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Abstract. Conventional imaging requires a line of sight to create accu-
rate visual representations of a scene. In certain circumstances, however,
obtaining a suitable line of sight may be impractical, dangerous, or even
impossible. Non-line-of-sight (NLOS) imaging addresses this challenge by
reconstructing the scene from indirect measurements. Recently, passive
NLOS methods that use an ordinary photograph of the subtle shadow
cast onto a visible wall by the hidden scene have gained interest. These
methods are currently limited to 1D or low-resolution 2D color imaging or
to localizing a hidden object whose shape is approximately known. Here,
we generalize this class of methods and demonstrate a 3D reconstruc-
tion of a hidden scene from an ordinary NLOS photograph. To achieve
this, we propose a novel reformulation of the light transport model that
conveniently decomposes the hidden scene into light-occluding and non-
light-occluding components to yield a separable non-linear least squares
(SNLLS) inverse problem. We develop two solutions: A gradient-based
optimization method and a physics-inspired neural network approach,
which we call Soft Shadow diffusion (SSD). Despite the challenging ill-
conditioned inverse problem encountered here, our approaches are effec-
tive on numerous 3D scenes in real experimental scenarios. Moreover,
SSD is trained in simulation but generalizes well to unseen classes in
simulation and real-world NLOS scenes. SSD also shows surprising ro-
bustness to noise and ambient illumination.

Keywords: Computational imaging · Machine learning · 3D generative
models · Diffusion models · Separable non-linear least squares

1 Introduction

Collision avoidance systems in autonomous navigation, detection of hidden ad-
versaries in military operations, danger assessment in search-and-rescue opera-
tions, and arterial blockage assessment in biomedical imaging are examples of
applications that will benefit from the ability to form images of scenes beyond
an observer’s line of sight. Because of its breadth of potential applications, this
field called non-line-of-sight (NLOS) imaging continues its rapid growth. The
fundamental underlying goal is to infer information about the NLOS scene from
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Fig. 1: NLOS imaging configuration. Non-occluding objects diffusely reflect light
toward the visible wall; the reflected light is partially occluded by an occluding object
in the hidden scene to create a soft shadow on the visible wall.

measurements of signals, such as light [15,25,51,52], sound [4,28], heat [22,37],
or other modality [1], that reach the observer after being diffusely reflected or
emitted from the NLOS scene.

In this work, we demonstrate 3D NLOS imaging from measurements of the
light reaching a surface that is visible to the observer and the hidden scene.
Prior methods that similarly rely on measurements of light fall into either of
two categories: active methods, which exploit controlled illumination of the hid-
den scene [15,17,25,29,32–34,39,42,43,47,53,59,62]; or passive methods, which
exploit already existing light without any control over the hidden scene illu-
mination [3, 5, 13, 16, 40, 52, 54, 55, 65, 70]. Active methods have demonstrated
remarkable success in achieving high-resolution 3D NLOS imaging [42, 43, 62],
by using ultrafast pulsed-laser illumination, and time-resolved single-photon de-
tection. Despite these advances, the complexity and cost of the equipment re-
quired by active methods can be a limiting factor in several applications. In
contrast, passive methods offer a simpler alternative but are currently limited to
low-resolution 1D [5, 54] or 2D [51, 52, 55, 70] reconstructions of hidden scenes.
A recent method [13] exploits two orthogonal edges of a door frame to achieve
remarkable 3D imaging of non-occluding, hidden-scene objects. However, the ex-
ploited shadows are cast by the visible, known door frame occluder. Here, we
generalize occluder-aided passive methods to include 3D imaging of
occluders that are hidden or otherwise unknown.
Contributions: In this paper, we propose a reformulation of the computational
periscopy as a separable non-linear least squares (SNLLS) inverse problem that
enables 3D reconstructions from a single penumbra photograph, and we offer a
gradient-based optimization to solve it. In addition, we introduce Soft Shadow
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Diffusion (SSD) a novel generative model based on denoising probabilistic dif-
fusion for reconstructing 3D shapes, as high-resolution 3D point clouds, from a
single photograph of their soft shadows. Finally, we experimentally demonstrate
the first joint reconstructions of the 3D occluding and the 2D non-occluding
objects in a real experimental scene.

