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Abstract. This paper proposes a generalizable model to synthesize high-
fidelity clothing wrinkle deformation in 3D by learning from real data.
Given the complex deformation behaviors of real-world clothing, this
task presents significant challenges, primarily due to the lack of accurate
ground-truth data. Obtaining high-fidelity 3D deformations requires spe-
cial equipment like a multi-camera system, which is not easily scalable.
To address this challenge, we decompose the clothing into a base sur-
face and fine wrinkles; and introduce a new method that can generate
wrinkles as high-frequency 3D displacement from coarse clothing defor-
mation. Our method is conditioned by Green-Lagrange strain field—a
local rotation-invariant measurement that is independent of body and
clothing topology, enhancing its generalizability. Using limited real data
(e.g., 3K) of garment meshes, we train a diffusion model that can gen-
erate high-fidelity wrinkles from a coarse clothing mesh, conditioned on
its strain field. Practically, we obtain the coarse clothing mesh using a
body-conditioned VAE, ensuring compatibility of the deformation with
the body pose. In our experiments, we demonstrate that our generative
wrinkle model outperforms existing methods by synthesizing high-fidelity
wrinkle deformation from novel body poses and clothing while preserving
the quality comparable to the one from training data.

1 Introduction

In the digital frontier, modeling virtual clothing has become increasingly im-
portant in many domains, ranging from fashion design to online shopping, and
from animation to virtual reality. In immersive VR applications like telepresence,
clothing plays a pivotal role in conveying the user identity, where the realism of
clothing deformation is crucial for the authenticity of such an experience.

Simulating realistic clothing deformations based on the law of physics has
been successful [5,7,28,33–36,54]. Yet the inverse problem, digitalizing real-world
clothing and replicating its deformation behavior, is still challenging. Instead of
solving this problem in a physical way, data-driven approaches present viable
solutions. However, these methods also face significant challenges due to the
lack of ground-truth data: capturing high-fidelity 3D clothing deformation [16,
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Fig. 1: Generalizable wrinkles: Given unseen SMPL body poses, we generate clothing
deformation with realistic wrinkles. The high-frequency wrinkle deformation is learned
from real captures of a short-sleeve T-shirt, which is generalizable to long-sleeve T-
shirts and tank tops.

21, 39, 40, 51, 52] often requires expensive equipment such as a multi-camera
system, which has poor scalability. The models learned from limited data often
fail to produce realistic deformation due to the prediction ambiguity from unseen
poses and clothing shapes, which often erases the high-frequency components,
e.g., wrinkles.

To take advantage of limited real clothing data capture and animate them
with unseen body shapes and poses, existing methods [4, 31, 40, 43] rely on the
prior knowledge of human body deformation. Specifically, they extend the linear
blend skinning (LBS) from a parametric body [30] to clothing, so it can be an-
imated with the body skeleton with the generalizability to unseen body poses.
However, they have difficulty in modeling loose clothing like skirt, due to the
lack of accurate body estimation under loose clothing, as well as the topological
gap between human body and loose clothing. Other methods [26,37,56] propose
to model wrinkle-level clothing deformation independently of body, aiming for
learning clothing deformations that can be generalized to unseen body poses
without requiring large-scale body-clothing pairwise data. However, they gener-
ate wrinkles based on the normal map [26,56] or the vertex positions [37] of the
coarsely deformed clothing. These global representations are still inherently cou-
pled with the underlying body pose, limiting their generalizability when trained
on small-scale data. There is no trivial conversion of these representations from
global to local. For example, a tangent-space normal map of the coarse clothing
surface contains no information to the geometry [26]. For the vertex positions,
transforming them to a pose-invariant canonical space can make it generalizable,
but finding this canonicalization for arbitrary clothing is non-trivial. Resorting
to the body LBS for the canonicalization results in drawbacks as discussed above.

In this paper, we address this challenge by making the wrinkle generation de-
pendent on a local representation of the coarse clothing state—Green-Lagrange
strain. Since the strain measures how the clothing is locally deformed in com-
parison to its rest state in a rotation-invariant space, it is highly generalizable.
Using this strain field representation, we propose to learn the correlation be-
tween the strain and the wrinkling from real clothing captures. Since the strain
measurement is local, and its relationship with wrinkling is an intrinsic property
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of the fabric material, this representation is completely independent of the body
poses, and therefore, has the ability to generalize to unseen body poses.

