
Sausage 17.79 0.483 0.279 17.78 0.473 0.284 18.01 0.500 0.180 18.35 0.544 0.147 18.86 0.564 0.143 18.76 0.574 0.110
Seal 22.79 0.627 0.268 22.13 0.592 0.310 26.04 0.777 0.105 25.95 0.778 0.103 26.47 0.806 0.084 26.52 0.812 0.090
Tools 26.08 0.852 0.155 23.98 0.812 0.196 27.81 0.895 0.061 28.07 0.898 0.054 28.14 0.901 0.059 28.60 0.913 0.046

Average 22.40 0.666 0.231 21.08 0.623 0.281 23.47 0.720 0.121 23.67 0.730 0.108 23.85 0.741 0.107 23.95 0.754 0.095

Table 1: Quantitative comparisons on the camera motion and defocus blur dataset.
We color code the best PSNR, SSIM, and LPIPS performances.

On the other hand, 3DGS is based on a discrete representation and tends to
produce concentrated artifacts. Our BAGS can achieve new SoTA performances
compared to previous NeRF-based deblurring methods despite the unfavorable
performances in 3DGS. Specifically, we find significant improvements on cam-
era motion blur across all metrics and achieve a fifty percent improvement in
LPIPS on average. As visualized in Fig. 5, BAGS achieves much sharper results
compared to previous methods [15, 16, 21, 30], to the point where it is hard to
distinguish the groundtruth image from our rendered results.

While improvements on defocus blur is less drastic in Table 1, we still observe
great visual improvements. Several reasons contribute to the less apparent quan-
titative improvements. First, the collected groundtruth images have different ex-
posure compared to training images; as such, image-wise similarity metrics like
PSNR are less reliable. Secondly, many scenes contain specular surfaces, which
all methods do a bad job at reconstructing. As shown in Fig. 5, much better
details can be recovered through BAGS than other methods.

Mix Resolution and Low Light Motion Blur. We investigate the robustness
of several SoTA reconstruction methods on downscaling perturbation and motion
blur observed in low light condition. The experiments are done on unbounded
scenes and are more challenging and realistic than the forward bounded scenes
in DeblurNeRF [21]. We note that previous approaches [15, 21, 30, 41] cannot
handle unbounded scenes; therefore, we do not include them in Table 2.

As shown in Table 2, Mip Splatting performs on par with Mip-NeRF 360;
both are vastly better than NeRFacto [39], which stores hash features [25] to ac-
celerate the training process and uses a very small MLP represent the scene. We
also employ a Super-Resolution (SR) model HAT [7] on downscaled images in
the hope that single-image SR can improve performances. However, pre-trained
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Novel View NeRF Mip-Sp Db-NeRF DP-NeRF ExBluRF PDRF Ours G.T.

PSNR/SSIM 22.6/.621 22.5/.658 25.35/.815 25.54/.826 23.39/.761 24.87/.793 28.74/ .934 Motion

PSNR/SSIM 23.29/.814 23.27/.845 27.08/.902 27.54/.908 25.66/.892 26.66/.898 28.03/ .927 Motion

Novel View NeRF Mip-Sp Db-NeRF DP-NeRF PDRF Ours G.T.

PSNR/SSIM 22.16/.709 22.23/.709 23.14/.765 25.24/.822 25.47/.833 26.14/ .879 Defocus

PSNR/SSIM 22.91/.774 21.74/.758 24.98/.856 25.38/.857 26.15/.881 26.97/ .907 Defocus

Fig. 5: Visualizations of test views on camera motion and defocus blur dataset. Mip-Sp
and Db-NeRF are short for Mip-Splatting [46] and Deblur-NeRF [21].

SR models are limited by domain shifts, dedicated upscaling factors, and the
lack of multi-view consistency. As visualized in Fig. 6, while the render is some-
what sharper after SR, the color becomes unfaithful. Compared with all other
methods, our rendered results are much sharper in details. This robust perfor-
mance comes from BPN’s ability to model Gaussian blur on high resolution
before comparing them with the downscaled observations.

Motion blur is often observed in low light condition. To this end, we perform
experiments on scenes acquired near sunset or at night. As shown in Table 2,
BAGS again improves significantly over other reconstruction approaches, which
shows that our method can be generalized to different imaging geometry. As
shown in Fig. 6, we employ MPR [47], a single image deblurring model, on the
motion-blurred images before reconstructing with Mip-Splatting [46]. Similar to
previous attempts, the deblurring prior leads to a slightly clearer rendering but is
not sufficient to remove all blur. BAGS reconstructs the scene remarkably well
compared to other methods, where even the window details can be recovered
correctly. Please refer to the supplemental material for more visualizations.

Kernel and Mask Visualization. BAGS models image degradation through
convolution kernels h and masks m, which we visualize in Fig. 7. By constraining
on its sparsity, we can see that m meaningfully highlights the regions of blur in a
given training image. On the other hand, low-value regions indicate either high
quality observation or textureless regions. By visualizing the kernels modeled
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MixedRes NeRFacto [39] Mip-NeRF 360 [2] Mip-Sp [46] Mip-Sp-HAT [7] BAGS
PSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPS

Bicycle 19.25 0.349 0.496 23.82 0.610 0.375 24.03 0.628 0.364 23.20 0.559 0.408 24.97 0.724 0.251
Bonsai 21.80 0.619 0.259 29.91 0.871 0.190 29.27 0.876 0.193 28.38 0.848 0.228 31.11 0.933 0.116
Counter 24.07 0.714 0.280 28.09 0.848 0.220 27.79 0.853 0.216 27.02 0.811 0.252 29.03 0.900 0.140
Flowers 19.63 0.418 0.459 21.98 0.566 0.389 21.96 0.570 0.397 20.81 0.520 0.415 22.47 0.633 0.330
Garden 21.61 0.489 0.357 25.34 0.667 0.317 25.28 0.682 0.305 23.96 0.611 0.364 26.45 0.800 0.178
Kitchen 22.73 0.584 0.304 27.82 0.779 0.238 27.49 0.778 0.241 26.10 0.730 0.296 30.86 0.925 0.095
Room 24.68 0.791 0.214 30.38 0.902 0.198 30.43 0.903 0.203 29.61 0.240 0.135 30.50 0.907 0.169
Stump 23.19 0.555 0.377 25.75 0.688 0.320 25.87 0.703 0.299 24.09 0.618 0.364 25.97 0.720 0.258
Treehill 20.11 0.416 0.501 22.52 0.558 0.437 22.86 0.550 0.457 21.76 0.494 0.482 22.60 0.579 0.389

Average 21.90 0.548 0.361 26.18 0.721 0.298 26.11 0.727 0.297 24.99 0.603 0.327 27.11 0.791 0.214

Lowlight-drone NeRFacto [39] Mip-NeRF 360 [2] Mip-Sp [46] Mip-Sp-MPR [47] BAGS
PSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPS

Math-night 21.33 0.582 0.326 29.51 0.882 0.191 29.61 0.884 0.199 29.15 0.877 0.204 30.75 0.905 0.158
Library-night 24.48 0.768 0.381 26.38 0.821 0.349 26.17 0.820 0.370 25.89 0.810 0.385 28.55 0.859 0.313
BioMed-sunset 23.76 0.650 0.439 24.48 0.688 0.402 24.85 0.712 0.426 24.78 0.702 0.427 28.67 0.854 0.201
Admin-sunset 21.96 0.621 0.400 25.47 0.757 0.355 25.54 0.764 0.369 25.19 0.751 0.373 29.01 0.855 0.216
Aud-sunset 24.67 0.709 0.398 25.90 0.750 0.368 26.33 0.770 0.386 26.77 0.785 0.359 32.34 0.914 0.155

Average 23.24 0.666 0.389 26.35 0.780 0.333 26.50 0.790 0.350 26.36 0.785 0.350 29.86 0.877 0.209

Table 2: Quantitative comparisons on mixed resolution and low light motion blur in
unbounded 360 geometry. Mip-Sp is short for Mip-Splatting [46]. Mip-Sp-HAT and
Mip-Sp-HAT-MPR use prior models to restore images first before Mip-Splatting.

Novel View NeRFacto MipNeRF-360 Mip-Sp Mip-Sp-HAT Ours G.T.

PSNR/SSIM 21.61/.576 24.09/.670 25.11/.746 24.41/.722 28.46/ .899 MixedRes

PSNR/SSIM 23.08/.412 24.98/.562 24.93/.590 24.68/.587 31.79/ .949 MixedRes

Novel View NeRFacto MipNeRF-360 Mip-Sp Mip-Sp-MPR Ours G.T.

PSNR/SSIM 17.86/.608 18.33/.704 18.57/.714 18.51/.718 24.47/ .850 LowLight

PSNR/SSIM 22.40/.683 25.36/.813 25.51/.817 27.03/.867 31.75/ .938 LowLight

Fig. 6: Visualizations of test views on mix resolution and low light motion blur dataset.

at different pixel, we can also easily characterize the types of observed blur.
Specifically, the estimated kernels in camera motion blur exhibit clear patterns of
camera movement, while those for defocus blur show Gaussian-like distributions
based on the pixel’s distance from the focus plane. These self-emerged properties
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in BAGS provide ways for us to automatically and precisely evaluate the quality
of training images.

Camera Motion Kernel & mask Defocus Kernel & mask

Fig. 7: Visualization of estimated convolution kernels and masks in different blur.

Discussion. BAGS can achieve great results; however, there also exists many
potential improvements. The added neural networks and convolution operations
require additional computation. While BAGS is a generalist approach and ad-
dresses multiple types of blur, it may become very expensive to estimate per-pixel
convolution in high resolution. To this end, we have explored utilizing pixel shuf-
fling [36], which converts spatial resolution into channels, before we estimate blur
kernel; i.e., this assumes that within a small region, blur kernel h stays roughly
consistent. As shown in the supplemental material, we can scale to great visual
results at 2K resolution on the DeblurNeRF dataset. Many other potential di-
rections can also address this complexity issue, including leveraging the mask
m to identify important regions to focus on, a better designed low rank kernel
estimation, degradation-specific optimization, etc. As such, while BAGS is al-
ready more efficient than comparable NeRF-based methods, we anticipate that
its computation cost can be further optimized in the future.

5 Conclusion

We present BAGS, a novel scene reconstruction method that can handle var-
ious noise in input images. We demonstrate that a vanilla Gaussian Splatting
is particularly susceptible to degraded images due to its discrete representa-
tion, even compared with NeRF. To address this issue, BAGS implements a 2D
degradation model, BPN, which estimates convolution kernels jointly with 3D
scene optimization. BPN allows for additional freedom to address 3D inconsisten-
cies, and produces interpretable kernels and masks to indicate the degradation
types and regions within an image. Additionally, BAGS leverages a coarse-to-fine
kernel optimization scheme, which gradually models the 3D scene with higher
resolution images and kernels. This approach successfully addresses the 2D-3D
ambiguity in optimizing convolution kernels with a very sparse point cloud. We
perform extensive experiments on a variety of noise in training images, including
camera motion blur, defocus blur, and low resolution. Under these conditions,
BAGS can render high fidelity scenes and significantly improves upon previous
approaches. In the future, we hope to further improve the computational effi-
ciency in BAGS and dynamically adjust kernel capacity based on how degraded
the training views are.
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