1.1 Related work

Computational Periscopy: Figure 1(a) shows a photograph of the NLOS
imaging scenario considered here and by prior related works (e.g., [3,51,52,70]).
In this scenario, a preexisting ambient light source illuminates the hidden scene
area (and the visible wall in the observer’s LOS). Light reflected, toward the
visible wall, from some parts of the hidden scene (here, the chair and basketballs)
is partially occluded by other hidden scene objects (here, the spade-like shape)
producing a penumbra (or soft shadow) on the visible wall.

From simple photographs of penumbra, Saunders et al. [51,52] and Baradad
et al. [3] produce reconstructions of the light-reflecting (non-light-occluding) por-
tions of the hidden scene by assuming that the light-occluding hidden scene
structures have a known shape but unknown location, or that projections of the
occluder on the visible wall are available from a prior calibration step. Further-
more, by assuming that the occluder is approximately planar, Yedidia et al. [70]
reconstruct its 2D projection and a 2D video of the non-light-occluding portion
of the hidden scene from a video of the visible penumbra. In this paper, we
develop a new computational strategy to reconstruct the 3D structure of the
light-occluding objects from a 2D photograph of penumbra. Hence, the output
computed by our method can augment these prior approaches by providing the
necessary prior knowledge about the hidden occluders.

Instead of reconstructing its image, directly inferring the contextual prop-
erties of a hidden scene may be important in various applications. Along those
lines, Sharma et al. proposed learning-based methods for accurately determin-
ing human activity or classifying the number of people in an unknown room
from a video recording of penumbra [56]. Medin et al. further showed that a
single penumbra encodes enough information for biometric identification of an
individual without a line of sight [38]. Although direct photographs of sharp hu-
man silhouette shadows have long been explored for biometrics [20, 63], Medin
et al. [38] consider a challenging variation: The observed shadow is instead of an
object that occludes light reflected by the face of the hidden individual. Rather
impressively, both methods [38,56] demonstrate accurate inference without prior
knowledge of the hidden occluder or scene geometry.

Shape from S: Shape from shading [19,46] and shape-from-shadow [7] are ar-
eas of longstanding and broad interest to the computer vision community. Shape
from shading reconstructs a 3D shape from its 2D image by analyzing variations
in brightness (shading) across the image, to deduce the orientation of each point
on the object’s surface. In contrast, shape from shadow reconstructs a 3D shape
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from several (binary) shadow images, created by varying the illumination di-
rection, by analyzing the darkest parts across the image stacks to deduce the
depth and surface orientations. Recent approaches have exploited data-driven
approaches to yield impressive reconstructions [23, 30, 66], even in a monocular
setting [9]. These prior works, exploit cues from shading due to direct illumi-
nation and sharp shadows caused by mutual occlusion under known or possibly
unknown illuminations. Here, we use a single image of the soft shadow created on
a nearby surface, by hidden 3D occluding objects partially blocking a complex,
diffuse, and hidden illumination both lying outside the image’s field of view.

Diffusion Probabilistic Models: Generative diffusion probabilistic models
[18,58,60]. These models have demonstrated high-quality image generation [49,
67], rivaling generative adversarial networks (GANs) [14]. Their application has
broadened to include tasks such as time-series forecasting [48], audio genera-
tion [26], text-to-speech [27, 45]. Several works have explored these models for
point cloud reconstructions via a two-stage generation using flow models [68] or
diffusion priors [6, 72]. To reduce generation latency, Zhou et al. [74] proposed
PVD, a single-stage diffusion prior for generating point clouds. Beyond point
clouds, text-conditional 3D generation has advanced with methods like Dream-
Fields [21] and CLIP-guided mesh optimization [24]. Other approaches focus on
reconstructing 3D from multi-view images using diffusion-based priors [31,44,69].

