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This supplemental document to our manuscript provides additional informa-
tion on the complexity of the purely physics-based approach (Section 1) and its
robustness to unknown ambient illumination (Section 2). Additional details on
implementing and training our physics-inspired soft shadow diffusion model are
provided in Section 3. Finally, Section 4 contains various additional real and syn-
thetic experimental results. It explores the stability of the SSD model to noise
and background illumination and also shows additional 3D reconstructions.

1 Physics-based 3D Computational Pericopy: Towards
higher resolution voxelizations

Figure 5(b) in the main paper shows a reconstruction from real experimental
data using a 10 × 5 × 10 voxels discretization of the occluding region. (Note
that the portion of the hidden scene which we refer to as the occluding region is
illustrated in Figure 2 of the main manuscript.)

1.1 Complexity Analysis of Physics-based Reconstruction

The 10× 5× 10 pinspecks voxelization is relatively coarse to be able to describe
a large variety of 3D objects. Increasing the number of pinspecks comes with
increased computational complexity and space requirements. Figure 5(a) in the
main manuscript is an example of increasing the grid size which we reconstructed
using 16 × 5 × 16 discretization of the occluding region. Given a camera pho-
tograph of 128 × 128, and the non-occluding scene to be estimated at 32 × 32
resolution, the memory requirement will be 16384× 1024× 1280 = 80GB when
using Float32 precision. Since our algorithm requires the computation of gra-
dient and updates of the variables to be estimated, this memory requirement
doubles. Hence, to achieve the simulated reconstruction in Figure 5(a) of the
main manuscript, we used 3 A100 GPU with 80GB each, and distribute the for-
ward model across these GPUs for computation. A sparse representation of this
forward model is presented next.
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1.2 Sparse Matrix Representation

The contribution (shadow) of a hidden scene pinspeck due to a point light source
in the hidden scene may be interpreted using a sparse structure for Vk. Here, the
contribution is zero at a few locations and one everywhere else, as shown in Fig-
ure 1. More precisely, the one’s complement of the contribution is sparse. Thus,
to achieve higher resolution, the discrete forward model in main manuscript
equation (10) can be evaluated without saving the large matrix Vk for each pin-
speck location indexed by k. Instead, a sparse data structure may be utilized to
improve efficiency.

Results of adopting a sparse representation in evaluating the pinspeck for-
ward model at higher reconstruction resolutions are shown in Figure 1. Although
we are able to reconstruct correctly in simulation, accurate real-world recon-
struction is still challenging. This is, in part, due to the pinspeck approxima-
tion. Notwithstanding this shortcoming, this physics-based formulation provides
a flexible framework that enables our physics-inspired neural network approach.
Our SSD model can handle higher discretizations even for real experimental
datasets, as shown in results presented in the main manuscript (Figures 5) and
in Supplementary Figure 12 (shown here).

Fig. 1: Each panel shows the variation of the visibility function over the visible
wall/camera FOV for some patch in the hidden-scene light-emitting 2D plane and a
hidden-scene pinspeck voxel. The visibility function is binary-valued, with one (yellow)
indicating that the patch in the hidden-scene light-emitting 2D plane is unoccluded
from those patches on the visible wall, and zero (dark blue) indicating occlusion by the
pinspeck voxel.
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Fig. 2: Increased resolution reconstructions in simulations using sparse data structures.
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2 Gradient-based inversion: Neglecting background vs
Modeling background contributions

We compare the gradient-based inversion via alternating minimization, and a
variant that incorporates optimization of the background contribution in Fig-
ures 3 and 4. It shows that the solution without learning the noise, and back-
ground contribution is blurry. Optimizing the background noise is more efficient,
and produces sharp image of the non-occluding structure.