Since clothing wrinkling is extremely complex and can be affected by many
factors other than the strain measurement, we model the cloth wrinkling as a
generative task conditioned on the strain. Specifically, we use a denoising diffu-
sion model [18], which is shown to be effective on geometry modeling [15,24,46],
for realistic wrinkling. We represent the wrinkling as vertex displacement in local
coordinate frame on the base mesh, and train the diffusion model on real cloth-
ing with accurate registrations [16]. In particular, we generate base meshes by
removing wrinkles from the ground-truth meshes, then compute vertex displace-
ment between the base mesh and the ground-truth mesh, and transform it to
the local coordinate frame on the base mesh. We also compute Green-Lagrange
stain on the base mesh, and use it as conditioning to the diffusion model.

Based on the strain-conditioned diffusion model for wrinkle generation, we
propose a practical pipeline to model realistic body-dependent clothing defor-
mations for virtual avatars. In particular, we rig the clothing mesh with a virtual
skeleton, which controls the coarse clothing deformation using LBS. We use a
conditional variational auto-encoder (CVAE) [25, 47] to model the latent space
of virtual skeleton transformations conditioned on body shape and pose. At in-
ference time, the CVAE samples feasible virtual skeleton transformations given
body shape and pose, which produces coarse clothing deformation. We compute
Green-Lagrange strain on the coarsely deformed cloth, and use our diffusion
model to generate realistic wrinkles on top of it. Our experiments on the test set
of real captures and synthetic data demonstrate that our method can generate
realistic wrinkles with strong generalizability to arbitrary body poses.

We summarize our contributions as follows:

– A strain-conditioned diffusion model for realistic clothing wrinkle generation,
which is learned from high-fidelity real 3D clothing captures, with strong
generalizability to unseen body poses.

– A practical pipeline for realistic body-dependent clothing deformations, where
we learn diverse body-dependent coarse clothing deformation from synthetic
simulation data using a VAE based network.

– Applications of our method to wrinkle transfer, material modeling, and
down-stream tasks like image-based wrinkle fitting.

2 Related work

Cloth modeling has attracted significant attention in computer graphics and
computer vision research communities. Recent efforts on modeling clothing de-
formation can be categorized into two groups: physics-based approaches and
data-driven approaches.
Physics-based cloth simulation. Based on the established knowledge of elas-
tic material mechanics, researchers have proposed numerous physics-based cloth
simulation methods to model physically plausible clothing deformation [5, 7, 28,
33–36, 54]. These methods usually study the force exerted on the clothing by
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its interaction with the body and environment, which is integrated over time to
gradually deform the clothing geometry. Due to the intricate nature of clothing
dynamics, some simplifications are often made to make the simulation tractable,
sacrificing the realism of clothing deformation.

Among the physics-based cloth simulation methods, the coarse-to-fine strat-
egy has been explored. Wrinkle Meshes [33] can run in parallel with a dynamic
simulation of coarse clothing mesh, and add wrinkles to it. Chen et al. [7,8] de-
compose a clothing geometry into a smooth base surface and fine wrinkles, where
the wrinkles are represented as sinusoidal waves in the local frame of the base
surface. Zhang et al. [54] propose an interactive tool for real-time quasi-static
cloth simulation, where the user can control the coarse deformation of the cloth,
and fine wrinkles will be progressively added to the coarsely deformed surface
in a physically plausible way. These methods have shown promising results on
realistic clothing deformation by only studying the fine wrinkles.