This work is a novel extension of diffusion models to generate 3D point clouds
from a 2D soft shadow photograph. We subsequently use a trained regression
model to generate a 3D mesh representation of the object casting the shadow.
Building on prior work that performs diffusion over individual points, our ap-
proach conditions the diffusion process on soft shadow images.

2 Light Propagation Model

Consider the configuration shown in Figure 1(a) and let x denote any point in
the hidden scene volume. A hidden scene point whose light paths to the visible
wall portion within the camera’s FOV are (un)occluded along some directions,
but not all, is well-conditioned for recovery. The set X of all such hidden scene
points forms the computational FOV (CFOV) of the imaging system [52]. Let
f(x) denote the unknown radiosity distribution at a hidden scene point x, then
the irradiance i(p) of a visible wall point p is [52]:

i(p) =

∫
x∈X

g(p,x)

∥x− p∥22
v(x,p;θo)f(x) dx+ b(p), (1)

where g(p,x) = cos(∡(x− p,nx)) cos(∡(p− x,np)) models Lambertian re-
flection and foreshortening with np and nx representing the surface normals at p
and x, respectively. The function v(x,p;θo) models the visibility between p and
x for an unknown occluding object whose shape is implicitly parameterized by
θo; v(x,p;θo) = 1 when the ray from x to p is unoccluded, otherwise it is 0. Fi-
nally, b(p) models contributions due to noise, and other sources of illumination—
predominantly any existing visible side illumination sources and illumination



Soft Shadow Diffusion (SSD) 5

from hidden scene points outside the CFOV, i.e.
∫
x/∈X

g(p,x)
∥x−p∥2

2
f(x) dx—that do

not form penumbra. The recoverable hidden scene X is typically assumed to be a
single plane at a known depth [2,52,70], or a few planes [3,51] at known depths,
from the visible wall. Discretizing the measurement plane and the hidden scene
plane(s) into pixels gives the discrete forward model:

y = A(θo)f + b, (2)

where y ∈ RM is a vectorization of the measured photograph, f ∈ RN is
the vector containing the unknown radiosities of the hidden scene pixels, and
A(θo) ∈ RM×N is the light transport matrix given θo (which implicitly repre-
sents the shape and position of the occluding objects).

Saunders et al. [52] assume a known occluder shape but use θo to represent
its location. This work considers the case where the occluder’s shape is also un-
known and uses θo as an implicit representation for the 3D shape of an unknown
occluder. Estimating the unknowns θo, f and b using (2) is an ill-conditioned
separable nonlinear inverse problem. In Section 4 we present two solutions for
this inverse problem by building on our model and explicitly delineating the
hidden scene as comprising two components: those that act as occluders of light,
and those that act only as emitters/reflectors of light.

(a) Computational FOV (b) A pinhole occluder (c) A pinspeck occluder

Fig. 2: Computational FOV and two simple examples of occluders. (a) The
camera’s FOV is projected towards the non-occluding scene plane. The occluding re-
gion is the volume created by joining the boundaries of the measurement FOV to the
boundaries of the desired hidden scene plane. (b) An ideal pinhole projects an image
of the scene. (c) An ideal pinspeck projects a negative image of the scene.

2.1 Hidden Scene Decomposition and Computational FOV

We aim to reconstruct simultaneously a 3D image of the hidden occluders and
a 2D image of the hidden non-occluders (i.e., emitters/reflectors of light). To
obtain a feasible inverse problem and facilitate accurate reconstructions, we must
restrict the reconstruction volume to include only hidden scene portions that can
cast penumbra somewhere within the photographed portion of the visible wall.
The 2D image of the non-occluders is assumed to be the radiosity of a plane of
fixed size Wx × Hx at a depth D from the visible wall (see Figure 2a). Then,
as illustrated in Figure 2a, the occluding volume is then defined by the frustum
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whose edges coincide with the lines formed by connecting each vertex of the
camera FOV to each vertex of the non-occluding hidden scene plane.