Algorithm 1 Alternating Minimization Method with Background Neglected
Require: A, [V1,V2,V3, ...,VK ],y, numIter
1: Initialize z0 randomly, and λ0 = 1
2: Initialize step sizes ηz, and ηλ
3: for i = 1 to numIter do
4: Av = 1− 1

K

∑K
k=1 Vk · σ(zik )

5: f∗ = (Av
TAv + λi−1I)

−1Av
Ty

6: fi = max(f∗, 0)
7: L(y,Avfi) =

1
M

∑M
j=1 ∥yj − (Avfi)j∥22

8: zi ← zi−1 − ηz
∂L(y,Avfi)

∂zi−1

9: λi ← λi−1 − ηλ
∂L(y,Avfi)

∂λi−1

10: end for
11: Return f̂ = fi, α̂ = σ(zi) > 0.5
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(a) Depiction of ground truth scene.

(b) Jointly estimating background contributions. (c) Without estimating background.

Fig. 3: Reconstructions from gradient-based inversion via alternating mini-
mization. Panels (b) and (c) show the reconstructions of the 3D occluding structures
and of the 2D light-emitting scene, with (b) and without (c) incorporating background
modeling and estimation.
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Fig. 4: Comparing the two variants of the gradient-based hidden scene re-
construction algorithm. Row 1: 2D reconstruction of the light-emitting hidden scene
component when background contribution b is neglected. Row 2: 2D reconstruction of
the light-emitting hidden scene component when background contribution b is modeled
and estimated. Row 3: 3D reconstruction of the light-occluding hidden scene compo-
nent when background contribution b is neglected. Row 4: 3D reconstruction of the
light-occluding hidden scene component when background contribution b is modeled
and estimated.
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3 Soft Shadow Diffusion Model

Denote the pinspeck point cloud by {uk}Kk=1 = û. The joint distribution pθ(û
(0:T ))

is referred to as the reverse process. This process is characterized as a Markov
chain with learned Gaussian transitions initiating from p(û(T )) = N (û(T );0, I):

pθ(û
(0:T )) := p(û(T ))

T∏
t=1

pθ(û
(t−1)|û(t)), (1)

pθ(û
(t−1)|û(t)) := N (û(t−1);µθ(û

(t), t), σ2I). (2)

The approximate posterior q(û1:T |û0), termed the forward process is defined
as a Markov chain that incrementally incorporates Gaussian noise into the data
following a predetermined variance schedule β1, . . . , βT :

q(û(1:T )|û0) :=

T∏
t=1

q(û(t)|û(t−1)), (3)

q(û(t)|û(t−1)) := N (û(t));
√

1− βtû
(t−1), βtI) (4)

Let û = {uk}Kk=1, then the training objective is given as:

L(θ, ϕ) = Eq


T∑

t=2

K∑
k=1

DKL

(
q(u

(t−1)
k |u(t)

k ,u
(0)
k )

∥∥∥ pθ(u(t−1)
k |u(t)

k , ŷ)
)

︸ ︷︷ ︸
L

(t−1)
k

−

K∑
k=1

log pθ(u
(0)
k |u(1)

k , ŷ)︸ ︷︷ ︸
L

(0)
k

+DKL

(
qϕ(ŷ|u(0))

∥∥∥ p(ŷ))︸ ︷︷ ︸
Lŷ

.

(5)

3.1 Simplified Training Algorithm

We adapt the simplified algorithm presented in [1] to train our model. To eval-
uate L

(t−1)
k , we need to sample u

(t)
k from q(û(t)|û(0)). In principle, it can be

done by sampling iteratively through the Markov chain. However, [1] showed
that q(û(t)|û(0)) is Gaussian, thus allowing us to sample û(t) efficiently without
iterative sampling. To see this, note that:

q(û(t)|û(0)) = N (û(t)|
√
ᾱtû

(0), (1− ᾱt)I). (6)

Since both q(u
(t−1)
k |u(t)

k ,u
(0)
k ) and pθ(u

(t−1)
k |u(t)

k , ŷ) are Gaussians, the term
L
(t−1)
k can be expanded as:

L
(t−1)
k = E

u
(0)
k ,u

(t)
k ,ŷ

 1

2βt

∥∥∥∥∥
√

ᾱt−1βt

1− ᾱt
u
(0)
k +

√
αt(1− ᾱt−1)

1− ᾱt
u
(t)
k − µθ(u

(t)
k , t, ŷ)

∥∥∥∥∥
2
+C.