Cloth simulations usually generate open-loop clothing deformations, while
using them to replicate a real-world clothing is non-trivial. Wang et al. [50] and
Feng et al. [11] design special equipment to measure real-world fabrics’ stretching
and bending properties, representing them as material parameters in a computa-
tional elastic model that can be integrated into physics-based cloth simulators.
However, they measure the material properties of the fabric in a local man-
ner, which may not faithfully reflect the property of an actual clothing, where
multiple pieces of fabrics are sewed together. Efforts have also been made on
differentiable cloth simulation [10, 14, 20, 29, 41], which can be used in gradient-
based simulation parameter estimation. However, these gradient-based methods
require reasonable initial guess to start with, making it difficult to solve real-
world problems. Moreover, Zhong et al. [57] have empirically shown that the
gradient computation in these differentiable simulators may not match the an-
alytical results even for a simple collision task, making it questionable to use
them for real-world cloth modeling.
Data-driven cloth modeling. Researchers have been trying to model clothing
deformation in a data-driven manner, which can be more flexible and scalable
than physics-based methods. This is especially appealing when the clothing de-
formation can be learned from high-fidelity clothing captures [12, 16, 21, 31, 39,
40,51,52]. Since complex data processing is usually necessary in order to acquire
the data, it is difficult to scale up the data collection. As a result, these data
captures show limited diversity of body variations associated with each clothing.
In addition, ground-truth body geometry is hard to acquire in the high-fidelity
data captures, because the body is heavily occluded by the cloth. Only pseudo
ground-truth body is available by fitting the shape and pose of a parametric
body to the data capture.

Considering the fact that each clothing is captured with limited body vari-
ations, it requires some prior knowledge in order to deform the captured cloth-
ing beyond the body shape and poses seen during capture. Existing meth-
ods [4,31,40,43] take advantage of the parametric body, and extend the LBS from
body to cloth, so the clothing can be animated by controlling the body skeleton.
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Although these methods can successfully model tight-fitting clothing, deforma-
tion artifacts usually present. More importantly, they have difficulty in modeling
loose clothing like skirt. Pan et al. [37] have shown that clothing-specific LBS
independent of body skeleton is promising for modeling loose clothing.

Another line of research is to combine data-driven techniques with physics-
based simulation. Physics-based simulation is a useful tool for generating large-
scale training data, so the body-dependent clothing deformation can be effec-
tively learned [37,38,44,55]. Although the ideas directly apply to real-world data
in theory, how to acquire large-scale real-world data that meet the training re-
quirement is an open problem. Physics-inspired methods [2,3,13,45] use physics
heuristics to enable unsupervised learning of clothing deformations, so realism of
the result, especially for high-frequency wrinkles, is bounded by the underlying
physics model. Our work is parallel to them, exploring an alternative direction to
build a fully data-driven model that learns to reproduce real physical behaviors,
thus pushing the boundaries of quality.

Among the above works, the idea of coarse-to-fine decomposition of clothing
geometry has been extensively explored [6, 23, 26, 37, 38, 56]. Specifically, Kavan
et al. [23] propose a simple data-driven framework accompanied with strong
regularization to model wrinkle-level clothing deformation on top of a coarse
simulation. Lahner et al. [26] and Zhang et al. [56] argue that the wrinkle-level
cloth geometry details can be baked in normal maps, and propose methods that
can learn to upsample low-resolution normal maps. Although the normal map
can be lifted to 3D [56], it shows limited contribution to the improvement of
surface geometry. Patel et al. [38] and Pan et al. [37] decompose the clothing
geometry into low-frequency and high-frequency components, showing promising
capability of modeling complex clothing deformation. However, their methods
requires body-cloth data pairs that can only be synthesized, and hard to acquire
in real-world as discussed above.

3 Method

The folding and wrinkling of clothing contribute most to our perception on its
deformation, so we decompose the clothing surface into a smooth base surface
and fine wrinkles, and model them separately as illustrated in Figure 2 (a). The
base surface depends on the global body-clothing interaction, while the wrinkle
model captures the local correlation between the state of base surface and fine
wrinkles. This decomposition has a practical benefit that relaxes the requirement
for body-clothing pairwise data from real capture. The body-dependent coarse
clothing deformation can be learnt from large-scale synthetic body-clothing pair-
wise data. Although the synthetic data usually show low-quality clothing defor-
mation, they only contribute to the coarse deformation component, which does
not dominate our sense of realism on clothing deformation. In contrast, the re-
alism of clothing deformation comes from the fine wrinkle component, which is
learned from real clothing capture.
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Fig. 2: (a) At inference time, our method first generate coarse clothing deformation
driven by parametric body, then generate realistic wrinkles on the base clothing sur-
face. We train the coarse clothing deformation component using large-scale synthetic
body-clothing pairwise data. The fine wrinkle generation component, which dominate
the realism of clothing deformation, is learned from limited real clothing capture. (b)
CVAE for body-dependent coarse clothing deformation. A clothing is rigged with a
virtual skeleton for LBS. The virtual skeleton is optimized on the combination of the
synthetic clothing and the base surface derived from the real clothing capture. The
CVAE is trained to reconstruct the virtual skeleton transformations conditioned on
SMPL parameters.