For our problem setting, the 3D occluding volume and the chosen 2D non-
occluding plane, are collectively referred to as the computational FOV (CFOV).
This represents a natural extension of the CFOV concept [52] from 2D to 3D.

3 3D Computational Periscopy: Models & Representation

To facilitate 3D reconstruction using our new reformulation, we consider two
different representations of 3D structures. The first, presented in Section 3.2,
is an explicit representation that uses a uniform voxelization of the occluding
frustum portion of the CFOV. The second, presented in Section 3.4, is an im-
plicit neural point cloud-based representation, which imposes a deep prior for
3D shapes. Each representation inspires a corresponding reconstruction method
presented in Section 4 and builds upon a simple pinspeck occluder.

3.1 A Simple Pinspeck Occluder

A pinspeck (or anti-pinhole) occluder [11, 61] is the optical complement of a
pinhole. Thus, a single pinspeck at u = (ux, uy, uz) blocks all rays that reach
the point u such that the visibility between a point p = (px, 0, pz) on the visible
wall, and a point x = (x, y, z) on the non-occluding hidden scene plane is

vps(p,x;u) =1−δ

(
px−mux−

xy

uy

)
δ

(
pz−muz−

yz

uy

)
(3)

where δ(·) is the Dirac delta function, and m = 1 − y/uy. Imposing the op-
tical complementarity property [11, 61], gives the following expression for the
(negative) image formed on the visible plane:

i(p) =

∫
x∈X

g(p,x)

∥x− p∥22
(1− vph(p,x;u)) f(x) dx, (4)

where the pinhole visibility vph(p,x;u) = 1− vps(p,x;u).

3.2 Uniform Voxels Representation

Assume the light-occluding frustum is uniformly discretized into K voxels whose
centers are located at {uk}Kk=1, then with a dense discretization, arbitrary 3D
shapes can be well-approximated by a subselection of voxels identified by their
indices. In this scenario, v(x,p;θo) = 1−

∑K
k=1 αkvph(p,x;uk) where the binary-

valued scalar αk indicates the presence (1) or absence (0) of a pinspeck at uk,
such that the visible wall irradiance is approximately:

i(p) =

∫
x∈X

g(p,x)

∥x−p∥22

(
1−

K∑
k=1

αkvph(p,x;uk)

)
f(x) dx. (5)
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We discretize the non-occluding plane into N = (Nx × Nz) pixels, and rep-
resent the unknown radiosity of the n-th pixel by fn and the collection of all
N radiosities by f ∈ RN . Additionally, we define {pm}Mm=1 as the locations of
pixels on the visible wall that are captured by the M = (Mx × Mz) camera
pixels. Thus,

y = A

(
1−

K∑
k=1

αkVk

)
f =

(
A−

K∑
k=1

αkAVk

)
f , (6)

where y ∈ RM is the vectorized penumbra photograph, Vk ∈ RM×N is the
matrix corresponding to visibility of a pinhole at uk. Reconstructing the 3D
shape is, thus, equivalent to computing θo

def
= α = (α1, α2, . . . , αK)T from y.

3.3 Point Cloud Representation

While a uniform voxelization has the potential to provide accurate scene rep-
resentations with finer discretizations; it, however, leads to increased computa-
tional complexity, memory requirements, and poor conditioning. Furthermore,
a binary constraint on α yields a nonconvex optimization. In contrast, a point
cloud representation deviates from the uniform grid-based, directly optimizing
the vector locations uk instead of the binary vector α. It also provides a lower-
dimensional representation that effectively captures a wide range of 3D shapes
while being compatible with our pinspeck-based model (4). Thus, we aim to
solve y = A(θo)f , where θo

def
= {uk}Kk=1. Directly optimizing the locations of

K points is challenging. Nonetheless, to facilitate accurate and high-resolution
reconstructions we develop and exploit a learned point cloud shape prior which
we call soft shadow diffusion .