(7)
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Using the Gaussian above, u(t)
k =

√
ᾱtu

(0)
k +

√
1− ᾱtϵ, where ϵ ∼ N (0, I):

L
(t−1)
k = E

u
(0)
k ,ϵ,ŷ

[
1

2βt

∥∥∥∥ 1
√
αt

(
u
(t)
k − βt

√
1− ᾱtϵ

)
− µθ(u

(t)
k , t, ŷ)

∥∥∥∥2
]
+C. (14)

(8)
Shown above µθ(u

(t)
k , t, ŷ) must predict 1√

αt

(
u
(t)
k − βt

√
1− ᾱtϵ

)
given u

(t)
k . Thus,

µθ(u
(t)
k , t, ŷ)) can be parameterized as:

µθ(u
(t)
k , t, ŷ) =

1
√
αt

(
u
(t)
k − βt

√
1− ᾱtϵθ(u

(t)
k , t, ŷ)

)
, (9)

where ϵθ(u
(t)
k , t, ŷ) is the physics-inspired neural network intended to predict ϵ

from u
(t)
k . Finally, L(t−1)

k can be simplified as

L
(t−1)
k = E

u
(0)
k ,ϵ,ŷ

[
β2
t

2βtαt(1− ᾱt)

∥∥∥ϵ− ϵθ(
√
ᾱtu

(0)
k +

√
1− ᾱtϵ, t, ŷ)

∥∥∥2]+C. (14)

(10)
To minimize L

(t−1)
i , we can only minimize E[∥ϵ − ϵθ∥2] because the coefficient

β2
t

2βtαt(1−ᾱt)
is constant.

The simplified algorithm [1] proposed selecting a random term from the set{∑K
k=1 L

(t−1)
k

}T

t=1
for optimization in each step of the training process.

Then the training algorithm is presented in Algorithm 2.

Algorithm 2 SSD Training algorithm
1: repeat
2: Sample the occluding components {u(0)

k }
K
k=1 ∼ pdata(u

(0))
3: Sample the non-occluding components f ∈ RN ∼ pdata(f)

4: Generate the measurement y = A
(
1−

∑K
k=1 u

(0)
k

)
f

5: Sample ŷ ∼ qϕ(y|û(0))
6: Sample t ∼ Uniform({1, . . . , T})
7: Sample ϵ ∼ N (0, I)

8: Compute ∇
[∑K

k=1

∥∥∥ϵ− ϵθ
(√

ᾱtu
(0)
k +

√
1− ᾱtϵ, t, ŷ

)∥∥∥2
]
;

9: Perform gradient descent.
10: until converged

3.2 Inference Algorithm

Given y inference is performed using SSD according to Algorithm 3.



Supplement-Soft Shadow Diffusion (SSD) 9

Algorithm 3 SSD Inference algorithm
1: Given the soft shadow photograph y
2: Encode the photograph: ŷ← Fα(y)

3: Sample noise from Gaussian distribution {u(T )
k }

K
k=1 ← û(T ) ∼ N (0, I)

4: for t = T, . . . , 1 do
5: Denoise
6: Sample {u(t−1)

k }Kk=1 ∼ pθ({u(t−1)
k }Kk=1|{u

(t)
k }

K
k=1, ŷ)

7: end for
8: return {u(0)

k }
K
k=1

3.3 Implementation Details

Soft Shadow Image Encoder. The architecture of our encoder follows that
of crossformer [2] with a number of transformer blocks (2, 4, 8, 2), shown in
Table 1.

Dataset Preparation. We simulated 262,000 measurements and sampled the
corresponding pointclouds. From them, we randomly selected 3,000 examples as
the test set, the remaining 259,000 are used as the training set.

Diffusion Process. The number of steps in the diffusion process is T = 256.
We set the variance schedules βt following a cosine schedule.

The training parameters are shown in Table 2.

U-Net-Based Diffusion Model. The model architecture is based on the Unet
design, as detailed in Figure 5. This architecture is particularly suited for han-
dling point cloud data due to its ability to efficiently process spatial hierarchies
and feature representations. In our implementation, the model is trained on point
cloud tensors with a shape of (2048, 3), representing a set of 2048 points in a
three-dimensional space.