3.1 Problem Formulation

We represent the clothing as a thin elastic surface f(u) : Ω → R
3, where the

surface in the planar parameter space Ω is embedded in the 3D deformed space.
Inspired by how wrinkles develop on real thin sheets [1, 7], we decompose the
clothing surface into a smooth base surface fb and a fine wrinkle field fw as

f(u) = fb(u) + fw(u), (1)

For a point u ∈ Ω, we can define a local coordinate frame as { ∂fb

∂u1
, ∂fb

∂u2
, n̂b},

where the first two are tangential components, and n̂b is the unit normal on the
base surface. We encode the wrinkles as a vector field w̃(u) : Ω → R

3 in the
local frame, which contributes to the wrinkle in the deformed space as

fw = w̃1
∂fb

∂u1
+ w̃2

∂fb

∂u2
+ w̃3n̂b (2)

where w̃i represents a scalar field in Ω, and the other terms are vector fields in
Ω.

Existing works [7, 36] have explored how the stretching measurement like
Green-Lagrange strain can affect the clothing deformation under physics-based
settings. Considering a point u ∈ Ω on the reference surface that is mapped to
xb ∈ R3 on the deformed base surface, the stretching of the surface at the point
can be measured by the Green-Lagrange strain tensor E ∈ R2×2

E =
1

2
(F⊺F− I) , (3)
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Fig. 3: Strain-conditioned diffusion model for fine wrinkles. We acquire base mesh by
smoothing out the wrinkles on the real clothing capture, then construct a wrinkle field
x0 as the vertex displacement from base mesh to wrinkled mesh in base mesh local
coordinate frame unwrapped to UV space. Meanwhile, we compute Green-Lagrange
strain on the base mesh, and parameterize it in UV space as the strain field c. During
training, the diffusion model takes x0 and c as inputs, adds Gaussian noise to x0, and
learns to recover it conditioned on c. At inference time, the diffusion model takes c
as input, and generate x0 from Gaussian noise. The base mesh is used to compute
clothing-specific virtual skeleton together with the synthetic cloth.

where F = ∂xb

∂u ∈ R3×2 is the deformation gradient at point xb, and I is an
identity matrix. We compute the magnitude of Green-Lagrange strain by taking
its Frobenius norm ∥E∥F , and use it to form a scalar field E(u) : Ω → R on
the entire surface, measuring the stretching on the base surface comparing to
its rest state. We pursue a data-driven approach, and model the cloth wrinkling
behavior based on the stretching of the base surface. Specifically, we aim to learn
a generative model for the wrinkle field w̃ conditioned on the stretching state of
the base surface measured by E

ˆ̃w = Gθ(ϵ;E), (4)

where Gθ is a neural network parameterized by θ.

Discretization. In practice, we discretize the surface in Ω as a triangle mesh
M̄ = (V̄ , F ) in UV space, where V̄ ∈ R2 is the set of vertex positions in the UV
space, and F is the set of triangle faces. The canonical base surface, deformed
base surface, and wrinkled surface embedded in 3D are discretized similarly as
triangle meshes M̄b = (V̄b, F ), Mb = (Vb, F ) and M = (V, F ), respectively, where
V̄b, Vb, V ∈ R3.