3.4 Soft Shadow Diffusion Model

Our proposed soft shadow diffusion (SSD) model adapts the state-of-the-art
denoising diffusion models [36, 57, 58, 73] to conditional point cloud generation.
Here, the denoising diffusion process is conditioned on a latent representation
ŷ of a measured soft shadow photograph y. Our motivation is to leverage SSD
as a powerful learned prior for high-resolution 3D point clouds that explain the
soft shadows in a penumbra photograph.

Once trained, our SSD model Gw(y) is used to generate a denoised point
cloud {u0

k}Kk=1 by iteratively reversing a Markov forward process, as depicted in
Figure 3b. Specifically, conditioned on a soft shadow photograph latent ŷ, the
model iteratively reduces the noise from an initial point cloud {uT

k }Kk=1 that is
a random realization of a Gaussian noise process.

The training process (see Figure 3a) begins by setting {u0
k}Kk=1 to be a ran-

dom sample from our dataset of noise-free point clouds. Then, a series of pro-
gressively noisier point clouds {ut

k}Kk=1 for t = 1, 2, . . . , T are computed from
{u0

k}Kk=1 using ut
k =

√
ᾱtu

0
k+

√
1− ᾱtϵ for k = 1, 2, . . . ,K, where ϵ is zero-mean



8 Raji and Murray-Bruce

(a) Training Pipeline (b) Inference Pipeline

Fig. 3: Soft Shadow Diffusion Model Pipeline. (a) In training, the model maps a
clean input point cloud to noise using the forward diffusion process. (b) At inference,
the model starts from an initial noise and transforms this noise into a point cloud
representation of light-occluding structure by conditioning on the encoded soft shadow
photograph ŷ. The point cloud is then converted into a mesh representation of the
occluding structure.

white Gaussian noise with unit variance, and the coefficient αt gradually de-
creases as the time step t increments. With these noisy samples, the weights w
of the underlying neural network are updated by minimizing the following loss
function [60]:

L = Et,{u0
k}

K
k=1,ϵ

∥∥ϵθ({ut
k}Kk=1, ŷ, t)− ϵ

∥∥2
2
.

We provide additional details on training and sampling from our SSD model
in the supplement.

4 3D Computational Periscopy: Inversion

Assuming background contributions to the term b is small, a solution to (2) can
be obtained by solving the Tikhonov-regularized minimization

argmin
(f ,θo)

∥A(θo)f − y∥22 + λ∥f∥22, (7)

where ∥ · ∥2 is the 2-norm, and λ > 0 is the regularization parameter. An alter-
nating approach for the minimization (7) is,

f̂k = argmin
f

∥∥∥A(θ̂k−1
o )f − y

∥∥∥2
2
+ λ∥f∥22

=
(
AT(θ̂k−1

o )A(θ̂k−1
o ) + λI

)−1

AT(θ̂k−1
o )y (8)

θ̂k
o = argmin

θo

∥∥∥A(θo)f̂
k − y

∥∥∥2
2
. (9)
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Moreover, by replacing f in (7) with its closed-form estimate, we obtain the
minimization problem:

θ̂o=argmin
θo

∥∥[(AT(θo)A(θo)+λI
)−1AT(θo)−I

]
y
∥∥2
2
. (10)

In principle, reconstructing θo from penumbra measurement y is feasible without
explicitly forming estimates of f as an intermediate step. We use this observation
in a physics-inspired neural network inversion model outlined in Section 4.2.

4.1 Inversion via Gradient-based Optimization

Using the uniform voxels representation (described in Section 3.2), we wish to
estimate θo

def
= {αk}Kk=1 and f from y such that (2) holds. To that end, we

allow the background to be non-negligible and solve the equivalent Tikhonov-
regularized minimization problem:

argmin
(f ,θo,b,λ)

∥A(θo)f + b− y∥22 + λ∥f∥22. (11)

To impose convexity, the binary constraint is relaxed by using σ(zk), where σ(·)
is the sigmoid function, as a proxy for the binary-valued αk. Hence, we instead
optimize zk using gradient descent. This approach demonstrates robust perfor-
mance on simulated datasets. In real experiments, we found that incorporating a
positivity constraint when background and noise contributions are not negligible
is more effective.