To enhance the model’s capability in reconstructing detailed point clouds,
we employ a sampling strategy that generates a denser point cloud. Specifically,
during the reconstruction phase, we sample a higher number of points, aiming
for 15,000 points. This approach allows for generating a more detailed and dense
representation of the reconstructed occluding structure, capturing finer nuances
and structures that are crucial for high-fidelity mesh representation.



10 Raji and Murray-Bruce

Table 1: CrossFormer Model for Soft Shadow Image Encoding (CrossFormer-T)

Stages Output Size Layer Name CrossFormer-T

Cross Embed. Kernel size:


4× 4
8× 8

16× 16
32× 32

Stride = 4


Stage-1 32 × 32 SDA/LDA/MLP


D1 = 64
H1 = 2
G1 = 7
I1 = 8

× 2

Cross Embed. Kernel size: 4 × 4, Stride=4 (S1 = 56)

Stage-2 16 × 16 SDA/LDA/MLP


D2 = 128
H2 = 4
G2 = 7
I2 = 4

× 4

Cross Embed. Kernel size: 2 × 2, Stride=2 (S2 = 28)

Stage-3 8 × 8 SDA/LDA/MLP


D3 = 256
H3 = 8
G3 = 7
I3 = 2

× 8

Cross Embed. Kernel size: 2 × 2, Stride=2 (S3 = 14)

Stage-4 4 × 4 SDA/LDA/MLP


D4 = 512
H4 = 16
G4 = 7
I4 = 1

× 2

Cross Embed. Kernel size: 2 × 2, Stride=2 (S4 = 7)

Head 1 × 1 Avg Pooling Kernel size: 4 × 4

Linear Latent: 512
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Fig. 5: SSD UNet Module

Table 2: SSD Training Details

Parameter Value

Base channels 128
Optimizer Adam
Channel multipliers 1, 2, 4,8
Learning rate 1× 10−4

Blocks per resolution 2
Batch size 192
Attention resolutions 256, 128
EMA 0.9999
Attention Number of heads 8
Dropout 0.0
Conditioning embedding dimension 512
Training hardware 3 × A100(80G)
Conditioning embedding MLP layers 1
Time embedding MLP layers 1
Training Iterations 600000
Diffusion noise schedule Cosine
Weight decay 0.01
Sampling timesteps 256
Loss Mean Squared Error (L2)
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4 Results

4.1 Background Lights and Distortions

To investigate the influence of background and noise on our method, we incorpo-
rated a controlled light source within the experimental setup. The quantitative
results are presented in Figure 6(b) of the main paper. Figure 6 presents the
qualitative results of this experiment. We also simulated a noise process on the
real measurement and the result is presented in Figure 7. Simulated examples
are shown in Figures 8 and 9

Fig. 6: Experimental Results with Varying Background Lights

Fig. 7: Experimental Results with Varying Signal-to-Noise Ratio (SNR)
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Fig. 8: Simulated Results with Varying Signal-to-Background Ratio (SBR)

Fig. 9: Simulated Results with Varying Signal-to-Noise Ratio (SNR)



14 Raji and Murray-Bruce

4.2 Shape Reconstructions

Additional results are provided here to demonstrate the performance of the pro-
posed SSD model on a variety of shape classes. We sampled 64 meshes outside
our training dataset, and simulated the penumbra photograph using random 2D
non-occluding objects. The result of this experiment is shown in Figure 10.

We recall that the model is trained in simulation. Results for simulated ex-
perimental data are shown in Figures 11 and 13 to 15, while additional results
based on real measured data are shown in Figure 12.

Fig. 10: Reconstructed shapes outside the Training dataset.

Fig. 11: SSD Reconstruction from Hard Shadows.
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Fig. 12: Results from SSD in Real Experimental Setup.

Fig. 13: Results from SSD in Simulation.
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Fig. 14: Results from SSD in Simulation.
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Fig. 15: Results from SSD in Simulation.
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