The vector field w̃ and the scalar field E defined on the base surface in Ω
are discretized as UV images Uw̃ ∈ RH×W×3 and UE ∈ RH×W . They can be
mapped to per-vertex and per-face quantities by the UV mapping given by M̄ .
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3.2 Strain-Conditioned Fine Wrinkle Field

We learn Gθ in Equation (4) from real 3D clothing data based on a conditional
diffusion model [18], which consists of a forward process and a reverse process
as shown in Figure 3.

In the forward process, we learn a transition probability from the complete
wrinkle signal to a random noise xT by adding noise

xt =
√
1− βtxt−1 + βtϵ, x0 = Uw̃, (5)

where ϵ ∼ N (0, I) is a sample from the Gaussian distribution. We gradually
increase the variance schedule βt as increasing t, which reduces the impact of
xt−1 while increasing that of Gaussian noise.

The reverse process gradually reconstructs the wrinkle signal from random
noise by denoising:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t; c)

)
+ σtz (6)

where c = UE is the strain field conditioning. Based on the variance schedule

βt, we define αt = 1 − βt, ᾱt =
∏t

i=1 αi, and σt =

√
β̃t =

√
1−ᾱt−1

1−ᾱt
βt. The

learnable neural network ϵθ parameterized by θ aims to predict the noise ϵ from
corrupted data xt, conditioned on the strain field c = UE . The generator Gθ in
Equation (4) is effectively the iterative reverse process that produces x0 from
xT .

We train ϵθ with a weighted variational bound [18] as the objective:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t; c)∥2

]
(7)

3.3 Body-Dependent Base Surface

The wrinkle field generated in the above step is conditioned on, and will be added
to, a base surface that shows coarse clothing deformation. The base clothing
surface can deform in a variety of ways depending on its interaction with other
entities, where the underlying body is a major source of such interaction. In
pursue of the goal on modeling realistic clothed avatar, we seek to build the
connection between the clothing deformation and the underlying body.

We represent the human body using SMPL [30], parameterizing a body ge-
ometry M (θ,β) as a function of body pose θ and body shape β. The base
surface in 3D deformed space is controllable by clothing-specific virtual skele-
ton γ ∈ Rk×6, which is optimized [27] on a combination of real and synthetic
cloth meshes. Each virtual bone’s movement has 6 degrees-of-freedom, including
translation t ∈ R3 and rotation r ∈ SO(3).

The virtual skeleton transformations are decoded from a latent vector z con-
ditioned on SMPL pose θ and shape β parameters

Mb = W
(
M̄b;γ,W

)
, (8)

γ = Gϕ(z;θ,β), (9)
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where W (·) is a function that deforms the base mesh Mb from its rest pose M̄b

based on virtual skeleton transformations γ and skinning weight W ∈ R|Vb|×6k,
Gϕ is a neural network parameterized by ϕ. We learn Gϕ in Equation (9) from
synthetic body-clothing pairwise data as the decoder in a conditional variational
auto-encoder (CVAE) [25,47] as shown in Figure 2 (b).

4 Experiments

4.1 Dataset and Settings

In order to train the coarse clothing deformation component, we take 49 body
motion sequences from the AMASS [32] dataset, totaling 27415 frames, and sim-
ulate each clothing with the body. We post-process the simulated clothing meshes
by curved Hessian smoothing to remove unnecessary high-frequency details.

Training

Test (out-of-distrib.)
Test (in-distrib.)

Rigged T-shirt

t-SNE for T-shirt pose distribution

Fig. 4: (Left) Sample clothing from the training set
and the in-distribution test set. (Middle) Pose ap-
proximation with rigging, and t-SNE for pose distri-
bution of the dataset. (Right) Sample SMPL body
and clothing from the out-of-distribution test set.