Algorithm 1 summarizes the steps of our voxelized optimization-based ap-
proach. Empirical results (see supplementary material) show superior conver-
gence properties when directly optimizing for f , z,b and λ in an alternating
fashion using Algorithm 1, compared to assuming a negligible background.

Algorithm 1 Alternating Minimization Method
Require: A, [V1,V2,V3, ...,VK ],y, numIter
1: Initialize z0 randomly, b0 = 0, and λ0 = 1
2: Initialize step sizes ηb, ηz, and ηλ
3: for i = 1 to numIter do
4: Av = A⊙ (1− 1

K

∑K
k=1 Vk · σ(zik )) Impose binary constraint

5: f∗ = (Av
TAv + λi−1I)

−1Av
Ty Estimate 2D non-occluding scene

6: fi = max(f∗ + bi−1, 0)
7: L(y,Avfi) =

1
M

∑M
j=1 ∥yj − (Avfi)j∥22

8: bi ← bi−1 − ηb
∂L(y,Avfi)

∂bi−1
Update background contribution estimate

9: zi ← zi−1 − ηz
∂L(y,Avfi)

∂zi−1
Update occluder estimate

10: λi ← λi−1 − ηλ
∂L(y,Avfi)

∂λi−1
Update estimation of the regularization constant

11: end for
12: Return f̂ = fi, α̂ = σ(zi) > 0.5
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Implementation details: The alternating minimization algorithm (Algorithm 1)
is implemented in PyTorch. The occluder region is discretized into Nx×Ny×Nz

uniform voxels. A high discretization is required for occluders. The required com-
putation and memory are high, even for coarse discretizations like 10× 5× 10.

To alleviate the high complexity and memory needed to precompute the
matrix Vk for all possible pinspeck contributions, we employ a sparse matrix
representation for Vk. This approach stores only the specific pixel locations to
which each pinspeck contributes. The required gradient updates (for all pinspeck
proxies {zk}k) are computed in this new representation. (See supplementary
material for more details and simulated examples.)

4.2 Inversion via Physics-inspired Neural Network

Here, we propose a reconstruction approach that unifies our physics-based sep-
arable model with SSD as a learned shape prior. Specifically, because SSD gen-
erates plausible point clouds of 3D shapes alone and not their locations in the
NLOS scene, we augment our estimation pipeline with an adaptation of the lo-
cation estimation algorithm in [52]. Our entire reconstruction pipeline, which
includes estimation of f , proceeds as follows:

– Stage 1: Conditional generation of 3D shapes. Sample the 3D shape
from a conditional diffusion model given the soft shadow photograph y.

{û0
k}Kk=1 = Gw(y), (12)

– Stage 2: Localization of generated 3D shapes. Estimate the occluding
object’s spatial location by finding the 3D translation vector, δ̂u, with:
δ̂u = argmaxδu

∥∥H({û0
k + δu}Kk=1)y

∥∥2
2
, where H(·) = A(·)

(
A(·)TA(·)

)−1
A(·)T .

– Stage 3: Reconstruction of the non-occluding component. We con-
vert the properly translated occluder point cloud {û0

k+δ̂u}Kk=1, and compute
its mesh representation to obtain θ̂o. We then formulate and solve the fol-
lowing TV regularized problem: f̂ = argmin

f
||y −A(θ̂o)f ||22 + λ||f ||2TV.

Implementation details: We implement our physics-inspired neural network
model, which includes the SSD network, in PyTorch.
Datasets. We train our SSD model on thousands of 3D models. We rendered
all 3D models in the ShapeNet [8] dataset from 3 random camera angles as
RGB images using Blender [12]. These images depict the non-occluding objects
confined on the 2D plane, while the 3D models are the light-occluding structures.
Our Blender script normalizes each 3D model to a bounding unit cube, configures
a standard lighting setup, and exports RGB images using Blender’s built-in real-
time rendering engine. We then utilized the rendering equation in (2) on all
possible pairs of rendered images and 3D models; and randomly selected pairs
to simulate a diverse set of training examples. To produce point clouds of a
3D model, we first constructed a dense point cloud for each object by sampling
50,000 points along the 3D object’s surface. The dense point cloud of unevenly
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spaced points is then resampled to produce a point cloud of 2,048 evenly spaced
points. Our dataset is roughly 260,000 simulated instances of various object
categories.

