
Fig. 7: Full Attention Maps of Each Layer of LLaVA.

 



A Evaluation Tasks Description

Image Captioning. Image captioning requires the model to generate a descrip-
tion for a given image. We choose Nocaps [1] and Flickr30k [33] as benchmarks
and report CIDEr score [38] as metric. For image captioning tasks Nocaps and
Flickr30k, we adopt prompt as “Describe the image in one sentence.”
Visual Question Answering (VQA). VQA requires the model to generate
an answer for a given image-question pair. We select the development set of
A-OKVQA [35] and the test set of OCR-VQA [31] as the benchmark and the
report the multiple choice (MC) score of AOKVQA and Rouge-L score of OCR-
VQA. For AOKVQA, we adopt the the multiple choice version of evaluation and
use prompt as: “Analyse the image and choose the best answer for the following
question: {question} Options: {options}. Output the letter of the correct an-
swer.” For OCRVQA, we use the default question as prompt for each example
as provided in the official dataset.
Multimodal Reasoning. Compared with VQA, multimodal reasoning requires
more advanced perception, knowledge and reasoning skills of the model, which
are more suitable benchmarks to evaluate the integrated abilities of LVLMs.
We choose MMMU and PCA-Bench [6] as benchmarks. MMMU is a multi-
modal benchmark featuring multi-discipline tasks demanding college-level sub-
ject knowledge and reasoning skills. PCA-Bench is a complex embodied reason-
ing benchmark with error localization, which features three different domains
including autonomous driving, robot and game. We report the multiple choice
accuracy for the development set of MMMU and Perception, Cognition, Action,
Genuine PCA scores for both the open and closed test set of PCA-Bench. We use
the default prompts for each example as provided in the official dataset MMMU
and PCA-Bench.
Video Question Answering. Similar to VQA for single image, Video Question
Answering requires the model to generate answer given a video-question pair.
Current LVLMs usually deal with video question answering tasks by sampling
multiple frames as input, resulting in longer image token sequences. We choose
TGIF-QA [12], MSVD-QA [44] and MSRVTT-QA [43] as benchmarks following
the evaluation pipeline of Video-ChatGPT [30] and report the accuracy and
chatgpt-score as metrics. We use the first 1K examples in each benchmark in
our experiments due to the limited commercial API usage in evaluation. For
all video QA tasks, we use the default question as the prompt as provided in
Video-LLaVA, and use the same tool from Video-ChatGPT to conduct GPT
evaluation.
Fine-grained Benchmarks For the evaluation of the influence of FastV on
LVLM performance, we incorporate four distinct Fine-grained benchmarks: MME [10],
Seed-Bench [16], SciQA-IMG [29], and MMVet [45]. MME offers a comprehen-
sive evaluation of models’ perception and cognition abilities across a diverse
set of tasks, focusing on intuitive and quantifiable analysis without extensive
prompt engineering. SEED-Bench, on the other hand, evaluates generative com-
prehension across multiple dimensions, ensuring question relevance and quality

https://huggingface.co/datasets/MMMU/MMMU
https://huggingface.co/datasets/PCA-Bench/PCA-Bench-V1
https://github.com/PKU-YuanGroup/Video-LLaVA/blob/main/TRAIN_AND_VALIDATE.md
https://github.com/mbzuai-oryx/Video-ChatGPT/blob/main/video_chatgpt/eval/run_inference_benchmark_general.py


through a mix of automated filtering and manual verification. While MME and
SEED-Bench cover general abilities of LVLMs, SciQA-IMG and MMVet focus on
the advanced aspects of multi-modal understanding. SciQA-IMG is a large-scale
multimodal science question dataset annotated with detailed lectures and expla-
nations. MMVet evaluates LVLMs on complex multimodal tasks, emphasizing
multi-modal understanding and free-form answering capabilities, thus offering a
comprehensive view of model performance.

B Computing Cost Estimation
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Fig. 8: The heat map of theoretical FLOPs reduction ratio. The color in the figure
represents the reduction ratio in different K and R in FastV.

C Limitations

The FLOPs reduction ratio is based on the theoretical calculation considering
the removal of image tokens, while actual inference cost can be influenced by a
variety of factors such as inference framework optimization, specific CUDA ker-
nels and hardwares. We aim at integrating FastV into mainstream LLM inference
frameworks such as vLLM [15] for broader application in the future.