We learn the fine wrin-
kles from the patterned cloth-
ing dataset [16], which pro-
vides accurate 3D registra-
tions for the clothing ge-
ometry. To create smooth
base meshes, we remove wrin-
kles from the ground-truth
clothing meshes by smooth-
ing based on curved Hes-
sian energy [49]. We use two
sequences T-shirt on "sub-
ject_00" (T-shirt) and skirt
on "subject_04" (Skirt) in
our experiments. The frames
in each sequence are split
into training set and in-
distribution test set. Mean-
while, we take 6 smoothed simulation sequences, and form an out-of-distribution
test set. The in-distribution test set only contains coarse clothing and GT wrin-
kled clothing, but no body pose, while the out-of-distribution test set has body
pose and synthetic clothing. The pose distribution in the out-of-distribution test
set highly deviates from the training set as Figure 4 shows. Please note that the
body pose is not available in the real-world dataset, and we approximate it using
a rigged T-shirt.
Implementation details. For the coarse deformation component, each cloth-
ing is rigged with 64 joints in the virtual skeleton. For the wrinkle generation
component, we train the diffusion model with T = 1, 000 steps, and inference
using DDIM [48] with S = 50 steps and η = 0 in the reverse process. We use
a linear variance schedule that increases from β1 = 10−4 to βT = 0.02. The
network ϵθ is implemented as a U-Net [42] that takes in a 256× 256 UV image,
consisting of both strain field and noisy wrinkle field.
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Input base mesh Ground-truth DeepWrinkles DDE LFGD Ours

Fig. 5: Comparison of 3D wrinkle reconstruction with baseline methods. In each ex-
ample, the top row shows the geometry, as well as a zoom-in for the result of each
method. The bottom row shows the normal map, as well as the vertex error Ev in color
(0m > 0.05m). Please note that DeepWrinkles and DDE only generate normal
maps, which are used to deform the base mesh. LFGD and our method predict 3D
displacement, and the normal maps are derived from the deformed mesh.

Metrics. To quantitatively evaluate the geometric quality of the generated wrin-
kles on the in-distribution test set, we compute the L2 vertex distance Ev and
the L2 Chamfer distance Ecd between the ground-truth mesh and the predicted
mesh from each method:

Ev =
1

N

N∑
i=1

∥vi − v̂i∥2 , Ecd =
1

|V |
∑
v∈V

min
v̂∈V̂

∥v − v̂∥22 +
1

|V̂ |

∑
v̂∈V̂

min
v∈V

∥v̂ − v∥22

To evaluate the coarse deformation component on synthetic data, we report the
L2 vertex distance Ev for the base mesh, as well as L2 joint distance Ej for
the clothing-specific virtual skeleton. Moreover, as a perceptual evaluation for
the quality of clothing wrinkles, we compute FID score [17] on UV-space normal
maps between the real clothing captures and the results for each method.

4.2 Comparison with Baseline Methods

Comparison of 3D wrinkle reconstruction. We compare the wrinkle genera-
tion component of our method with DeepWrinkles [26], DDE [56], and LFGD [37]
on the in-distribution test set. Please note that both DeepWrinkles and DDE
aim at generating normal maps for rendering purpose, which is different from
our method that focuses on generating detailed 3D geometry. We apply DDE’s
technique to deform the base mesh using normal map guidance. Specifically, the
deformed vertex position is found by minimizing an energy function that consists
of normal matching, Laplacian smoothing, and a regularization term:

v∗ = argmin
v

∑
v∈V

∑
p∈N(v)

∥nv ·
v − p

∥v − p∥
∥2+λl

∑
v∈V

∥∆v∥2+λr

∑
v∈V

∥v−v0∥2 (10)
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This is applied to both DeepWrinkles and DDE, then the geometric quality of
their deformed meshes are compared with our method. For DDE, we remove the
material classifier, as our experiment is done on each clothing separately. Since we
focus on static wrinkle prediction, we discard temporal information when train-
ing and testing DeepWrinkles and LFGD. We only use LFGD’s high-frequency
component, and discard its low-frequency component in this experiment.

Table 1: Comparison of 3D wrinkle reconstruc-
tion with baseline methods. Ev and Ecd are mea-
sured in 10−2m and 10−4m2, respectively. Ours
is the average of 5 runs.