Soft Shadow Image Encoder. To encode the soft shadow photographs into
latent representation, ŷ, we employed the CrossFormer architecture [64] and
trained it jointly with the diffusion process. CrossFormer introduces a cross-
scale attention mechanism crucial for processing visual inputs. In addition, unlike
traditional vision transformers, CrossFormer effectively captures the correlation
between features of different scales, which is vital for understanding complex
visual inputs like our penumbra photographs.

Model Implementation. Deviating from previous work on point cloud recon-
structions that often employed specialized 3D architectures [74] or transformer-
based [41] models, we take advantage of a simpler yet effective UNet-based ar-
chitecture [50] with 1D convolutions. Our model allows fast sampling of more
points than the model was trained on, and is designed to predict the mean µ of
the noise in (3.4), from the inputs ŷ, t, and {ut

k}Kk=1, i.e., the encoded represen-
tation of a soft shadow 2D photograph, current time step t during the diffusion
process, and the intermediate noisy point cloud, respectively. The entire model
architecture is illustrated in Figure 3 and additional details are provided in the
supplementary document.

3D mesh representation. Reconstructing the non-occluding portion of the
hidden scene f requires accurate rendering of soft shadow images of the esti-
mated occluding objects. Sparse point clouds may lead to inaccuracies that yield
poor approximations of the soft shadows. Hence, we convert the generated point
clouds from soft shadow diffusion into meshes. Using the entire ShapeNet [8]
dataset, we train a signed distance field (SDF) neural network model to predict
the SDF of the reconstructed point cloud. The SDF model follows the autoen-
coder architecture [10]. We then apply the marching cubes algorithm [35] to the
computed SDF to generate a mesh representation of the light-occluding object.
The mesh representations facilitate higher fidelity renders of the soft shadows.

5 Experiments

Experimental results for real and synthetic data are presented to demonstrate
the efficacy of our proposed methods. Because prior methods focus on different
acquisition scenarios (such as access to video frames [70, 71], pre-calibrated oc-
cluder visibility functions [3], known occluder shapes [52], or even fully known
occluders [16,65]) direct and fair comparisons are not possible. These prior tech-
niques focus on reconstructing the light-emitting portion of the hidden scene
alone, whereas our approach is the first to seek, in addition, a 3D reconstruction
of hidden occluders. We are considering a much harder problem and as such the
2D reconstructions achievable will, in expectation, be no better than existing
methods.
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(a) SSD-based reconstruction on Simple 3D Objects.

(b) SSD-based reconstruction on Large 3D Objects.

Fig. 4: Real Experimental Reconstruction Results from Soft Shadow Diffu-
sion Model. The model takes the soft shadow photographs (column 3) as input to
condition the diffusion process and generates a 3D mesh representation (column 6) of
the 3D light-occluding structure (column 2) in the hidden area. The mesh representa-
tion is then translated for the reconstruction of the light-emitting objects (column 4)
as a 2D RGB image.

5.1 Qualitative Results

Real experimental examples of the soft shadow diffusion are presented in Fig-
ures 1 and 4, and the real experimental examples of the gradient-based method
are shown in Figure 5. Figures 4 and 5 depicts the non-occluding portion of
the hidden scene on a monitor at a distance of 1.08 meters to the visible wall,
and 3D occluders placed between them. Measurements were obtained by pho-
tographing the visible wall with a 4-megapixel camera. The measurements were
inputs to our physics-inspired neural network inversion method or Algorithm 1
for the gradient-based inversion method. In the final stage of SSD, we recon-
struct each channel of the 2D non-occluding portion using TV regularization.
The reconstructions show good qualitative agreement with the ground truth
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(a) Simulated data.