T-shirt Skirt
Ev Ecd Ev Ecd

DeepWrinkles [26] 0.835 0.815 1.012 1.157
DDE [56] 1.507 3.405 1.457 3.552
LFGD [37] 0.586 0.391 0.941 1.225
Ours 0.347 0.205 0.526 0.666

We report the quantitative
evaluation on the in-distribution
test sets in Table 1. Because our
method is generative, we run it
5 times with different Gaussian
noise initialization and denois-
ing trajectories, and report the
average evaluation results. Our
method achieves the lowest ver-
tex distance and Chamfer dis-
tance on both sequences, which
demonstrates the effectiveness of
our method in generating real-
istic 3D wrinkles. Examples of
qualitative results can be found
in Figure 5 and Supp. Mat.. DeepWrinkles can generate normal maps in high
quality, which is applicable to rendering, but it does not directly produce detailed
clothing geometry. Following DDE, we apply Equation 10 to deform the base
surface with the guidance of DeepWrinkles’s normal map prediction. Since the
normal map does not provide information on the geometric scale of the wrinkle,
the deformed mesh may have misalignment with the ground-truth. In contrast,
our method directly deforms the clothing geometry, where the surface normal
can be derived trivially. DDE is good at enhancing existing wrinkles as shown in
the original paper. In our experiment, each method starts from a smooth base
mesh without wrinkles, and DDE fails to generate meaningful wrinkle patterns
even as normal maps. LFGD’s high-frequency component represents the wrinkle
details as vertex displacement in the global coordinate frame, making it difficult
to generalize to unseen coarse deformation.
Comparison of wrinkle quality. Besides DeepWrinkles, DDE, and LFGD,
we compare our method with body-dependent clothing deformation methods
HOOD [13], NCS [3], and PBNS [2] on the out-of-distribution test set. HOOD,
NCS, PBNS are physics-inspired methods that can be trained in an unsupervised
way. Instead of explicitly decomposing clothing deformation into coarse and
fine components, they directly predict the final clothing geometry given body
poses. Similar methods include TailorNet [38] and SNUG [45], which have been
surpassed by state-of-the-art methods HOOD, NCS, and PBNS.

In this experiment, HOOD, NCS, PBNS, and our method take the same
SMPL body as input, and generate wrinkled clothing, which may show different
coarse deformation, especially for loose clothing. As a mid-product, our method
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SMPL body Input base mesh DeepWrinkles DDE LFGD OursHOOD NCS Ours (Normal cond.) Ours (Strain tensor cond.)

Fig. 6: Comparison of wrinkle quality with baseline methods. Given SMPL body as
input, HOOD, NCS, PBNS and our method generate wrinkled clothing, which may
show different coarse deformation. The base mesh is generated by our method as a
mid-product, which is taken as input by DeepWrinkles, DDE, and LFGD for wrinkle
generation. Normal conditioning and strain tensor conditioning are variants of our
method for ablation study. See Supp. Mat. for more results.

generates base clothing mesh, which is used by DeepWrinkles, DDE, and LFGD
as input for wrinkle generation. We report FID scores for this experiment in
Table 2. Qualitative results in Figure 6 illustrate that our method generates
realistic wrinkles comparing with other methods.

4.3 Ablation study

Using the norm of Green-Lagrange strain as the conditioning signal is crucial for
our method to generate generalizable realistic wrinkles. Alternative choices for
conditioning signals include the surface normal [26,56] and the Green-Lagrange
strain tensor. We do an ablation study to justify our choice of the norm of
Green-Lagrange strain by comparing it with surface normal and Green-Lagrange
strain tensor as conditioning signals. In order to compare the generalizability,
all variants are trained on the same training set, and tested on the out-of-
distribution test set. Quantitative evaluation in Table 2 and qualitative results
in Figure 6 show that our method outperforms variants conditioned on surface
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Table 2: FID score on UV-space normal
maps as a perceptual evaluation for wrin-
kle quality. Ours is the average of 5 runs.

T-shirt Skirt
Base mesh 212.08 131.29
DeepWrinkles [26] 231.40 92.46
DDE [56] 218.29 126.77
LFGD [37] 305.89 104.63
HOOD [13] 163.22 79.79
NCS [3] 142.87 90.50
PBNS [2] 143.58 129.87
Ours (Normal) 129.19 60.24
Ours (Strain tensor) 134.52 116.05
Ours 75.05 45.09

normal and Green-Lagrange strain ten-
sor. When using surface normal as the
conditioning signal, the generated wrin-
kles are not always realistic, e.g., wrin-
kles in different directions may intersect
with each other, which is not physically
plausible. In contrast, using the norm
Green-Lagrange strain as the condition-
ing signal leads to more plausible wrin-
kles, because it captures the stretch-
ing state of the base mesh and makes
the model physics-aware. The Green-
Lagrange strain tensor captures unnec-
essary directional information, which
can lead to overfitting with limited
training data. We take its norm to com-
press the feature and reduce learnable parameters, leading to better generaliza-
tion.