(b) Real data.

Fig. 5: Comparing reconstructions of SSD and gradient-based optimization. SSD is
trained on 3D objects and outputs a (3D) four-legged table for the planner occluder.
The gradient-based reconstructions use 10×5×10 discretization of the occluding region.

hidden scenes. However, the gradient-based method does not scale well for more
complex occluder shapes requiring finer discretizations (as shown in the supple-
mentary document).

Even when the non-occluding hidden scene portion reflects light (rather than
being self-luminous) and spans a large depth (instead of being confined to a
plane), the reconstructed 3D image of the occluder and 2D image of the non-
occluders are remarkably accurate as shown in Figure 1. This experiment further
highlights the surprising generalizability of the proposed SSD-based method,
which was trained using only simulated data.

Additional qualitative results with real experiments and simulations are given
in the supplement.

(a) Reconstructions from simulated data.

(b) Reconstructions from real experimental data.

Fig. 6: Robustness of SSD-based approach to background illumination. The
insights show the measured photograph and reconstructions at each background level.
With the monitor brightness fixed, a larger illuminance value indicates increased am-
bient light source contributions in (b).
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5.2 Quantitative Results

Here, we investigate the robustness of our approach to increasing levels of back-
ground illumination (Figure 6), while reconstructions obtained under varying
levels of measurement noise are presented in the supplementary document (Sup-
plementary Section 4.1). In the real experimental result, we introduce an ad-
ditional external light source that increases the overall brightness of the cap-
tured photograph but does not cast penumbra. We report the mean squared
error (MSE) for the 2D reconstructions, and Chamfer Distance (CD) for the 3D
occluding object reconstructions. Our approach degrades slowly for reasonable
SBRs in simulated experiments, with the 3D reconstructions remaining accurate
even in SBRs of around 10 dB, 2D reconstructions degrade gradually for SBRs
below 20 dB. Similar trends are observed for real data reconstructions. The sur-
prising stability of the 3D reconstructions even at very low SBRs demonstrates
the utility of the strong shape prior imposed by the proposed SSD network.

SSD demonstrates similar robustness to measurement noise, with 3D recon-
struction quality relatively unaffected even at signal-to-noise ratios as low as
10 dB. Additional experiments, shown in Supplementary Section 4.2, suggest
that SSD also generalizes well to reconstructing unseen 3D shape classes.

6 Discussion & Conclusion

We introduced a formulation of computational periscopy that enables 3D recon-
structions. Our formulation inspired a physics-based algorithm, and a physics-
inspired neural network for computing 3D reconstructions of light-occluders, in
addition to 2D reconstructions of the light-reflecting structures in the hidden
scene. This demonstrates an advance over prior techniques in occluder-aided
passive NLOS imaging that relied on a priori known information about the light-
occluders in the scene. Central to our physics-inspired neural network model is a
novel soft shadow diffusion (SSD) network, which reconstructs point clouds from
soft shadows and extends denoising diffusion models to interpret soft shadows.
Although SSD was trained in simulations, both approaches were successful in
real experiments. SSD was further shown to degrade gracefully with noise and
additional background.

Notwithstanding, some aspects of our work warrant further investigation:
First, our gradient-based method is limited to reconstructing simple shapes due
to the computational demand of higher discretization. Although a sparse matrix
approach mitigated this limitation in simulations, it was less effective in real-
world scenarios (as shown in the supplementary material). Second, our SSD
model predicts a view-consistent 3D point cloud without information about the
true location of the points in the NLOS configuration. To facilitate recovery
of the non-occluding object, we partition the occluder space into multiple 3D
bounding boxes of the occluder size. The subsequent step involves a grid search
over these bounding boxes to position the occluder accurately within the hidden
area. However, the size of the occluding object is typically unknown in real-world
uncontrolled scenarios. These shortcomings are avenues for future research.
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