4.4 Applications

Wrinkle transfer to other clothing styles. As shown in Figure 1, our method
can be applied to other clothing styles with compatible UV parameterization.
The high-frequency wrinkle deformation is learned from real captures of a short-
sleeve T-shirt, which can be successfully applied to long-sleeve T-shirts and tank
tops. Although the learned wrinkling is only for the short-sleeve T-shirt, and
may not faithfully reflect how actual long-sleeve T-shirts and tank tops deform,
it enables artistic applications like wrinkle style transfer.
Modeling fabric material variations. By changing Equation 6 and Equa-
tion 7 following classifier-free guidance [19], we can train a material-aware diffu-
sion model for strain-conditioned wrinkle generation. Once trained, our method
can generate slightly different wrinkling by altering the fabric material label for
the same base mesh as illustrated in Figure 7 (a). To enable the training, we
combine the two sequences T-shirt on “subject_00” and T-shirt on “subject_04”
from the patterned clothing dataset [16], and align their UV parameterization.
Image-based wrinkle fitting. Our method can be applied to down-stream
tasks like image-based wrinkle fitting, where the 3D clothing can be fitted to
a 2D image by matching the surface normal. This is possible by guiding [9]
the wrinkle generation from our wrinkle diffusion model. In Figure 7 (b), we
demonstrate the wrinkle fitting results where we first align the coarse mesh
with the input image based on the body pose prediction [53]; and guide the
denoising process by comparing the differentiably rendered surface normal from
our model with the normal prediction [22]. Examples are from the TikTok [22]
and HUMBI [51] datasets.
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Cotton Polyester
Input
image

Normal
prediction

Wrinkle
fitting

3D mesh

Fig. 7: (Left) Material-aware wrinkle generation. The strain-conditioned diffusion
model is trained on a dataset of two T-shirts made with cotton and polyester, re-
spectively. By specifying the material label for the same base mesh, our method can
generate slightly different wrinkling to reflect different fabric property. (Right) Image-
based wrinkle fitting. The coarse mesh is first aligned with the input image based on
the body pose prediction, then the denoising process for wrinkle generation is guided
by matching the differentiably rendered surface normal to the normal prediction.

5 Conclusion

We have presented a generalizable method for generating high-fidelity clothing
wrinkle using strain-conditioned diffusion model. It learns the correlation be-
tween the strain and the wrinkling from real clothing captures. The strain mea-
surement captures local rotation-invariant geometric information independently
of body and clothing topology, enhancing the generalizability of our method.

Based on the strain-conditioned diffusion model for wrinkle generation, we
have also presented a practical pipeline to model realistic body-dependent 3D
clothing deformation for virtual avatars. Specifically, a virtual skeleton controls
the coarse clothing deformation, while a CVAE captures the body-dependent
latent space of this deformation. Since the coarse deformation contributes little to
the realism of clothing deformation, it can be learned from low-quality synthetic
body-clothing pairwise data, not to be bounded by the limited diversity of body
shape and pose variations in real capture.
Limitations and future work. Our method only models static clothing de-
formation, and ignores dynamics. Since dynamics is an important factor that
contributes to the realism of clothing deformation, future work can extend our
method to model dynamic clothing deformation. Our method does not incorpo-
rate physics-based constraints, so physical plausibility is not guaranteed, e.g.,
the body-clothing collision and clothing self-collision may exist in the result.
Although this can be fixed by post-processing, it would be interesting to incor-
porate physics heuristics into our method. We use LBS for simplicity to deform
the base mesh based on virtual skeletons, resulting in our coarse deformation in-
heriting the artifacts of LBS. Future work can explore more advanced methods
to improve the realism of coarse clothing deformation.
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